Share:


Design study of a Martian rotor blade using a triangular airfoil

    Ndouba Ange Benai-Dara Affiliation
    ; ZhaoLin Chen Affiliation
    ; Boureima Ouedraogo Affiliation
    ; Cinthia Cielo Gutierrez Quino Affiliation
    ; Basil Nzubechi Aguwa Affiliation

Abstract

The Martian atmosphere is characterized by a low density and low speed of sound, which result in the low Reynolds number compressible flows. In this regime, conventional airfoils perform poorly due to the boundary layer separation and the formation of shack wave. The current paper investigates the hovering performance and the structure analysis of a Martian rotor blade built with a triangular airfoil using numerical analysis. The airfoil, with a thickness-chord ratio of t / c = 5% at 30% chord, has been shown through experiments to exhibit non-linear lift enhancement due to the roll-up vortex caused by the sharp leading edge at high angles of attack. The designed blade has a pitch axis of 40% chord, close to the airfoil center of gravity. In order to evaluate the blade thickness distribution along the radial station, Carbon Fiber, due to its high strength-to-weight ratio is applied to the blade. It is found that the main source of stress is inertia force rather than aerodynamic loads and that the blade is structurally safe. Finally, the blade reaches a Figure of Merit of FM = 0.73 at the collective pitch angle of 8 deg and the minimum tensile and compressive factor of safety of 2.90 and 1.74 respectively.

Keyword : numerical analysis, triangular airfoil, rotor blade design, Martian atmospheric conditions, Figure of Merit, structural analysis

How to Cite
Benai-Dara, N. A., Chen, Z., Ouedraogo, B., Gutierrez Quino, C. C., & Aguwa, B. N. (2024). Design study of a Martian rotor blade using a triangular airfoil. Aviation, 28(4), 247–254. https://doi.org/10.3846/aviation.2024.22702
Published in Issue
Dec 13, 2024
Abstract Views
80
PDF Downloads
43
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

ANSYS. (2022). ANSYS-fluent solver theory guide (ANSYS FLUENT 2022 R1). ANSYS.

Balaram, J. B., Canham, T., Duncan, C., Golombek, M., Grip, H. F., Johnson, W., Maki, J., Quon, A., Stern, R., & Zhu, D. (2018, January). Mars helicopter technology demonstrator. In AIAA Atmospheric Flight Mechanics Conference (Paper No. 2018-0023). Aerospace Research Central. https://doi.org/10.2514/6.2018-0023

Balaram, J. B., Daubar, I. J., Bapst, J., & Tzanetos, T. (2019). Helicopters on Mars: Compelling science of extreme terrains enabled by an aerial platform. In 9th International Conference on Mars 2019 (LPI Contrib. No. 2089). USRA. https://www.hou.usra.edu/meetings/ninthmars2019/pdf/6277.pdf

Brocklehurst, A., & Barakos, G. N. (2013, January). A review of helicopter rotor blade tip shapes. Progress in Aerospace Science, 56, 35–74. https://doi.org/10.1016/j.paerosci.2012.06.003

Caros, L., Buxton, O., Shigeta, T., Nagata., T., Nonomura, T., Asai, K., & Vincent, P. (2022, July). Direct numerical simulation of flow over a triangular airfoil under Martian conditions. AIAA Journal, 60(7). https://doi.org/10.2514/1.J061454

Chen, Z., Wei, X., Xiao, T., & Qin, N. (2023). Optimization of transonic low-Reynolds number airfoil based on genetic algorithm. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 238(1), 1–17. https://doi.org/10.1177/09544100231207558

Chung, T. J. (1978). Finite element analysis in fluid dynamics. Journal of Dynamics Systems, Measurement and Control, 100(4), Article 347. https://doi.org/10.1115/1.3426389

Conlisk, A. T. (2001). Modern helicopter rotor aerodynamics. Progress in Aerospace Sciences, 37(5), 419–476. https://doi.org/10.1016/S0376-0421(01)00011-2

Dickinson, M. H., & Gotz, K. G. (1993, January). Unsteady aerodynamic performance of model wings at low Reynolds numbers. Journal of Experimental Biology, 174(1), 45–64. https://doi.org/10.1242/jeb.174.1.45

Grip, H. F., Johnson, W., Malpica, C., Scharf, D. P., Mandić, M., Young, L., Allan, B., Mettler, B., & Martin, M. S. (2017, September). Flight dynamics of a Mars helicopter. In 43rd European Rotorcraft Forum, Council of European Aerospace Societies (CEAS). NASA. https://rotorcraft.arc.nasa.gov/Publications/files/ERF2017_final.pdf

Harris, F. D. (2017, December). Hover performance of isolated proprotors and propellers – experimental data (NASA/CR–2017–219486). Ames Research Center. https://ntrs.nasa.gov/api/citations/20180000109/downloads/20180000109.pdf

Hoerner, S. F. (1965). Fluid-dynamic drag: Practical information on aerodynamic drag and hydrodynamic resistance. Published by the Author.

Koning, W. J. F. (2019, July). Airfoil selection for Mars rotor applications (NASA/CR¬–019-220236). NASA. https://rotorcraft.arc.nasa.gov/Publications/files/Koning%20CR-2019-220236_FINAL.pdf

Koning, W. J. F., Johnson, W., & Grip, H. F. (2019, September). Improved Mars helicopter aerodynamic rotor model for comprehensive analyses. AIAA Journal, 57(9). https://doi.org/10.2514/1.J058045

Koning, W. J. F, Perez Perez, B. N., Cummings, H. V., Romander, E. A., & Johnson, W. (2024, February). ELISA: A tool for optimization of rotor hover performance at low Reynolds number in the Mars atmosphere. Journal of the American Helicopter Society, 69(4), 1–15. https://doi.org/10.4050/JAHS.69.042005

Koning, W. J. F., Romander, E. A., & Johnson, W. (2018, May). Low Reynolds number airfoil evaluation for the Mars helicopter rotor. In American Helicopter Society 74th Annual Forum (pp. 1–17). Phoenix, AZ. https://doi.org/10.4050/F-0074-2018-12679

Kwon, H. Il., Yi, S., Choi, S., & Kim, K. (2015, Mars). Design of efficient propellers using variable-fidelity aerodynamic analysis and multilevel optimization. Journal of Propulsion and Power, 31(4). https://doi.org/10.2514/1.B35097

Le Pape, A., & Beaumier, P. (2005, September). Numerical optimization of helicopter rotor aerodynamic performance in hover. Aerospace Science and Technology, 9(3), 191–201. https://doi.org/10.1016/j.ast.2004.09.004

Lumba, R., Chi, C., Datta, A., Koning, W., Perez Perez, N., & Cummings, H. (2023, October). Structural design and aeromechanical analysis of unconventional blades for future Mars rotorcraft. Journal of the American Helicopter Society, 68(4), 42003–42018. https://doi.org/10.4050/JAHS.68.042003

Marinus, B. G., Mourousias, N., & Malim, A. (2020, June). Exploratory optimizations of propeller blades for a high-altitude pseudo-satellite. In AIAA Aviation 2020 Forum. Aerospace Research Central. https://doi.org/10.2514/6.2020-2798

Menter, F. R. (1994, August). Two-equation Eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8). https://doi.org/10.2514/3.12149

Mian, H. H., Wang, G., Zhou, H., & Wu X. (2021, April). Optimization of thin electric propeller using physics-based surrogate model with space mapping. Aerospace Science and Technology, 111, Article 106563. https://doi.org/10.1016/j.ast.2021.106563

Mirdehghan, S. A. (2021). 1 – Fibrous polymeric composites. In Engineered polymeric fibrous materials (pp. 1–58). ScienceDirect. https://doi.org/10.1016/B978-0-12-824381-7.00012-3

Mourousias, N., Malim, A., Marinus, B. G., & Runacres, M. (2021, August). Surrogate-based optimization of a high-altitude propeller. In AIAA Aviation Forum. Aerospace Research Central. https://doi.org/10.2514/6.2021-2597

Munday, P., Taira, K., Suwa, T., Numata, D., & Asai, K. (2015). Non-Linear lift on a triangular airfoil in low-Reynolds-numbers compressible flow. Journal of Aircraft, 52(3), 924–931. https://doi.org/10.2514/1.C032983

National Aeronautics and Space Administration. (2011, October). NASA Technical Standard. Structural design and test factors of safety for spaceflight hardware. NASA. https://standards.nasa.gov/standard/NASA/NASA-STD-5001

Pipenberg, B. T., Keennon, M. T., Tyler, J. D., Langberg, S. A., Hibbs, B., Balaram, J. B., Grip, H. F., & Pempejian, J. (2019, January). Design and fabrication of the Mars helicopter rotor, airframe, and landing gear systems. In AIAA Scitech 2019 Forum (Paper No. 2019-0620). Aerospace Research Central. https://doi.org/10.2514/6.2019-0620

Strickland, A. (2024, January 25). After damaging a rotor blade, NASA’s Ingenuity helicopter mission ends on Mars. CNN. https://edition.cnn.com/2024/01/25/world/nasa-mars-ingenuity-helicopter-mission-ends-scn/index.html

Suwa, T., Nose, K., Numata, D., Nagai, H., & Asai, K. (2012, June). Compressibility effects on airfoil aerodynamics at low Reynolds number. In 30th AIAA Applied Aerodynamics Conference (AIAA Paper 2012-3029). Aerospace Research Central. https://doi.org/10.2514/6.2012-3029

Wilcox, D. C. (1988, November). Reassessment of the scale-determining equation for advanced turbulence models. AIAA Journal, 26(11). https://doi.org/10.2514/3.10041

Yang, X., Ma, D., Zhang, L., Yu, Y., Yao, Y., & Yang, M. (2023, January). High-fidelity multi-level efficiency optimization of propeller for high altitude long endurance UAV. Aerospace Science and Technology, 133, Article 108142. https://doi.org/10.1016/j.ast.2023.108142

Young, L. A. (2000, October). Vertical lift – not just for terrestrial flight. In American Helicopter Society International Powered Lift Conference (pp. 1–25). Crystal City, VA. https://rotorcraft.arc.nasa.gov/Publications/files/Young_AHS00.pdf