Share:


Ecologic performance and sustainability evaluation of a turbojet engine under on-design conditions

    Yasin Şöhret   Affiliation

Abstract

Interest in air transportation in the last decade has seen aviation fleet growth and a rise in the energy consumption of aircraft. In accordance with the latest data, the air transportation sector consumes 7.5% of total oil consumption worldwide. This high share by air transportation forces designers and researchers to develop more efficient propulsion systems by considering the constant rise in energy costs. In the current paper, an exergy based sustainability assessment of a turbojet engine under design point conditions is presented while two novel ecological performance indicators, namely the ecological objective function and ecological coefficient of performance, are introduced for the turbojet engine. These ecological performance indicators can be considered useful for improving the efficiency of any turbojet engine. As a result of an exemplifying analysis, the exergy efficiency, exergy sustainability index, ecological objective function and ecological coefficient of performance have been calculated to be 50.13%, 0.503, 68.294 kW and 1.005, respectively. In the light of the results, the author concludes that the exergy destruction rate of the turbojet engine should be minimized to improve the sustainability index and ecological coefficient of performance, while increasing or maintaining a constant thrust of the examined turbojet engine.

Keyword : aviation, ECOP, exergy, propulsion, sustainability, thermodynamics

How to Cite
Şöhret, Y. (2018). Ecologic performance and sustainability evaluation of a turbojet engine under on-design conditions. Aviation, 22(4), 166-173. https://doi.org/10.3846/aviation.2018.7085
Published in Issue
Dec 14, 2018
Abstract Views
1572
PDF Downloads
828
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Açıkkalp, E. (2017). Ecologic and sustainable objective thermodynamic evaluation of molten carbonate fuel cell–supercritical CO2 Brayton cycle hybrid system. International Journal of Hydrogen Energy, 42(9), 6272-6280. https://doi.org/10.1016/j.ijhydene.2016.12.110

Açıkkalp, E., & Yamık, H. (2015). Modeling and optimization of maximum available work for irreversible gas power cycles with temperature dependent specific heat. Journal of Non-Equilibrium Thermodynamics, 40(1), 25-39. https://doi.org/10.1515/jnet-2014-0030

Ahmadi, M., Jokar, M., Ming, T., Feidt, M., Pourfayaz, F., & Astaraei, F. (2018). Multi-objective performance optimization of irreversible molten carbonate fuel cell–Braysson heat engine and thermodynamic analysis with ecological objective approach. Energy, 144(1), 707-722. https://doi.org/10.1016/j.energy.2017.12.028

Ahmadi, M., Sayyaadi, H., & Hosseinzadeh, H. (2014). Optimization of output power and thermal efficiency of solar-dish Stirling engine using finite time thermodynamic analysis. Heat Transfer-Asian Research, 44(4), 347-376. https://doi.org/10.1002/htj.21125

Alva, G., Lin, Y., & Fang, G. (2018). An overview of thermal energy storage systems. Energy, 144(1), 341-378. https://doi.org/10.1016/j.energy.2017.12.037

Angulo‐Brown, F. (1991). An ecological optimization criterion for finite‐time heat engines. Journal of Applied Physics, 69, 7465-7469. https://doi.org/10.1063/1.347562

Arntz, A., Atinault, O., & Merlen, A. (2015). Exergy-based formulation for aircraft aeropropulsive performance assessment: theoretical development. AIAA Journal, 53(6), 1627-1639. https://doi.org/10.2514/1.J053467

Balli, O., & Hepbasli, A. (2014). Exergoeconomic, sustainability and environmental damage cost analyses of T56 turboprop engine. Energy, 64(1), 582-600. https://doi.org/10.1016/j.energy.2013.09.066

Balli, O. (2017a). Advanced exergy analyses of an aircraft turboprop engine (TPE). Energy, 124(1), 599-612. https://doi.org/10.1016/j.energy.2017.02.121

Balli, O. (2017b). Exergy modeling for evaluating sustainability level of a high by-pass turbofan engine used on commercial aircrafts. Applied Thermal Engineering, 123, 138-155. https://doi.org/10.1016/j.applthermaleng.2017.05.068

Bejan, A. (1996). Models of power plants that generate minimum entropy while operating at maximum power. American Journal of Physics, 64(1996), 1054-1059. https://doi.org/10.1119/1.18306

Bejan, A., & Siems, D. (2001). The need for exergy analysis and thermodynamic optimization in aircraft development. Exergy, an International Journal, 1(1), 14-24. https://doi.org/10.1016/S1164-0235(01)00005-X

Bicer, Y., & Dincer, I. (2016). A comparative life cycle assessment of alternative aviation fuels. International Journal of Sustainable Aviation, 2(3), 181-202. https://doi.org/10.1504/IJSA.2016.080240

Caiado, R., de Freitas Dias, R., Mattos, L., Quelhas, O., & Leal Filho, W. (2017). Towards sustainable development through the perspective of eco-efficiency - A systematic literature review. Journal of Cleaner Production, 165(1), 890-904. https://doi.org/10.1016/j.jclepro.2017.07.166

Cash, D. (2017) Choices on the road to the clean energy future. Energy Research & Social Science, 35, 224-226. https://doi.org/10.1016/j.erss.2017.10.035

Chen, L., Wu, C., & Sun, F. (1999). Finite time thermodynamic optimization or entropy generation minimization of energy systems. Journal of Non-Equilibrium Thermodynamics, 24(4), 327-359. https://doi.org/10.1515/JNETDY.1999.020

Chiari, L., & Zecca, A. (2011). Constraints of fossil fuels depletion on global warming projections. Energy Policy, 39(9), 5026-5034. https://doi.org/10.1016/j.enpol.2011.06.011

Coban, K., Colpan, C., & Karakoc, T. H. (2017). Application of thermodynamic laws on a military helicopter engine. Energy, 140(2), 1427-1436. https://doi.org/10.1016/j.energy.2017.07.179

Coban, K., Şöhret, Y., Colpan, C., & Karakoç, T. H. (2017). Exergetic and exergoeconomic assessment of a small-scale turbojet fuelled with biodiesel. Energy, 140(2), 1358-1367. https://doi.org/10.1016/j.energy.2017.05.096

Colakoglu, M., Tanbay, T., Durmayaz, A., & Sogut, O. (2016). Effect of heat leakage on the performance of a twin-spool turbofan engine. International Journal of Exergy, 19(2), 173-198. https://doi.org/10.1504/IJEX.2016.075604

Curzon, F., & Ahlborn, B. (1975). Efficiency of a Carnot engine at maximum power output. American Journal of Physics, 43(1975), 22-24. https://doi.org/10.1119/1.10023

Dincer, I., & Acar, C. (2017). Smart energy systems for a sustainable future. Applied Energy, 194, 225-235. https://doi.org/10.1016/j.apenergy.2016.12.058

Dincer, I., & Cengel, Y. (2001). Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy, 3(3), 116-149. https://doi.org/10.3390/e3030116

Ekici, S., Sohret, Y., Coban, K., Altuntas, O., & Karakoc, T. H. (2016a). Performance evaluation of an experimental turbojet engine. International Journal of Turbo & Jet-Engines, 34(4), 365-375. https://doi.org/10.1515/tjj-2016-0016

Ekici, S., Altuntas, O., Açıkkalp, E., Sogut, M. Z., & Karakoc, T. H. (2016b). Assessment of thermodynamic performance and exergetic sustainability of turboprop engine using mixture of kerosene and methanol. International Journal of Exergy, 19(3), 295-314. https://doi.org/10.1504/IJEX.2016.075666

Ekici, S., Sohret, Y., Coban, K., Altuntas, O., & Karakoc, T. H. (2018). Sustainability metrics of a small scale turbojet engine. International Journal of Turbo & Jet-Engines, 35(2), 113-119. https://doi.org/10.1515/tjj-2016-0036

El-Sayed, A. (2008). Aircraft propulsion and gas turbine engines. Boca Raton, Florida, USA: CRC Press. https://doi.org/10.1201/9781420008777

Ge, Y., Chen, L., & Sun, F. (2016). Progress in finite time thermodynamic studies for internal combustion engine cycles. Entropy, 18(4), 139. https://doi.org/10.3390/e18040139

Gonca, G. (2016). Performance analysis and optimization of irreversible Dual–Atkinson cycle engine (DACE) with heat transfer effects under maximum power and maximum power density conditions. Applied Mathematical Modelling, 40(13-14), 6725-6736. https://doi.org/10.1016/j.apm.2016.02.010

Grönstedt, T., Irannezhad, M., Lei, X., Thulin, O., & Lundbladh, A. (2013). First and second law analysis of future aircraft engines. Journal of Engineering for Gas Turbines and Power, 136(3). https://doi.org/10.1115/1.402572715/1.4025727

Hayes, D., Lone, M., Whidborne, J., Camberos, J., & Coetzee, E. (2017). Adopting exergy analysis for use in aerospace. Progress in Aerospace Sciences, 93, 73-94. https://doi.org/10.1016/j.paerosci.2017.07.004

Hepbasli, A. (2008). A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renewable and Sustainable Energy Reviews, 12(3), 593-661. https://doi.org/10.1016/j.rser.2006.10.001

Hepbasli, A. (2016). Proposing an exergy management system standard for establishing exergetically green aviation. International Journal of Sustainable Aviation, 2(4), 271-283. https://doi.org/10.1504/IJSA.2016.082196

International Energy Agency. (2017). World Energy Outlook. OECD/IEA.

Kaushik, S., & Kumar, S. (2000). Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses. Energy, 25(10), 989-1003. https://doi.org/10.1016/S0360-5442(00)00023-2

Kaya, N., Turan, Ö., Karakoç, T. H., & Midilli, A. (2016). Parametric study of exergetic sustainability performances of a high altitude long endurance unmanned air vehicle using hydrogen fuel. International Journal of Hydrogen Energy, 41(19), 8323-8336. https://doi.org/10.1016/j.ijhydene.2015.09.007

Kotas, T., Mayhew, Y., & Raichura, R. (1995). Nomenclature for exergy analysis, proceedings of the institution of mechanical engineers, Part A. Journal of Power and Energy, 209(4), 275-280. https://doi.org/10.1243/PIME_PROC_1995_209_006_01

Lemmon, E., Jacobsen, R., Penoncello, S., & Friend, D. (2000). Thermodynamic properties of air and mixtures of nitrogen, argon, and oxygen from 60 to 2000 K at pressures to 2000 MPa. Journal of Physical and Chemical Reference Data, 29, 331-385. https://doi.org/10.1063/1.1285884

Mishra, S., & Sanjay. (2018). Energy and exergy analysis of air-film cooled gas turbine cycle: Effect of radiative heat transfer on blade coolant requirement. Applied Thermal Engineering, 129(25), 1403-1413. https://doi.org/10.1016/j.applthermaleng.2017.10.128

Moghaddam, E. A., Ahlgren, S., Hulteberg, C., & Nordberg, Å. (2015). Energy balance and global warming potential of biogasbased fuels from a life cycle perspective. Fuel Processing Technology, 132, 74-82. https://doi.org/10.1016/j.fuproc.2014.12.014

Mousapour, A., Hajipour, A., Rashidi, M., & Freidoonimehr, N. (2016). Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction. Energy, 94(1), 100-109. https://doi.org/10.1016/j.energy.2015.10.073

Najjar, Y., & AbuEisheh, H. (2016). Exergy analysis and greening performance carpets for turbojet engines. Journal of Engineering Thermophysics, 25(2), 262-274. https://doi.org/10.1134/S1810232816020119

Özel, G., Açıkkalp, E., & Yamık, H. (2015). Methods used for evaluating irreversible Brayton cycle and comparing them. International Journal of Sustainable Aviation, 1(3), 288-298. https://doi.org/10.1504/IJSA.2015.070376

Riggins, D., Moorhouse, D., & Camberos, J. (2010). Characterization of aerospace vehicle performance and mission analysis using thermodynamic availability. Journal of Aircraft, 47(3), 904-916. https://doi.org/10.2514/1.46420

Riggins, D., Taylor, T., & Moorhouse, D. (2006). Methodology for performance analysis of aerospace vehicles using the laws of thermodynamics. Journal of Aircraft, 43(4), 953-963. https://doi.org/10.2514/1.16426

Romero, J. C., & Linares, P. (2014). Exergy as a global energy sustainability indicator: A review of the state of the art. Re newable and Sustainable Energy Reviews, 33, 427-442. https://doi.org/10.1016/j.rser.2014.02.012

Rosen, M., Dincer, I., & Kanoglu, M. (2008). Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy, 36(1), 128-137. https://doi.org/10.1016/j.enpol.2007.09.006

Rosen, M., & Etele, J. (2004). Aerospace systems and exergy analysis: applications and methodology development needs. International Journal of Exergy, 1(4), 411-425. https://doi.org/10.1504/IJEX.2004.005786

Şöhret , Y., Ekici, S., Altuntaş, Ö., Hepbasli, A., & Karakoç, T. H. (2016). Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review. Progress in Aerospace Sciences, 83, 57-69. https://doi.org/10.1016/j.paerosci.2016.03.001

Tai, V., See, P., & Mares, C. (2014). Optimisation of energy and exergy of turbofan engines using genetic algorithms. International Journal of Sustainable Aviation, 1(1), 25-42. https://doi.org/10.1504/IJSA.2014.062866

Torenbeek, E. (2013). Advanced aircraft design: Conceptual design, analysis, and optimization of subsonic civil airplanes. New York, USA: John Wiley and Sons. https://doi.org/10.1002/9781118568101

Tsatsaronis, G. (2013). Definitions and nomenclature in exergy analysis and exergoeconomics. Energy, 32(4), 249-253. https://doi.org/10.1016/j.energy.2006.07.002

Ust, Y., Sahin, B., & Sogut, O. (2005). Performance analysis and optimization of an irreversible dual-cycle based on an ecological coefficient of performance criterion. Applied Energy, 82(1), 23-39. https://doi.org/10.1016/j.apenergy.2004.08.005

Winter, R. (2014). Innovation and the dynamics of global warming. Journal of Environmental Economics and Management, 68(1), 124-140. https://doi.org/10.1016/j.jeem.2014.01.005

Yalcin, E. (2017). Thrust performance evaluation of a turbofan engine based on exergetic approach and thrust management in aircraft. International Journal of Turbo & Jet-Engines, 34(2), 177-186. https://doi.org/10.1515/tjj-2015-0065

Yan, Z. (1993). Comment on “An ecological optimization criterion for finite‐time heat engines” [J. Appl. Phys. 69, 7465 (1991)]. Journal of Applied Physics, 73(7), 3583. https://doi.org/10.1063/1.354041

Yasunaga, T., & Ikegami, Y. (2017). Application of finite-time thermodynamics for evaluation method of heat engines. Energy Procedia, 129, 995-1001. https://doi.org/10.1016/j.egypro.2017.09.224

Yildirim, E., Altuntas, O., Mahir, N., & Karakoc, T. H. (2017). Energy, exergy analysis, and sustainability assessment of different engine powers for helicopter engines. International Journal of Green Energy, 14(13), 1093-1099. https://doi.org/10.1080/15435075.2017.1358626

Yucer, C. (2016). Thermodynamic analysis of the part load performance for a small scale gas turbine jet engine by using exergy analysis method. Energy, 111, 251-259. https://doi.org/10.1016/j.energy.2016.05.108

Zecca, A., & Chiari, L. (2010). Fossil-fuel constraints on global warming. Energy Policy, 38(1), 1-3. https://doi.org/10.1016/j.enpol.2009.06.068

Zhou, J., Chen, L., Ding, Z., & Sun, F. (2016). Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines. Energy, 111, 306-312. https://doi.org/10.1016/j.energy.2016.05.111