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Article History:  Abstract. Construction projects are bound by uncertainties and changes by its nature. Thus, cost contingency needs to 
be allocated to construction project budget to cope with any deviation of actual costs from planned ones. However, ex-
isting methods for predicting cost contingencies, as studied and practiced, still present limitations in reliability and ac-
curacy. Machine learning (ML) has gained popularity for enhancing prediction power in various fields. The paper aims 
to examine various ML algorithms to implement a cost contingency prediction model, employing both continuous and 
categorical predictor variables. To develop the model, construction transportation project datasets, which were bid be-
tween 2013‒2017, were collected from the Florida Department of Transportation (FDOT) website. To address imbalanced 
regression dataset issues, the synthetic minority over-sampling technique for regression with Gaussian noise (SMOGN) 
algorithm is introduced. ML random forest (RF) regression associated with random search hyperparameter optimization, 
achieved remarkably accurate predictions compared to extreme gradient boosting (XGBoost) regression and artificial neu-
ral network (ANN) models. The results also demonstrate that four parameters are significant factors in predicting con-
struction cost contingency: project amount, project duration, and latitude and longitude factors. These findings provide 
new insights for researchers in developing models and for practitioners seeking more advanced method.
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1. Introduction 
Each construction project is unique by its very nature. Un-
expected situations faced during project delivery elicit 
changes in various ways. Consequently, the actual costs 
are likely to deviate from the planned costs. In general, 
this kind of divergence often leads to cost overruns and 
has been a common problem in the construction industry 
(Larsen et al., 2016). In order to hedge the risks from cost 
deviation, contingency is required and should be assigned 
before the commencement of construction work (Hoseini 
et al., 2020a).

Cost contingency refers to the funds required to cov-
er risk situations and is a necessary part of construction 
work. It covers uncertainty, potential or unforeseeable 
events, and intangibles that can appear in the future, but 
this is not a potential profit and does not include major 
scope changes, escalation, or effects of currency fluctua-

tion (Querns, 1989). For this reason, prediction and man-
agement of cost contingency affect project performance 
because it aims to cover unforeseen costs (Yeo, 1990; Gün-
han & Arditi, 2007). Because cost contingency is one of the 
cost components of a base project cost estimate, which is 
allocated before the commencement of a project, it has 
a significant impact on project parties (Lhee et al., 2014). 
From the project owner’s  perspective, both overestima-
tion and underestimation of the contingency budget could 
pose issues. Overestimation might restrict funds for oth-
er project activities and lead to poor cost management, 
thereby increasing the chance of project failure (Dey et al., 
1994; Hoseini et al., 2020b); in contrast, underestimation 
can result in ineffective financial performance of the proj-
ect and insufficient budget for project execution, poten-
tially leading to cost overruns (Baccarini, 2004). In addition, 
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a method to accurately predict the construction cost con-
tingency is urgently required because it plays an important 
role as a reserved budget that is used to cover risks or un-
expected situations and prevent cost overruns in construc-
tion projects. Therefore, an accurate method to estimate 
the cost contingency at the early stage of the construction 
project is key to project success.

Previous studies have introduced several approaches 
to develop contingency prediction models. Although vari-
ous methods of calculating cost contingency have been 
developed, overruns still occur and remain a  common 
problem in the construction industry (Love et  al., 2014); 
these methods are also difficult and have limitations in 
terms of their application (Hamid & Kehinde, 2017). These 
limitations include difficulty in identifying variable factors, 
unsuitability for complex projects, low accuracy, indepen-
dence of cost items, the existence of bias, difficulty in real 
practice, and employing outmoded approaches. In addi-
tion, the accuracy of contemporary methods for determin-
ing cost contingency is still uncertain, and the reliability 
of construction cost contingency estimating tools is un-
clear even with their extensive development (Baccarini & 
Love, 2014; Gharaibeh, 2014; De Marco et al., 2016; Hol-
lmann, 2012). Therefore, a robust and advanced approach 
is necessary to provide convincing construction cost con-
tingency prediction, such as employing machine learning 
(ML) algorithms, which have gained popularity as predic-
tion applications.

Conventional methods have not been effective in re-
ducing estimation errors, leading to reliance on mathe-
matical models. ML techniques are expected to improve 
accuracy. ML can be classified into four major types: su-
pervised, unsupervised, semi-supervised, and reinforce-
ment learning. As cost prediction has a continuous target 
variable, it is categorized as a supervised learning regres-
sion problem in ML. Several studies have focused on us-
ing ML to predict construction costs. ML has been profi-
ciently applied for the cost prediction of some types of 
construction projects: support vector machine (SVM) was 
applied for cost prediction of road construction projects 
(Peško et al., 2017; Petrusheva et al., 2019); various combi-
nations of artificial neural network (ANN) algorithms have 
been applied to predict the cost of building projects (Ji-
ang, 2020; Rafiei & Adeli, 2018); and Gaussian process re-
gression (GPR) has been utilized for the cost prediction 
of tunnel projects (Mahmoodzadeh et al., 2022a, 2022b). 
Similar to the prediction of the overall construction cost 
using ML, construction cost contingency could also be 
predicted using various ML algorithms.

Among various ML approaches in previous studies, 
ANN has been one of the most commonly used techniques 
for predicting cost contingency in construction projects. In 
the prediction task of cost contingency, ANN outperforms 
the traditional method from a theoretical perspective and 
can be an effective tool in this area (El-Kholy et al., 2022). 
Applications in this area mostly relied on ANN, while the 
possibility of more sophisticated machine learning meth-

ods was not been investigated yet. Despite available meth-
ods, accurate prediction of cost contingency has contin-
ued to be a great need in the field of construction man-
agement and artificial intelligence (El-Kholy et  al., 2022; 
Lhee et al., 2016). Thus, it is crucial to explore other ML 
algorithms. Moreover, ensemble ML algorithms such as 
random forest and extreme gradient boosting regression 
have not been widely used in construction cost prediction, 
in specific, contingency prediction, even though their ex-
cellent predictive capabilities have been demonstrated by 
numerous researchers (Meharie & Shaik, 2020; Yan et al., 
2022). On the other hand, although ML has remarkable 
prediction power, it requires a novel framework for devel-
oping accurate models, appropriate feature selection, and 
enhancing interpretability (Bilal & Oyedele, 2020). To this 
end, this study aims to propose a model including a data 
handling process to predict construction cost contingency 
by utilizing various ML algorithms for improving accuracy. 
To enhance sustainability and support the development 
of big data in the construction industry, this study intro-
duced a new and different approach from previous con-
tingency prediction techniques. The implementation of big 
data in the construction industry is widely adopted such 
as predictive analytics for cost estimation, real-time moni-
toring and Internet of Things (IoT) sensors, analyzing en-
ergy consumption of the building, quality control and de-
fect detection, data integration with building information 
modeling (BIM) and so on (Li et al., 2023). The implemen-
tation of ML in predicting may be a challenge and vari-
ous algorithms can be implemented as the solution. Ar-
tificial neural networks (ANN) and deep neural networks 
(DNN) were utilized to solve some non-smooth process 
to achieve a good and high accuracy results in civil en-
gineering applications (Anitescu et  al., 2019; Samaniego 
et al., 2020). Along with developing a prediction model, 
another aim of the study is to extract the relevant factors 
of cost contingency which are significant in planning con-
struction projects and obtainable from normal database 
used in practice. Both categorical and numerical factors 
are incorporated in this study, as suggested by previous 
authors in this area. 

We employed consecutive steps for predicting the 
construction cost contingency. First, in the data collection 
step, we gathered datasets from the website of the Florida 
Department of Transportation (FDOT) project, along with 
identifying various numerical and categorical variables. The 
second step is the exploratory data analysis (EDA) which is 
necessary to understand the initial data analysis for corre-
lation and distribution between data, help to understand 
the data by visualizing the features, detect outliers, and 
handling missing values. Third, the data pre-processing 
step is performed by applying the synthetic minority over-
sampling for regression with Gaussian noise (SMOGN) and 
feature selection algorithms. SMOGN algorithm was em-
ployed to obtain accurate prediction performance by ad-
dressing imbalanced dataset and/or insufficient available 
dataset problems in the regression (Branco et  al., 2017; 
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Wang et  al., 2022). Fourth, ML models were developed 
by dividing the dataset into 80% training and 20% test-
ing sets. To enhance the performance of the ML models, 
random search hyperparameter optimization along with 
10 k-fold cross-validation was implemented. Fifth, analyz-
ing and comparing the performance of various ML models 
to assess the accuracy using four regression performance 
metrics: mean absolute error (MAE), coefficient of deter-
mination (R2), root mean square error (RMSE), and mean 
absolute percentage error (MAPE).

2. Literature review
2.1. Previous studies on cost  
contingency calculation methods
When methodology is concerned, the previous studies 
show that the methods used for modeling contingency 
focused on some categorizations. Several methods for 
calculating the contingency cost of construction projects 
have been presented. The Association for the Advance-
ment of Cost Engineering International (2008) categoriz-
es cost contingency estimation and contingency planning 
techniques for dealing with risks into four main categories: 
expert judgment, fixed guidelines, analyzing simulation 
with range estimation and expected value, and paramet-
ric modeling. Bakhshi and Touran (2014) classified these 
methods into three major groups: deterministic methods, 
which consist of predefined percentages with fixed/line 
items and expert judgment; probabilistic methods, which 
are divided into non-simulation methods (e.g., probability 
tree, first-order second-moment, expected value, program 
evaluation, and review technique, parametric estimating or 
regression, analytical hierarchy process, and optimism bi-
as uplifts) and simulation methods (e.g., range estimating 
and integrated models for cost and schedule); and modern 
mathematical methods, which consist of fuzzy techniques 
and artificial neural networks. 

Moselhi (1997) introduced the traditional percentage 
addition which assumes a certain level of risk for the proj-
ect and determines the percentage of cost contingency 
based on expert judgment and experience. However, the 
method implies an unjustified degree of certainty and is 
hard to justify (Mak et al., 1998; Thompson & Perry, 1992; 
Hartman, 2000). Famous simulation method such as Mon-
te Carlo simulation is studied by Clark (2001) to evaluate 
risk and provide a systematic technique for quantifying the 
contingency value in a construction project. At the same 
time, he pointed out that this method is difficult, imprac-
tical, and uncommonly adopted in the construction indus-
try. Another well-known prediction method is regression 
analysis. Regression models are an effective statistical tool 
for analytical and predictive purposes when analyzing the 
contribution of variables to overall estimate reliability (Kim 
et  al., 2004). Despite that, this method depends on his-
torical cost data, collecting which is time-consuming (Ha-
mid & Kehinde, 2017). In addition, fuzzy techniques and 
ANN are the mathematical methods used by researchers 

for predicting contingency. Salah and Moselhi (2015) used 
fuzzy set theory in the design and developed a contingen-
cy modeling framework that incorporates expert opinions. 
Additionally, Nawar et  al. (2018) developed a  fuzzy log-
ic-based model that predicts project cost and time con-
tingencies with acceptable validity. Nonetheless, creating 
fuzzy models can be challenging and requires more fine-
tuning, making it difficult to implement them in practice 
(Hamid & Kehinde, 2017). On the other hand, ANN is one 
of the machine learning methods which frequently utilized 
to predict construction contingency in many studies. Chen 
and Hartman (2000) developed an ANN model that pre-
dicts contingency by capturing and learning from historical 
project samples. Additionally, Lhee et al. (2012) proposed 
a method that predicts the owner’s cost contingency al-
location using an ANN model. Furthermore, K. K. Shrest-
ha and P. P. Shrestha (2016) developed a tool system that 
forecasts the cost contingency of road maintenance con-
tracts by employing an ANN based on historical data. El-
kholy et al. (2022) predicted the cost contingency of steel 
reinforcement in 30 building projects with ANN models. 
Despite that, the selection of reliable and unbiased inputs 
as the training data is crucial because it directly impacts the 
performance of the ANN model (Touran & Lopez, 2006). 
Table 1 summarizes the purposes, methods, advantages, 
and limitations of the aforementioned previous studies.

2.2. RF and XGBoost applications in literature 
RF and XGBoost have been used extensively for cost pre-
diction in construction management research areas. Zekić-
Sušac et  al. (2021) proposed models for predicting the 
energy cost of public buildings using random forest with 
a  large number of predictor variables using RF. In their 
study, Boruta variable selection was integrated and RF 
produced a higher accuracy of prediction compared with 
ANN and classification and regression tree (CART). Shoar 
et  al. (2022) developed an RF regression model to pre-
dict engineering services’ cost overruns by using 95 high-
rise residential building projects database in Iran along 
with a  large number of variables where the R2  value of 
0.868 and MAE of 3.88. Huang and Hsieh (2020) proposed 
a hybrid model for improving accuracy by integrating RF 
and simple linear regression for predicting building infor-
mation modeling (BIM) costs in the construction phase. 
Meharie and Shaik (2020) used RF for modeling the high-
way construction cost and found an RMSE value of 0.96. 
Zheng et al. (2023) combined RF and bird swarm algorithm 
(BSA) to predict the construction cost in China with the 
maximum relative error was only 1.24%. Yan et al. (2022) 
utilized XGBoost to estimate the investment in prefabri-
cated concrete buildings, where the construction project 
cost-significant and analytic hierarchy process (AHP) was 
also employed to extract the factors that affect the cost. 
Compared with other algorithms, XGBoost presented the 
highest accuracy with a  MAPE of 1.00%. Alshboul et  al. 
(2022) conducted a study to predict green building con-
struction costs with various ML algorithms. The results re-
vealed that XGBoost provided the highest accuracy of 0.96.  
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Elmousalami (2020) developed project conceptual cost 
models for canal improvement projects. Out of 20 AI and 
ML algorithms, the XGBoost algorithm presented the most 
accurate results, where a MAPE of 9.091% and an adjusted 
R2 of 0.929. Lathong and Wisaeng (2024) who have pro-
posed a hybrid ML method by combining ANN with De-
cision Trees (DTs) to enhance construction cost prediction 
accuracy. Their best model achieved a MAPE of 11% and 
R2 of 0.921.

Hyperparameter tuning plays a pivotal role in enhanc-
ing machine learning model accuracy. Bergstra and Ben-
gio (2012) argued that Random Search is one of the best 
hyperparameter for ensembled-ML. Meanwhile, Bayesian 
Optimization has emerged as a  more sophisticated al-

ternative, using probabilistic models to guide the search 
process. Snoek et al. (2012) demonstrated that Bayesian 
methods can achieve superior optimization performance 
with fewer iterations and making them suitable for re-
source-intensive tasks. 

3. Methodology 
The methodology applied in this study involved ensem-
ble ML algorithms such as random forest (RF) and ex-
treme gradient boosting (XGBoost) regression, and the 
implementation of the SMOGN algorithm to predict the 
cost contingency. SMOGN can address the issue of per-
formance deterioration caused by imbalanced data in re-

Table 1. Summary of the features or variables used in this study

Reference Purpose of study Method Advantages Limitations

Thal et al. (2010) To discover the important 
factors that could influence 
the potential cost contingency 
in air force construction 
projects. 

Multiple linear 
regression 
(MLR)

Clear statistical framework 
allows others to replicate 
the method or adapt it for 
different context.

The validity of the regression 
results depends on meeting 
certain assumptions (e.g., linearity, 
homoscedasticity, independence 
of errors). If these assumptions 
are violated, the validity and 
precision of the estimates may be 
adversely affected.

Cantarelli et al. 
(2012)

To analyse the significance of 
cost overrun performance in 
various Dutch locations and 
geographical areas.

Analysis of 
Variance 
(ANOVA)

The study finds that 
the length of the pre-
construction phase 
significantly influences cost 
overruns.

The models might oversimplify 
the complexity of cost 
performance dynamics and fail to 
capture non-linear relationships or 
interactions between variables.

Lhee et al. (2012) To provide a model 
for estimating the 
owner’s contingency 
budgeting using ANN and 
identified the factors that 
influence contingency. 

Artificial Neural 
Network (ANN)

Potentially leading to more 
accurate predictions than 
traditional linear models.

The performance of ANNs 
depends heavily on the quality 
and relevance of the input 
features used. If important 
variables are omitted or irrelevant 
ones are included, the accuracy of 
the model may deteriorate.

Lhee et al. (2014) To propose a two-step 
ANN-based method for 
better predicting optimal 
contingency in transportation 
projects compared to current 
tools.

Two-step 
Artificial Neural 
Network

The two-step model 
separates the estimation 
process into distinct phases, 
which can lead to more 
organized and systematic 
analysis.

The two-step neural network 
architecture introduces more 
complexity compared to single-
step ANN models which may 
increases the risk of overfitting 
and makes the model harder to 
interpret or validate.

Arifuzzaman 
et al. (2022)

To develop a model to predict 
cost contingency in the 
early stage with little project 
information.

Classification 
and Regression 
Tree (CART)

The method offers 
a transparent and 
interpretable modeling 
approach and suit for 
regions that have limitation 
to access the database.

Small changes in the input data 
can result in significant changes in 
the structure of the decision tree 
which may reduce model stability 
and reliability.

Salah and 
Moselhi (2015)

To provide a new fuzzy-set-
based model for calculating 
the cost contingency over 
the life cycle of construction 
projects.

Fuzzy set 
theory

The model is designed to be 
applicable across different 
phases of a construction 
project, from planning to 
execution.

Constructing a fuzzy inference 
system such as defining rules, 
membership functions, and 
aggregation methods can be 
complex and time-consuming.

Wang et al. 
(2016)

To develop a model which 
can address the hazmat 
transportation’s unpredictable 
and uncertain issues.

Bayesian 
network-based

Bayesian Networks 
effectively address the 
uncertainties inherent 
in hazardous materials 
transportation by modeling 
probabilistic dependencies 
among various risk factors.

Bayesian Networks depend 
substantially on both high-quality 
data and expert knowledge to 
construct the network structure 
and estimate the conditional 
probabilities between variables.



864 A. Nindartin et al. Prediction of cost contingency in construction projects by introducing machine learning algorithms

gression problems (Branco et al., 2017). Real datasets often 
suffer from imbalanced distributions (Torgo et al., 2013). 
Therefore, SMOGN was utilized for over-sampling the ra-
re data points and increasing the robustness of the ML 
model to estimate the cost contingency of transportation 
projects.

Figure 1 demonstrates the ML modeling framework of 
this study. The following are consecutive steps for predict-
ing the construction cost contingency: (1) data collection 
where the FDOT transportation project datasets from the 
open website were collected and a thorough understand-
ing of the contingency construction project is required; 
then, through the existing features of datasets, a compre-
hensive literature review about the factors influencing cost 
contingency was conducted, and 13 predictor variables 
categorical and eight numerical variables) with cost contin-
gency as the target variable was obtained; (2) EDA, which 
is the process of understanding the correlation between 
the variables and the distribution of the dataset. This 
stage also involves data cleaning and removing the miss-
ing values in the dataset. After conducting EDA, 814 da-
tasets were obtained and analyzed in the next step; (3) 
data pre-processing, in which the SMOGN algorithm was 
used to handle imbalanced data and improve the qual-
ity of the dataset. This algorithm changes the number of 
rows in the dataset from 813 to 780; the categorical vari-
ables of the dataset were converted to dummy variables; 
finally, nine predictor variables were selected after adopt-
ing Pearson’s correlation, Boruta algorithm, and recursive 
feature elimination techniques; (4) developing ML model, 
where the model is built by dividing the dataset into 80% 

for training and 20% for testing; to enhance the ML model, 
random search hyperparameter optimization was imple-
mented. Moreover, 10 k-fold cross-validations were also 
applied. The optimized hyperparameters were derived and 
the built ML ensemble-based (RF and XGBoost regression) 
model from the training process can be used for testing 
datasets. Before choosing RF and XGBoost, various ML al-
gorithms were tested, and this algorithm was found to be 
the most appropriate for predicting construction cost con-
tingency; (5) ML model performance evaluation, in which 
the performance of the developed ML models was evalu-
ated and four regression performance metrics (MAE, R2, 
RMSE, and MAPE) of the training and testing datasets were 
compared.

3.1. ML ensemble-based algorithms  
for cost contingency prediction 
ML algorithms can be categorized into single and ensem-
ble methods. Unlike single prediction methods that use 
only one learning algorithm, ensemble prediction meth-
ods integrate multiple prediction models when outputting 
data. A group of classifiers is built using ensemble meth-
ods that categorize new data by weighing the classifier 
predictions (Dietterich, 2000). In other words, the ensem-
ble learning process involves integrating and applying dif-
ferent learning algorithms. Compared to a single learning 
algorithm, ensemble learning algorithms have been suc-
cessfully shown to have better prediction accuracy and can 
increase generalization (Ghimire et al., 2012; Opitz & Mac-
lin, 1999; Sagi & Rokach, 2018).

Figure 1. Modeling of the proposed ML framework for construction cost contingency prediction
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The ensemble model is different from a single predic-
tion model, which has only one learning model. Ensem-
ble models include multiple base models that are creat-
ed through various techniques, such as resampling, ma-
nipulation, or randomization of the training data, learning 
algorithms, and learning parameters (Wang & Srinivasan, 
2017). Dietterich (2002) and Polikar (2006) asserted that 
ensemble algorithms increase predictive performance 
for several reasons. First, they avoid overfitting when the 
amount of data is small. This was also proven by Cha et al. 
(2021), who predicted demolition waste using RF and XG-
Boost machine algorithms with small datasets and cat-
egorical variables. Second, ensemble approaches have 
computational advantages because they reduce the pos-
sibility of attaining a local minimum by integrating sever-
al learners. Third, integrating various models can expand 
the search area and lead to a more accurate match with 
the data space that can represent the optimal hypothesis.

3.1.1. Random forest (RF) 

One of the robust ensemble model algorithms based on 
the classification and regression tree (CART) is RF. RF is an 
ensemble method based on the bagging technique. Bag-
ging is an abbreviation for bootstrap aggregation, a meth-
od of aggregating base learners trained on slightly differ-
ent training data through bootstrapping (Breiman, 1996). 
Bootstrapping refers to the process of creating a dataset 
of the same size as the original dataset by allowing redun-
dancy from the given training data (Hall, 1994). Breiman 
(2001) developed a more robust RF algorithm that can be 
applied to regression. Figure  2  shows how the random 
forest regression works. The RF model predicts outcomes 
by using the bootstrap resampling technique to generate 
multiple data from the original data. For each bootstrap 
sample, a decision tree was constructed, and the predic-
tions from all decision trees were averaged. The model in-

creases the diversity of the decision trees by using a sam-
ple with replacement and randomly varies the predictor 
combinations across multiple tree iterations. An increase in 
the number of trees can prevent overfitting and is less im-
pacted by outliers. Moreover, there are two crucial former 
parameters of RF: the number of regression trees (N es-
timators) and the maximum depth of node random vari-
ables (Zhou et al., 2019).

The steps in developing the RF model are as follows: 
(1) use the original data to create ntree bootstrap sam-
ples; (2) for each bootstrap dataset, a tree was grown; at 
each node of the tree, a random subset of features mtry 
was used to determine the best split and grow the tree to 
make each terminal node have nodesize cases; (3) aggre-
gate information from ntree trees to predict new data; for 
example, perform a majority vote for classification; and (4) 
use the data not included in the bootstrap sample to ob-
tain an out-of-bag (OOB) error rate. Creating a regression 
tree for each bootstrap training set involves the following 
procedure. The next step involves generating a regression 
tree for each bootstrap training set. N estimators’ regres-
sion trees are created, forming a “forest” without pruning. 
During the growth process of each tree, not all optimal 
attributes are selected as internal nodes for branching. In-
stead, the optimal attribute is chosen from the randomly 
selected maximum depth attributes for branching. This in-
creases the difference between the regression models by 
constructing different training sets, thereby enhancing the 
prediction performance of the combined regression mod-
el. A regression model sequence ( ) ( ) ( ){ }1 2, , , kt x t x t x¼  is 
obtained by n-time model training, which is then utilized 
to create a multi-regression model system (forest). Then, 
the predictions made by the regression tree of the N es-
timators are compiled, and a simple average approach is 
used to determine the value of the new sample. Eqn (1) 
below is the final regression decision equation:

Figure 2. Schematic diagram of the random forest regression
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where K  is the number of regression trees, ti is a  single 
decision tree regression model, and ( )ˆK

rff x  represents the 
combined regression model (N estimators). The estimat-
ed value is the weighted sum of the regression outcomes 
of each tree. Therefore, as RF is recognized as one of the 
best classifiers and as this algorithm can handle the im-
balance class, RF provides a powerful prediction compared 
to other ML algorithms (Fernández-Delgado et al., 2014; 
Breiman, 2001).

3.1.2. Extreme gradient boosting (XGBoost)

Gradient tree boosting is a ML method that stands out in 
numerous applications, among other techniques utilized 
in practice. A  large-scale ML method for boosting trees 
is extreme gradient boosting (XGBoost), which is an ad-
vanced supervised learning algorithm (Chen & Guestrin, 
2016). XGBoost has gained broad recognition in various 
fields (Wang et al., 2020) of ML and data mining because 
of its superior performance and outstanding results with 
only a small amount of data (Bekkerman, 2015). Moreo-
ver, Chen and Guestrin (2016) verified the benefits of this 
algorithm. First, regularization in the algorithm introduced 
by XGBoost has the ability to handle overfitting by offering 
row and column sampling. Second, the algorithm used by 
the model is integrated and based on gradient lifting deci-
sion tree optimization, which may satisfy both construction 
and performance criteria. Third, the model can record the 
significance of characteristic indices through tree nodes 
and has a high interpretability.

XGBoost works on the principle of applying a greedy 
strategy to learn individual base trees to address regres-
sion problems, and the advanced framework of the gra-
dient-boosted regression trees (GBRT) model, is shown in 
Figure 3. To enhance the precision of the predictions, new 
decision trees are continuously constructed to fit the re-
siduals of the previous prediction. This technique helps 
minimize the difference between the predicted and actual 
values. Chen and Guestrin (2016) claimed that the XGBoost 
algorithm adds a regularization component, expressed by 
( )j q , to the standard loss function to avoid model over-

fitting. The final prediction of the XGBoost model can be 

defined using Eqns (2) and (3), respectively:
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where the loss function is denoted as l; the predicted value 
is ŷ , and the actual value is y. qj controls the structure of 
the j-th tree; g is the minimum loss reduction required to 
process node partition in the regression tree, l is the regu-
larization of the weight of leaves in the regression tree, Tj 
is the number of leaves in the j-th regression tree, and ( )j

kw  
is the weight of the k-th leaf in the j-th regression tree. It 
has been proved that a larger Tj will reduce the objective 
function but will be penalized by a larger factor g.

3.1.3. Synthetic minority over-sampling for  
regression with Gaussian noise (SMOGN)

Torgo et al. (2013) introduced the synthetic minority over-
sampling technique for regression (SMOTER) algorithm 
to address the issue of performance deterioration caused 
by imbalanced data. This approach can balance rare and 
the most frequent instances by altering the distribution of 
a  given training dataset. To address imbalanced regres-
sion issues, where crucial user cases are underrepresent-
ed in the available studies, Branco et al. (2017) introduced 
Gaussian noise to SMOTER, thus creating SMOGN. Addi-
tionally, Zhu et al. (2021) employed SMOGN in data pre-
processing to predict the rockhead position based on lim-
ited borehole data. The SMOGN, using the SMOTE algo-
rithm, can only produce new syntactic instances when the 
seed example and the chosen k-nearest neighbors (KNN) 
are sufficiently close. However, when the two examples are 
“further distant”, Gaussian noise is introduced. In Figure 4, 
the main principle of SMOGN is to create new synthetic 
samples using the five seed case nearest neighbors, which 
are assumed to have comparable cost contingency and 
attributes (such as project amount and duration). In addi-
tion, the SMOGN algorithm works in two areas: safe and 
unsafe. If the selected neighbor is safe, it means that it is 
within a suitable distance for SMOTE to perform interpola-
tion. Otherwise, if the neighbor is far, it is better to gener-
ate a new example with Gaussian noise on the seed case. 

Figure 3. Schematic diagram of the gradient-boosted regression tree
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3.2. Dataset summary and exploratory  
data analysis (EDA)
This study established a  framework to predict the cost 
contingency in transportation construction projects us-
ing ML. The dataset was obtained from the FDOT web-
site at https://www.fdot.gov/ which has 1277 transporta-
tion projects. After sorting and grouping, the dataset used 
in this study was limited to the transportation projects that 
were constructed in the 2013–2017 bid year. The project 
from the 2013–2017 bid year dataset was the only avail-
able dataset containing the necessary input features for 
the analysis, and there were difficulties in collecting sensi-
tive data due to limited access on the website. FDOT is re-
sponsible for managing, regulating, and maintaining pub-
lic transportation throughout Florida through a decentral-
ized agency. The site provides considerable transporta-
tion project data with various other information as the 
features (variables) and real cost contingency as the de-
pendent variable. The collected raw dataset had 13 inde-
pendent variables and 813 observations (rows) with a mix-
ture of categorical and numerical variables. Python version 
3.6.5  running on Jupyter Notebook was utilized to check 
the data type of each variable, dtypes, and the built-in 
function of pandas.

EDA plays an important role in the data analysis pro-
cess. This step is required to review the characteristics of 
our datasets and is typically used to develop hypotheses 
rather than to reach definitive conclusions based on the 
findings of the study (Abt, 1987). Before designing the ML 
cost contingency prediction model, the overall FDOT trans-
portation dataset used in this study was explored. The first 
step in the data analysis process is to visualize the data. 
This is a  pivotal process because various characteristics 
such as patterns, outliers, changes over time, and relation-
ships between variables can be observed through this pro-
cess. When designing a prediction model, it is vital to in-
clude features found as graphs that visually represent data 
because, depending on the data type and characteristics, 

it is possible to make decisions about which prediction 
model is suitable and which graph is appropriate for fur-
ther analysis. It was found that the greater the number of 
bidders, the higher the cost contingency, as the number of 
bidders may show the level of competition between con-
tractors. In addition, new transportation construction proj-
ects have the highest contingency cost. Conversely, traf-
fic operation projects were found to be the lowest. From 
the perspective of the type of contract, design-bid-build 
(DBB) projects have a high-cost contingency compared to 
design-build (DB) projects. It was also found that the dis-
tribution of the target variable (cost contingency) and the 
imbalanced distribution are strongly affected by outliers in 
the 813 datasets. There is a high probability that problems 
will occur in the ML process because of the imbalanced 
dataset (Kaur et al., 2019). Therefore, to solve this prob-
lem, we implemented the SMOGN algorithm in the pre-
processing step to deal with imbalanced regression data 
issues (Branco et al., 2017, 2019; Kunz, 2020).

3.3. Model variables
The process of developing models involves predictors or 
features as independent variables in building ML algo-
rithms. Thoroughly identifying and understanding the fac-
tors that affect the dependent variable (cost contingency) 
can enhance the prediction accuracy. Therefore, develop-
ing cost contingency prediction methods requires a com-
prehensive literature review to identify potential predic-
tor variables. In the raw dataset of this study, 13 predic-
tor variables (features) with one response variable (tar-
get) were considered. The predictor variables found and 
used in this study were project amount, project duration, 
roadway length, bridge length, project type, contract type, 
number of bidders, latitude, longitude, area classification, 
district, weather conditions, and inflation rate. A summary 
of the predictor variables used in this study is provided 
in Table 2.

In the construction industry, several factors must be 
considered when determining contingency costs. Given 
the unique nature and varying characteristics of construc-
tion projects (Manu et al., 2010), cost contingencies differ 
across projects. Flyvbjerg et al. (2002) proved that differ-
ent project types and geographic locations have statistical 
significance in determining the cost contingency in infra-
structure projects. This is also similar to the study by Can-
tarelli et  al. (2012), who discovered that the sum of the 
contingency cost of infrastructure projects in the Nether-
lands varies based on factors such as location, geographi-
cal area, and project type. According to their findings, rail 
projects have an 11% lower cost contingency than other 
project types (road, tunnel, and bridge projects). More-
over, the authors found that projects in North–West Eu-
ropean countries experienced various cost contingencies 
compared to those in other geographical areas.

A  broad understanding of the factors that impact 
the cost contingency amount will help construction proj-
ect parties during the lifecycle of the project. Laryea and 

Figure 4. Example of the SMOGN algorithm
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Table 2. Summary of the features or variables used in this study

Variables or 
Features Description Type Measurement References

Real 
contingency

The real cost contingency of 
construction transportation projects 

Continuous 105, …, 624195 (US$) The target or response 
variable

Number of 
bidders

The number of bidders or contractors 
who have participated in the projects

Continuous 1, 2, …, 14 Lhee et al. (2012, 2014), 
Smith and Bohn (1999)

Roadway 
length

The length of the roadway Continuous 0, …, 86.01 (miles) Mahamid (2013), Thal et al. 
(2010)

Bridge 
length

The length of the bridge Continuous 0, …, 2.462 (miles) Wang et al. (2016), Thal 
et al. (2010)

Project 
amount

The total cost of the project estimated 
by FDOT 

Continuous 41651, …, 90881467 (US$) Mahamid (2013), Espinoza 
(2011), Arifuzzaman et al. 
(2022), Lhee et al. (2012, 
2014), Chan and Au (2008), 
El-Touny et al. (2014), Thal 
et al. (2010)

Project 
duration

The total duration of the project 
estimated by FDOT

Continuous 21, …, 1400 (days) Espinoza (2011), Lhee et al. 
(2012, 2014), Cantarelli et al. 
(2012), Günhan and Arditi 
(2007), Chan and Au (2008), 
El-Touny et al. (2014) 

Inflation 
rate

The inflation rate at the time of 
bidding project in percent

Continuous –0.2, …, 2.738 (%) Ammar et al. (2022), 
Arifuzzaman et al. (2022), 
Wang and Chou (2003), 
El-Touny et al. (2014), 
Asamoah et al. (2023)

Contract 
type

The type of contract procurement of 
projects that are divided into design-
bid-build (DBB) and design-build (DB)

Categorical Design-bid-build (DBB) and 
design-build (DB)

Arifuzzaman et al. (2022), 
Sonmez et al. (2007), Lhee 
(2014)

Weather 
condition

The general weather conditions 
of the area where the project was 
constructed, classified into the worst 
to most favorable conditions

Categorical Worst, bad, fair, good, and 
favorable

Wang and Chou (2003), 
El-Touny et al. (2014), Chen 
and Hartman (2000)

Project type The type of transportation projects is 
classified into 10 types. 

Categorical Resurfacing, reconstruction, 
widening and resurfacing, new 
construction, bridge construction, 
bridge repair, interstate 
rehabilitation, traffic operations, 
miscellaneous construction, and 
other transportation projects

Salah and Moselhi (2015), 
Arifuzzaman et al. (2022), 
Cantarelli et al. (2012), 
Flyvbjerg et al. (2002), Thal 
et al. (2010), Lhee (2014)

Latitude A coordinate that specifies the North-
South position, measured in degrees 
relative to the equator

Continuous 243315, …, 650001 (degrees) Arifuzzaman et al. (2022), 
Cantarelli et al. (2012), 
Flyvbjerg et al. (2002), El-
Touny et al. (2014) 

Longitude A coordinate that specifies the East-
West position, measured in degrees 
relative to the Prime Meridian

Continuous 800249, …, 1650001 (degrees) Arifuzzaman et al. (2022), 
Cantarelli et al. (2012), 
Flyvbjerg et al. (2002), El-
Touny et al. (2014) 

Area 
classification

The classification area where the 
projects were constructed: urban or 
rural 

Categorical Urban (U) and rural (R) Lhee (2014), Cantarelli 
et al. (2012), Flyvbjerg et al. 
(2002), El-Touny et al. (2014) 

District The district area where the projects 
were located 

Categorical D1, D2, D3, D4, D5, D6, and D7 Arifuzzaman et al. (2022), 
Cantarelli et al. (2012), El-
Touny et al. (2014) 

Hughes (2009) stated that the main factors of cost contin-
gency are the total project amount, level of competition, 
duration of the project, clarity of bid documents, inflation, 
weather conditions, and punctuality of payment from the 
project’s owner. Hoseini et al. (2020b) explained that tech-
nical, economic, psychological, and political factors influ-

ence the amount of cost contingency. In their study, tech-
nical factors included inaccuracies in the estimation ap-
proach, insufficient data, and the lack of experience of the 
project team. Economic factors involve the economic in-
terests of the parties that will choose the project and proj-
ect promoters who may purposely underestimate the proj-
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ect cost. Misconception planning and optimism bias are 
two psychological factors that can cause a project’s scope 
to be underestimated or overestimated for organization-
al benefits. Political factors include strategic misrepresen-
tation through intentional and strategic cost estimation 
when estimating project outcomes. Catalão et al. (2019) 
stated that endogenous and exogenous factors can affect 
cost contingency, where endogenous factors are project 
characteristics over which the project team has control and 
exogenous factors are external ones such as economic, 
political, and environmental factors that may affect the 
cost of the project.

The size or amount of a construction project influenc-
es its contingency. Karlsen and Lereim (2005) examine the 
management of cost uncertainty in engineering projects 
depends on base estimate, contingency, and allowance 
where they highlighted that project managers should con-
trol these risk reserves. In addition, bidding factors, such 
as the level of competition of the project, also affect the 
budget of contingency determination. The number of bid-
ders indicates the level of competition between the con-
tractors who bid on the project. The higher the number of 
bidders, the higher the contingency allocation because of 
the high workload. Additionally, Ammar et al. (2025) rec-
ognizing the factor prior to the bidding stage is crucial to 
estimate appropriate contingency amounts.

Ameh et al. (2010) identified 42 factors that may cause 
cost contingencies in Nigeria’s  telecommunication proj-
ects. The study revealed that the lack of contractor expe-
rience, soaring prices of imported materials, and variations 
in the prices of materials are major factors when consid-
ering the budget for contingency. Kasimu (2012) also an-
alyzed 41 risk factors that are significant for the deter-
mination of cost contingency. The major factors include 
changes in material prices, underestimation, lack of proj-
ect management, and additional costs of reworks. Because 
cost contingency is an important component of a contrac-
tor’s bid estimate, Enshassi and Ayyash (2014) classified 
the factors that influence the cost contingency amount 
from the contractor’s  perspective into 12 groups based 
on factor characteristics and source. The groups of factors 
are project-related, design-related, construction-related, 
bidding-related, contractor-related, owner- or consultant-
related, resource-related, environmental, legal, economic, 

technical or managerial, and political. Moreover, the au-
thors highlighted that natural and environmental risks are 
the hardest to foresee and detect, but when these risks 
occur, they have a  large impact that drives the need for 
cost contingency plans. In contrast, from the perspec-
tive of quantity surveyors, environmental factors (such as 
weather and ground conditions) and economic point-of-
view factors (such as inflation rate and cash flow) are the 
most influential factors in cost contingency determina-
tion for building construction projects in Ghana (Asamoah 
et al., 2023).

3.4. Data pre-processing 
3.4.1. Solving the issue of imbalanced  
data using SMOGN

In this study, SMOGN was utilized for over-sampling rare 
data points and increasing the robustness of the ML mod-
el to estimate the cost contingency of transportation proj-
ects. Moreover, in this study, the imbalanced learning re-
gression Python package, as detailed in Table 3, was used 
to develop the SMOGN algorithm (Wu et al., 2022). After 
conducting SMOGN, the number of observations (rows) 
in the original dataset decreased from 813 to 780. Addi-
tionally, in the results of both the original and modified 
datasets, the distribution of the response variable in the 
modified dataset becomes more evident and outliers are 
reduced by SMOGN, as shown in Figure 5.

3.4.2. Handling categorical variables

Some categorical variables in the dataset of this study 
were classified as object data types. After checking the da-
ta type with Python, project types, contract types, weather 
conditions, districts, and area classification features were 
categorized as object data types or categorical variables. 
To deal with these variables and to make subsequent ML 
analysis easier, the “pd.get_dummies” function of the Py-
thon Pandas library was applied to obtain vector-dimen-
sional values for 0 s and 1 s. Dummy coding is the pre-
ferred method when comparing multiple treatment groups 
with a control group (Myers et al., 2010). Moreover, com-
pared with the effects of coding, dummy coding can be 
set up more quickly and easily (Daly et  al., 2016). Thus, 
this method was chosen to handle categorical variables 
in this study.

Table 3. SMOGN input arguments in this study

Argument Explanation Input Argument

data A Pandas DataFrame that is passed as the “data” input includes the training set split Transportation
y A string that identifies a continuous target variable by header name is accepted as the 

“y” argument
“Real Contingency_Target”

samp_method When “extreme” is given in the “samp_method” argument, it means that over-sampling 
is performed

“extreme”

replace The Boolean argument is required for “replace”. Replace the sampling if “True” is input True
rel_thres The value between 0 and 1 is required for the “rel_thres” argument. It defines the rarity 

threshold. The over-sampling boundary increases in height with the increased threshold. 
Conversely, the threshold decreases with a decrease in over-sampling

0.7

pert A number between 0 and 1 is required for the “pert” argument. It shows how much 
noise should be perturbed while adding Gaussian Noise

0.08
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3.4.3. Selection of predictor variables

The complexity of a  model can be impacted by a  large 
number of predictor variables, which can lead to overfit-
ting (Alpaydin, 2020). Hence, when modeling with ML al-
gorithms, it is crucial to select the most influential pre-
dictor variables before developing models to increase the 
prediction accuracy. This can be achieved through pre-
dictor or feature selection approaches (Guyon & Elisseeff, 
2003). Wrapper and filter algorithms are classified as fea-
ture selection tools in ML. Wrapper algorithms use a ML 
technique to train on a dataset and learn from it, choos-
ing the best subset based on accuracy. In contrast, with-
out considering learning bias, filter algorithms employ raw 
data taken from the dataset to identify key variables.

Both the filter and wrapper algorithms were imple-
mented to determine the independent variables using the 
Boruta algorithm, recursive feature elimination (RFE), and 
Pearson’s  correlation. Boruta is a  wrapper RF algorithm 
that can be run quickly, even without parameter tuning 
(Kursa & Rudnicki, 2010). Boruta has advantages such as 
dealing with nonlinear variables and performing at a high 
computational speed (Cao et al., 2018). Additionally, RFE 

is a wrapper algorithm that recursively removes features 
and builds models based on the remaining ones, using 
accuracy to identify the most predictive features and fea-
ture combinations (Artur, 2021). In contrast, Pearson’s cor-
relation is a filter algorithm that measures the correlation 
between variables and how much they affect each other 
(Shardlow, 2016). Table  4  presents the results of Boruta 
and RFE. Rankings other than 1 or False mean that these 
features do not have a major influence on cost contingen-
cy (the dependent variable). Pearson’s correlation between 
the predictor variables toward the cost contingency shows 
that project amount and project duration may have a sig-
nificant effect. The bridge length, weather conditions, area 
classification, and district variables were not selected for 
ML model training in this study.

4. Results
4.1. Model establishment
The data used for developing the ML models comprised 
780 rows, with cost contingency as the target variable and 
nine predictor variables. Before developing the model, it 

Figure 5. Distribution target variable comparison before and after SMOGN
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Table 4. Results of feature selection algorithms

No. Variables or features
Boruta algorithm RFE algorithm Pearson’s correlation  

(toward the cost contingency)Rank Keep Rank Keep

1 Project amount 1 True 5 False 0.347
2 Project duration 1 True 2 False 0.379
3 Roadway length 1 True 1 True –0.021
4 Bridge length* 2 False 7 False 0.037
5 Number of bidders 1 True 1 True 0.048
6 Inflation rate 1 True 1 True –0.001
7 Latitude 1 True 3 False 0.025
8 Longitude 1 True 4 False 0.011
9 Contract type 7 False 1 True 0.122
10 Weather condition* 5 False 6 False –0.041
11 Project type 3 False 1 True –0.008
12 Area classification* 6 False 8 False 0.083
13 District* 4 False 9 False –0.001

Note: *The features which were not included in the final ML model.
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is crucial to separate the data into training and testing 
sets to prevent overfitting. First, the data were divided into 
80:20 sizes (624 data for training and 156 data for testing), 
and the random size value was 42 using the scikit-learn li-
brary. This ratio was chosen because 80% of the training 
dataset has been empirically proven to increase the per-
formance of ML models (Gholamy et al., 2018).

ML algorithms require specific input parameters. The 
ML model development in this study used the default pa-
rameters provided by Python Scikit-Learn. To achieve the 
optimum values of parameters, hyperparameter optimiza-
tion is required. Hyperparameter optimization is a process 
for determining the best parameters or configurations for 
an ML model. This is a critical task in ML because mod-
el performance highly depends on the parameters used. 
The hyperparameter is determined before training begins 
and is not updated during training. The purpose of hyper-
parameter optimization is to maximize the model perfor-
mance in data testing or validation. This method can im-
prove model performance by finding better parameters 
than those generated manually or randomly. Moreover, 
it can reduce overfitting by identifying the most common 
parameters in the training data (Agrawal, 2021). Therefore, 
random search hyperparameter optimization was used in 
this study.

Random search hyperparameter optimization is an al-
gorithm that attempts a  random combination of param-
eters from a  certain range. Bergstra and Bengio (2012) 
found that within a very small fraction of the calculation 
time, a random search over the same domain can gener-
ate models that are as good as or better than other opti-
mization methods. This method was chosen because ran-
dom search optimization is robust hyperparameter optimi-
zation. Chakraborty and Elzarka (2019) applied and proved 
that random search optimization is genuinely effective as 
hyperparameter optimization to predict the energy con-
sumption of buildings with XGBoost, ANN, and degree-
day-based ordinary least square regression models. In this 
study, random search was set to develop and maximize 
the ML models with 10 cross-validations as the default 
value (Chakraborty & Elzarka, 2019).

Hyperparameter tuning for each machine learning 
model to optimize predictive performance were performed. 
Random search was used for models with a relatively small 
hyperparameter space, allowing for efficient exploration of 
a wide range of values and focus more broadly (Bergstra & 
Bengio, 2012). On the other hand, Bayesian hyperparam-
eter builds a probabilistic model which then chooses the 
next hyperparameter set to try based on both exploration 
by trying uncertain areas and exploitation by trying areas 
expected to perform well (Snoek et al., 2012). Tables 5 and 
6 show the results of the best hyperparameters obtained 
from the random search optimization in the RF and XG-
Boost model respectively. Moreover, Tables 7 and 8 show 
the results of best hyperparameter obtained from Bayes-
ian optimization.

4.2. Model evaluation
4.2.1. Performance metrics evaluation  
of regression ML models

After setting the hyperparameter and building the ML 
ensemble-based algorithms, 80% of the training dataset 
was used to fit the models. The results of the evaluation 
parameters of the developed models are discussed next. 
There are some useful statistical evaluation metric param-
eters for the regression model to evaluate and examine 
the performance of the ML model. In this study, the MAE, 
R2, RMSE, and MAPE of the training and test datasets from 
the RF model was evaluated and compared using the fol-
lowing equations:
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where n  is the number of observations, yi is the actual 
cost contingency, and ˆ iy  represents the predicted cost 
contingency by the models. The MAE is defined in Eqn 
(4) as a measurement of the average error for all predic-
tions, and a lower MAE indicates higher accuracy. Eqn (5) 
shows the R2 which measures the goodness-of-fit and the 
performance of the model; the closer R2 is to 1, the better 
the performance. Moreover, Eqn (6) is the RMSE, which is 
the difference between predicted values by the model and 
the actual values. RMSE is often used to compare the per-
formances of ML algorithms (Verrelst et al., 2012). A lower 
RMSE has the same meaning as a low MAE. Furthermore, 
Eqn (7) shows the MAPE, which measures the average ab-
solute percentage error between the actual values and the 
values predicted by the model. The contingency of the 
prediction cost for both the training and testing datasets 
by the four regression statistics indicators (MAE, R2, RMSE, 
and MAPE) was analyzed after running the RF and XG-
Boost model using the parameters obtained with the ran-
dom search hyperparameter optimization.

4.2.2. Comparison of prediction accuracy 

To verify the performance of the obtained model, the pre-
dictive results of the RF were also compared with those 
of other ML such as ANN. Figure 6 displays a bar chart 
comparison of the regression metrics of the testing data-
set between RF, XGBoost, and ANN. In terms of R2, MAE, 
RMSE, and MAPE, the statistical metrics of ANN showed 
lower performance compared to RF and XGBoost model.  
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As shown in Table 9, the testing dataset performance met-
rics of the RF model exhibit excellent results with an MAE 
of US$1,369, R2 of 0.997, RMSE of US$ 2,908, and MAPE 
of 0.052 followed with XGBoost and ANN. Additionally, 
Figure 7  exhibits a  comparison of the prediction by the 
three ML models and the actual cost contingency in the 
10 examples of testing datasets. It shows that out of three 
ML models, the RF (the red dotted line) and XGBoost (the 

orange dotted line) prediction cost contingency models 
constantly fit the real cost contingency data positively (the 
blue solid line); consequently, ML ensemble-based can 
generate accurate predictions as most of them are close 
to the actual cost contingency. By reviewing the results 
from the regression metrics evaluation, we can conclude 
that the best model to predict cost contingency was car-
ried out by RF followed with XGBoost and ANN.

Table 5. Best hyperparameters of RF with random search optimization

Parameter Description
Parameters of random search

Parameter space Optimum value

bootstrap The usage of bootstrap samples while creating trees [True, False] False

max_depth The tree’s deepest point. If none, nodes are expanded until all leaves 
are pure or until all leaves have fewer samples than the minimum 
number of split samples, whichever comes first

[int(x) for x in 
np.linspace (10, 110, 
num=11)]

90

max_features The number of features to consider when looking for the optimum split [“auto”, “sqrt”] “sqrt”

min_samples_leaf The lowest number of samples that must be present at a leaf node [1, 2, 4] 1

min_samples_split A split internal node requires a minimum number of samples [2, 5, 10] 5

n_estimators The total of trees in the forest [int(x) for x in 
np.linspace(start=200, 
stop=2000, num=10)]

800

Table 6. Best hyperparameters of XGBoost with random search optimization.

Parameter Description
Parameters of random search

Parameter space Optimum value

colsample_bytree Percentage of columns (feature) to be used for each tree [1.0] 1.0
learning_rate The created tree reduces the weight used for prediction to prevent 

overfitting
[0.20, 0.30, 0.40] 0.3

max_depth The deeper the tree, the greater the likelihood of overfitting. The depth 
is infinite when 0 is set

[2, 4, 6, 8] 4

n_estimators Repeat quantity, a greater chance of overfitting if the value is large [50, 75, 100, 125] 125
gamma Overfitting control, minimum loss function value to determine the 

additional division of leaf nodes. Avoid overfitting if the gamma value 
increases

[0.0, 0.1, 0.2] 0.2

min_child_weight The minimum number of samples for further segmentation of a node. 
If it is less than min_child_weight, the node becomes an end node and 
is no longer segmented

[1, 2, 3] 2

Table 7. Best hyperparameters of RF with Bayesian optimization

Parameter Description
Parameters of random search

Parameter space Optimum value

bootstrap The usage of bootstrap samples while creating trees [True, False] False

max_depth The tree’s deepest point. If none, nodes are expanded until all leaves 
are pure or until all leaves have fewer samples than the minimum 
number of split samples, whichever comes first

Integer (1, 50) 34

max_features The number of features to consider when looking for the optimum  
split

Real (0.1, 1.0) 0.498

min_samples_leaf The lowest number of samples that must be present at a leaf node Integer (1, 20) 1

min_samples_split A split internal node requires a minimum number of samples Integer (2, 20) 2

n_estimators The total of trees in the forest Integer (10, 500) 500
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Table 8. Best hyperparameters of XGBoost with Bayesian optimization

Parameter Description
Parameters of random search

Parameter space Optimum value

colsample_bytree Percentage of columns (feature) to be used for each tree Real (0.1, 1.0, ‘uniform’) 0.583
learning_rate The created tree reduces the weight used for prediction to 

prevent overfitting
Real (0.01, 1.0, ‘uniform’) 0.145

max_depth The deeper the tree, the greater the likelihood of overfitting. 
The depth is infinite when 0 is set

Integer (2, 12) 5

n_estimators Repeat quantity, a greater chance of overfitting if the value is 
large

Integer (50, 5000) 1001

reg_alpha L1 regularization applied value for weights. This investigates 
the implementation when the number of features is large. The 
higher this value, the lower of the overfitting occur

Real (1e-9, 100, ‘uniform’) 97.754

reg_lambda L2 regularization applied value for weights. This investigates 
the implementation when the number of features is large. The 
higher this value, the lower of the overfitting occur

Real (1e–9, 100, ‘uniform’) 34.413

subsample This is the data sampling rate used by weak learners for 
learning. A lower value can prevent overfitting

Real (0.1, 1.0, ‘uniform’) 0.779

Table 9. Performance metrics of regression using four different ML models

ML
MAE (US$) R2 RMSE (US$) MAPE

Testing Training Testing Training Testing Training Testing Training

RF 1,369 1,199 0.997 0.998 2,908 2,457 0.052 0.124
XGBoost 2,190 2,728 0.965 0.970 3,326 3,510 0.056 0.173
ANN 4,326 4,895 0.783 0.775 6,393 7,124 0.149 0.236

Figure 6. Regression performance metrics comparison of ML models
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The results of this study also reveal the feature impor-
tance of the developed ML models. Feature importance in 
ML is used to identify the most influential variable (feature) 
contributing to the model. Using ML ensemble-based al-
gorithm provides benefits, such as calculating the feature 
importance automatically from a trained predictive model 
(Zhu et al., 2021). The feature importance represents the 
weight of each variable, and the higher the weight, the 
larger the contribution of the variable to the developed 
ML model. Figure 8 shows the feature importance score 
ranking from the best model in this study. Project amount, 
project duration, latitude, and longitude were found to be 
the four most important factors influencing the construc-
tion cost contingency model. The project amount variable 
was found to have the highest weight values of 0.298. 
Moreover, the contract type variable was found to have 
the lowest weight value of 0.001.

5. Discussion
It is important to study the prediction techniques by ex-
ploring various ML algorithms for the development of big 
data in the construction industry. Proposing a new tech-
nique for cost contingency prediction by integrating ML 
algorithms has demonstrated by Lhee et al. (2016). In their 
study, it was the first application of particle swarm optimi-
zation (PSO) to construction cost contingency. Addition-
ally, adopting other ML techniques to predict construction 

cost contingency for AI development in this area was em-
phasized by El-Kholy et al. (2022). This study proposed an 
ML model for predicting the cost contingency of construc-
tion projects by employing varied algorithms. The results 
of this study are similar to those found by Cao et al. (2018), 
who applied ML ensemble-based algorithms to predict 
unit price bids of resurfacing transportation projects with 
stable, accurate, and efficient prediction. The results of this 
study show that among the tested ML algorithms, the best 
prediction of cost contingency can be obtained by imple-
menting RF associated with random search hyperparam-
eter optimization. Moreover, in this study, continuous and 
categorical variables to predict cost contingency transpor-
tation projects were utilized as predictor variables. Deal-
ing with continuous and categorical predictor variables is 
suitable for using ML ensemble-based. Because the ba-
sic principle of ensemble-based algorithms is classifica-
tion, this technique can reduce the risk of choosing a poor 
classifier through voting and then generate robust mod-
els (Dietterich, 2000). This is supported by the findings of 
Cha et al. (2021), who validated that predicting with en-
semble algorithms such as bagging and boosting type is 
powerful when the size of datasets is small and the type 
of variables is categorical. Therefore, the ML ensemble-
based algorithms such as RF and XGBoost can build excel-
lent models with the samples used in this study compared 
with other models such as ANN, as this ML algorithm are 
broadly adopted for construction cost contingency predic-
tion (Hashemi et al., 2020). Moreover, the results of this 
study present high accuracy compared with previous stud-
ies by Lhee et al. (2012, 2014), who applied ML algorithms 
such as ANN to predict construction contingency.

The project amount variable was found to be the 
most influential predictor for the cost contingency proj-
ect. These findings are in accordance with those of Lhee 
et al. (2012), who developed a model to predict the cost 
contingency in asphalt resurfacing projects using ANN. In 
their study, a numerical input variable, such as the proj-
ect amount, was used to build the ANN models, and this 
variable had the highest correlation with the cost contin-
gency. The results of this study also show that the project 
duration variable has a close correlation with cost contin-

Figure 7. Comparison graph of prediction by the ML models and the actual cost contingency
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cost contingency in this study
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gency. This was unexpected and differed from the find-
ings of Lhee et  al. (2012, 2014), who found that project 
duration tends to degrade the performance of the ANN 
model in predicting cost contingency. Moreover, features 
such as latitude and longitude were also found to be in-
fluential variables in predicting the cost contingency of 
transportation construction projects. Latitude and longi-
tude represent the detailed location of the project and 
have been applied as a prediction tool in other construc-
tion research areas. Won et al. (2018) used latitude, longi-
tude, and altitude as independent variables in their ML al-
gorithm to predict construction resource location, whereas 
Anjum et al. (2021) developed a deep learning model for 
floor opening detection in construction projects and uti-
lized latitude and longitude data in the geocoding pro-
cess. Consequently, in this study, the latitude and longi-
tude variables were the first findings in construction cost 
contingency prediction using ML algorithms.

One of the methods used to reduce the effect of unbal-
anced data on the regression model is resampling. Over-
sampling, undersampling, and mixed sampling are classifi-
cations of resampling techniques. SMOGN is a resampling 
technique that combines random undersampling with two 
over-sampling techniques, including SMOTER and the in-
troduction of Gaussian noise (Branco et al., 2017). The goal 
of SMOGN is to address the issue of unbalanced regres-
sion that can complicate the predictive model develop-
ment process. Branco et al. (2017) asserted that SMOGN 
adjusts the number of rare and normal cases and approx-
imately keeps the same total number of datasets. The re-
sults of SMOGN in this study made the distribution of the 
target variable (cost contingency) “skewed right” when 
compared to the original dataset. Furthermore, in accor-
dance with the results of this study, SMOGN associated 
with the XGBoost algorithm has been proven to success-
fully cope with the imbalanced distribution dataset prob-
lem and enhance prediction accuracy (Zhu et  al., 2021). 
Accordingly, applying the SMOGN technique in the pre-
processing step can help build the model based on the 
characteristics of the dataset in this study.

This study differs from previous contingency prediction 
research in some ways. First, this is the first study to imple-
ment ML ensembled-based algorithms such as RF and XG-
Boost, associated with random search hyperparameter op-
timization to predict cost contingency in construction proj-
ects. Second, this is the first study to employ SMOGN, an 
effective resampling algorithm, in the pre-processing stage 
to deal with imbalanced regression problems for cost con-
tingency. Third, this is the first study to use latitude and 
longitude as predictor variables for cost estimation in the 
construction project area. In previous related studies on 
contingency prediction with ANN and MLR, independent 
variables were used, such as project amount, project dura-
tion, roadway length, number of bidders, project type, let-
ting year, and weather conditions (Lhee et al., 2012, 2014; 
Thal et al., 2010; Chen & Hartman, 2000). Unexpectedly, 
there is no research on construction contingency predic-
tion models that consider latitude, longitude, inflation rate, 

and contract type as predictor variables. Therefore, we ex-
pect the future to bring more variables and ML models, 
given the extensive development of artificial intelligence 
(AI) and big data in the construction industry.

In a real construction project, the method that is com-
monly used to estimate cost contingency is the prede-
termined percentage (i.e., 5‒10% of the total cost proj-
ect) based on intuitions, gut feelings, and past experienc-
es of estimators owing to the simplicity of this method 
(Lhee et al., 2012). However, this method is not appropri-
ate because each construction project has its own unique-
ness. From the construction cost prediction overview, ML 
can be used to reduce the time and enhance the accura-
cy of the prediction, which is an important aspect of the 
project team’s decision-making process. ML construction 
cost prediction models can be effectively applied if the 
construction project team has sufficient datasets and the 
skills necessary to become proficient in data analysis. This 
can be achieved by (1) providing data analysis training 
such as learning about language programming (i.e., Py-
thon, R, and other programming languages), which could 
give more insights about big data in construction to all 
project teams; (2) providing access to the large and high-
quality datasets for research needs; and (3) continuously 
developing cost prediction models and developing an in-
tegrated web-based cost estimation model through col-
laboration between researchers and construction practi-
tioners. From a practical viewpoint, the implementation of 
ML in the construction industry may be slow and challeng-
ing because of the barriers to adopting new technologies 
(Nitithamyong & Skibniewski, 2004). Despite the challeng-
es, the adoption of big data, ML, and AI in improving sus-
tainability in the construction industry is inevitable and has 
become a necessity (Bilal et al., 2016). 

To enhance the practical application of the proposed 
model of this study, the output of the RF algorithm using 
feature importance and partial dependence plots were an-
alyzed. The model indicated that contingency percentages 
are most influenced by the project amount, duration, infla-
tion rate, and contract type. Projects with longer durations 
and higher budgets tend to require higher contingency 
allocations. Additionally, urban projects with design-build 
contracts and those located in regions with higher infla-
tion also exhibit elevated contingency needs. Hence, the 
results of this model revealed that the transportation cost 
contingency range from 8‒14%.

6. Conclusions
As cost contingency is an important budget element and 
has the same weight as the direct cost of a construction 
project, a method to calculate this cost is crucial to achiev-
ing good performance. This study proposes a ML-based 
framework for cost contingency prediction with a  ro-
bust performance accuracy over traditional methods. The 
methods in previous literature for calculating contingen-
cy mainly include ANN and fuzzy techniques, which have 
some limitations in theory and practice. To date, no stud-
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ies have utilized an ML ensemble-based algorithm for pre-
dicting the cost contingency of construction projects. Ad-
ditionally, this study revealed some novel insights by re-
vealing previously unrecognized patterns and influential 
factors. In this study, RF and XGBoost, ML ensemble-based 
algorithms, were introduced to predict cost contingency 
using the FDOT transportation construction project datas-
et. Moreover, employing SMOGN is remarkably effective in 
handling imbalanced dataset problems and can enhance 
the performance of ML model, as verified through real-
world dataset tests. In addition, applying hyperparameter 
optimizations such as random search can also make the 
prediction model robust. Furthermore, based on a com-
parison with other algorithm such as ANN applied to the 
training and testing datasets, the results verified that RF 
provides excellent predictions. Consequently, the frame-
work proposed in this study is applicable and can also 
cover the limitations of previous contingency calculating 
methods, such as accuracy, imbalanced datasets, and is-
sues with categorical variables. This study also contributes 
to construction industry by demonstrating the potential of 
ensembled-ML techniques in improving cost contingency 
prediction. These results can guide researchers to adopt 
ML in construction cost prediction and suggest practition-
ers to implement ML for mitigating budget risks early in 
the project lifecycle in more advanced method and the 
era of big data.

Through the feature importance score of the best mod-
el in this study, it was found that the project amount, proj-
ect duration, latitude, and longitude are the four best inde-
pendent variables (features) that have a significant impact 
on the construction cost contingency model. In contrast, 
despite the satisfactory performance of the model, this 
study may have some limitations, which must be investi-
gated in future work. First, this study only focused on cost 
contingency prediction; therefore, research on predicting 
construction time contingency with ML algorithms is need-
ed. Second, this study only applied SMOGN to overcome 
the imbalance problem; further studies on implementing 
other resampling algorithm techniques in the pre-pro-
cessing step may need to be conducted. Finally, the study 
only used the FDOT transportation construction project 
datasets; thus, the predictor variables may be different if 
adopting construction project datasets from other coun-
tries. Further studies implementing other ML algorithms 
to predict construction contingency costs are necessary.
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