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Abstract. Construction projects are bound by uncertainties and changes by its nature. Thus, cost contingency needs to
be allocated to construction project budget to cope with any deviation of actual costs from planned ones. However, ex-
isting methods for predicting cost contingencies, as studied and practiced, still present limitations in reliability and ac-
curacy. Machine learning (ML) has gained popularity for enhancing prediction power in various fields. The paper aims
to examine various ML algorithms to implement a cost contingency prediction model, employing both continuous and
categorical predictor variables. To develop the model, construction transportation project datasets, which were bid be-
tween 2013-2017, were collected from the Florida Department of Transportation (FDOT) website. To address imbalanced
regression dataset issues, the synthetic minority over-sampling technique for regression with Gaussian noise (SMOGN)
algorithm is introduced. ML random forest (RF) regression associated with random search hyperparameter optimization,
achieved remarkably accurate predictions compared to extreme gradient boosting (XGBoost) regression and artificial neu-
ral network (ANN) models. The results also demonstrate that four parameters are significant factors in predicting con-
struction cost contingency: project amount, project duration, and latitude and longitude factors. These findings provide

new insights for researchers in developing models and for practitioners seeking more advanced method.
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¥ Corresponding author. E-mail: kcr97jhk@hanyang.ac.kr

1. Introduction

Each construction project is unique by its very nature. Un-
expected situations faced during project delivery elicit
changes in various ways. Consequently, the actual costs
are likely to deviate from the planned costs. In general,
this kind of divergence often leads to cost overruns and
has been a common problem in the construction industry
(Larsen et al., 2016). In order to hedge the risks from cost
deviation, contingency is required and should be assigned
before the commencement of construction work (Hoseini
et al.,, 2020a).

Cost contingency refers to the funds required to cov-
er risk situations and is a necessary part of construction
work. It covers uncertainty, potential or unforeseeable
events, and intangibles that can appear in the future, but
this is not a potential profit and does not include major
scope changes, escalation, or effects of currency fluctua-

tion (Querns, 1989). For this reason, prediction and man-
agement of cost contingency affect project performance
because it aims to cover unforeseen costs (Yeo, 1990; Gun-
han & Arditi, 2007). Because cost contingency is one of the
cost components of a base project cost estimate, which is
allocated before the commencement of a project, it has
a significant impact on project parties (Lhee et al.,, 2014).
From the project owner's perspective, both overestima-
tion and underestimation of the contingency budget could
pose issues. Overestimation might restrict funds for oth-
er project activities and lead to poor cost management,
thereby increasing the chance of project failure (Dey et al.,
1994; Hoseini et al., 2020b); in contrast, underestimation
can result in ineffective financial performance of the proj-
ect and insufficient budget for project execution, poten-
tially leading to cost overruns (Baccarini, 2004). In addition,
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a method to accurately predict the construction cost con-
tingency is urgently required because it plays an important
role as a reserved budget that is used to cover risks or un-
expected situations and prevent cost overruns in construc-
tion projects. Therefore, an accurate method to estimate
the cost contingency at the early stage of the construction
project is key to project success.

Previous studies have introduced several approaches
to develop contingency prediction models. Although vari-
ous methods of calculating cost contingency have been
developed, overruns still occur and remain a common
problem in the construction industry (Love et al., 2014);
these methods are also difficult and have limitations in
terms of their application (Hamid & Kehinde, 2017). These
limitations include difficulty in identifying variable factors,
unsuitability for complex projects, low accuracy, indepen-
dence of cost items, the existence of bias, difficulty in real
practice, and employing outmoded approaches. In addi-
tion, the accuracy of contemporary methods for determin-
ing cost contingency is still uncertain, and the reliability
of construction cost contingency estimating tools is un-
clear even with their extensive development (Baccarini &
Love, 2014; Gharaibeh, 2014; De Marco et al., 2016; Hol-
Imann, 2012). Therefore, a robust and advanced approach
is necessary to provide convincing construction cost con-
tingency prediction, such as employing machine learning
(ML) algorithms, which have gained popularity as predic-
tion applications.

Conventional methods have not been effective in re-
ducing estimation errors, leading to reliance on mathe-
matical models. ML techniques are expected to improve
accuracy. ML can be classified into four major types: su-
pervised, unsupervised, semi-supervised, and reinforce-
ment learning. As cost prediction has a continuous target
variable, it is categorized as a supervised learning regres-
sion problem in ML. Several studies have focused on us-
ing ML to predict construction costs. ML has been profi-
ciently applied for the cost prediction of some types of
construction projects: support vector machine (SVM) was
applied for cost prediction of road construction projects
(Pesko et al., 2017; Petrusheva et al., 2019); various combi-
nations of artificial neural network (ANN) algorithms have
been applied to predict the cost of building projects (Ji-
ang, 2020; Rafiei & Adeli, 2018); and Gaussian process re-
gression (GPR) has been utilized for the cost prediction
of tunnel projects (Mahmoodzadeh et al., 2022a, 2022b).
Similar to the prediction of the overall construction cost
using ML, construction cost contingency could also be
predicted using various ML algorithms.

Among various ML approaches in previous studies,
ANN has been one of the most commonly used techniques
for predicting cost contingency in construction projects. In
the prediction task of cost contingency, ANN outperforms
the traditional method from a theoretical perspective and
can be an effective tool in this area (EI-Kholy et al., 2022).
Applications in this area mostly relied on ANN, while the
possibility of more sophisticated machine learning meth-

ods was not been investigated yet. Despite available meth-
ods, accurate prediction of cost contingency has contin-
ued to be a great need in the field of construction man-
agement and artificial intelligence (El-Kholy et al,, 2022;
Lhee et al., 2016). Thus, it is crucial to explore other ML
algorithms. Moreover, ensemble ML algorithms such as
random forest and extreme gradient boosting regression
have not been widely used in construction cost prediction,
in specific, contingency prediction, even though their ex-
cellent predictive capabilities have been demonstrated by
numerous researchers (Meharie & Shaik, 2020; Yan et al,,
2022). On the other hand, although ML has remarkable
prediction power, it requires a novel framework for devel-
oping accurate models, appropriate feature selection, and
enhancing interpretability (Bilal & Oyedele, 2020). To this
end, this study aims to propose a model including a data
handling process to predict construction cost contingency
by utilizing various ML algorithms for improving accuracy.
To enhance sustainability and support the development
of big data in the construction industry, this study intro-
duced a new and different approach from previous con-
tingency prediction techniques. The implementation of big
data in the construction industry is widely adopted such
as predictive analytics for cost estimation, real-time moni-
toring and Internet of Things (IoT) sensors, analyzing en-
ergy consumption of the building, quality control and de-
fect detection, data integration with building information
modeling (BIM) and so on (Li et al., 2023). The implemen-
tation of ML in predicting may be a challenge and vari-
ous algorithms can be implemented as the solution. Ar-
tificial neural networks (ANN) and deep neural networks
(DNN) were utilized to solve some non-smooth process
to achieve a good and high accuracy results in civil en-
gineering applications (Anitescu et al., 2019; Samaniego
et al, 2020). Along with developing a prediction model,
another aim of the study is to extract the relevant factors
of cost contingency which are significant in planning con-
struction projects and obtainable from normal database
used in practice. Both categorical and numerical factors
are incorporated in this study, as suggested by previous
authors in this area.

We employed consecutive steps for predicting the
construction cost contingency. First, in the data collection
step, we gathered datasets from the website of the Florida
Department of Transportation (FDOT) project, along with
identifying various numerical and categorical variables. The
second step is the exploratory data analysis (EDA) which is
necessary to understand the initial data analysis for corre-
lation and distribution between data, help to understand
the data by visualizing the features, detect outliers, and
handling missing values. Third, the data pre-processing
step is performed by applying the synthetic minority over-
sampling for regression with Gaussian noise (SMOGN) and
feature selection algorithms. SMOGN algorithm was em-
ployed to obtain accurate prediction performance by ad-
dressing imbalanced dataset and/or insufficient available
dataset problems in the regression (Branco et al., 2017;



Wang et al., 2022). Fourth, ML models were developed
by dividing the dataset into 80% training and 20% test-
ing sets. To enhance the performance of the ML models,
random search hyperparameter optimization along with
10 k-fold cross-validation was implemented. Fifth, analyz-
ing and comparing the performance of various ML models
to assess the accuracy using four regression performance
metrics: mean absolute error (MAE), coefficient of deter-
mination (R2), root mean square error (RMSE), and mean
absolute percentage error (MAPE).

2. Literature review

2.1. Previous studies on cost
contingency calculation methods

When methodology is concerned, the previous studies
show that the methods used for modeling contingency
focused on some categorizations. Several methods for
calculating the contingency cost of construction projects
have been presented. The Association for the Advance-
ment of Cost Engineering International (2008) categoriz-
es cost contingency estimation and contingency planning
techniques for dealing with risks into four main categories:
expert judgment, fixed guidelines, analyzing simulation
with range estimation and expected value, and paramet-
ric modeling. Bakhshi and Touran (2014) classified these
methods into three major groups: deterministic methods,
which consist of predefined percentages with fixed/line
items and expert judgment; probabilistic methods, which
are divided into non-simulation methods (e.g., probability
tree, first-order second-moment, expected value, program
evaluation, and review technique, parametric estimating or
regression, analytical hierarchy process, and optimism bi-
as uplifts) and simulation methods (e.g., range estimating
and integrated models for cost and schedule); and modern
mathematical methods, which consist of fuzzy techniques
and artificial neural networks.

Moselhi (1997) introduced the traditional percentage
addition which assumes a certain level of risk for the proj-
ect and determines the percentage of cost contingency
based on expert judgment and experience. However, the
method implies an unjustified degree of certainty and is
hard to justify (Mak et al., 1998; Thompson & Perry, 1992;
Hartman, 2000). Famous simulation method such as Mon-
te Carlo simulation is studied by Clark (2001) to evaluate
risk and provide a systematic technique for quantifying the
contingency value in a construction project. At the same
time, he pointed out that this method is difficult, imprac-
tical, and uncommonly adopted in the construction indus-
try. Another well-known prediction method is regression
analysis. Regression models are an effective statistical tool
for analytical and predictive purposes when analyzing the
contribution of variables to overall estimate reliability (Kim
et al, 2004). Despite that, this method depends on his-
torical cost data, collecting which is time-consuming (Ha-
mid & Kehinde, 2017). In addition, fuzzy techniques and
ANN are the mathematical methods used by researchers
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for predicting contingency. Salah and Moselhi (2015) used
fuzzy set theory in the design and developed a contingen-
cy modeling framework that incorporates expert opinions.
Additionally, Nawar et al. (2018) developed a fuzzy log-
ic-based model that predicts project cost and time con-
tingencies with acceptable validity. Nonetheless, creating
fuzzy models can be challenging and requires more fine-
tuning, making it difficult to implement them in practice
(Hamid & Kehinde, 2017). On the other hand, ANN is one
of the machine learning methods which frequently utilized
to predict construction contingency in many studies. Chen
and Hartman (2000) developed an ANN model that pre-
dicts contingency by capturing and learning from historical
project samples. Additionally, Lhee et al. (2012) proposed
a method that predicts the owner’s cost contingency al-
location using an ANN model. Furthermore, K. K. Shrest-
ha and P. P. Shrestha (2016) developed a tool system that
forecasts the cost contingency of road maintenance con-
tracts by employing an ANN based on historical data. El-
kholy et al. (2022) predicted the cost contingency of steel
reinforcement in 30 building projects with ANN models.
Despite that, the selection of reliable and unbiased inputs
as the training data is crucial because it directly impacts the
performance of the ANN model (Touran & Lopez, 2006).
Table 1 summarizes the purposes, methods, advantages,
and limitations of the aforementioned previous studies.

2.2. RF and XGBoost applications in literature

RF and XGBoost have been used extensively for cost pre-
diction in construction management research areas. Zeki¢-
Susac et al. (2021) proposed models for predicting the
energy cost of public buildings using random forest with
a large number of predictor variables using RF. In their
study, Boruta variable selection was integrated and RF
produced a higher accuracy of prediction compared with
ANN and classification and regression tree (CART). Shoar
et al. (2022) developed an RF regression model to pre-
dict engineering services' cost overruns by using 95 high-
rise residential building projects database in Iran along
with a large number of variables where the R? value of
0.868 and MAE of 3.88. Huang and Hsieh (2020) proposed
a hybrid model for improving accuracy by integrating RF
and simple linear regression for predicting building infor-
mation modeling (BIM) costs in the construction phase.
Meharie and Shaik (2020) used RF for modeling the high-
way construction cost and found an RMSE value of 0.96.
Zheng et al. (2023) combined RF and bird swarm algorithm
(BSA) to predict the construction cost in China with the
maximum relative error was only 1.24%. Yan et al. (2022)
utilized XGBoost to estimate the investment in prefabri-
cated concrete buildings, where the construction project
cost-significant and analytic hierarchy process (AHP) was
also employed to extract the factors that affect the cost.
Compared with other algorithms, XGBoost presented the
highest accuracy with a MAPE of 1.00%. Alshboul et al.
(2022) conducted a study to predict green building con-
struction costs with various ML algorithms. The results re-
vealed that XGBoost provided the highest accuracy of 0.96.
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Table 1. Summary of the features or variables used in this study

Reference

Purpose of study

Method

Advantages

Limitations

Thal et al. (2010)

To discover the important

Multiple linear

Clear statistical framework

The validity of the regression

geographical areas.

factors that could influence regression allows others to replicate results depends on meeting
the potential cost contingency | (MLR) the method or adapt it for | certain assumptions (e.g., linearity,
in air force construction different context. homoscedasticity, independence
projects. of errors). If these assumptions
are violated, the validity and
precision of the estimates may be
adversely affected.
Cantarelli et al. | To analyse the significance of | Analysis of The study finds that The models might oversimplify
(2012) cost overrun performance in | Variance the length of the pre- the complexity of cost
various Dutch locations and (ANOVA) construction phase performance dynamics and fail to

significantly influences cost
overruns.

capture non-linear relationships or
interactions between variables.

Lhee et al. (2012)

To provide a model

for estimating the
owner's contingency
budgeting using ANN and
identified the factors that
influence contingency.

Artificial Neural
Network (ANN)

Potentially leading to more
accurate predictions than
traditional linear models.

The performance of ANNs
depends heavily on the quality
and relevance of the input
features used. If important
variables are omitted or irrelevant
ones are included, the accuracy of
the model may deteriorate.

Lhee et al. (2014)

To propose a two-step
ANN-based method for
better predicting optimal
contingency in transportation
projects compared to current
tools.

Two-step
Artificial Neural
Network

The two-step model
separates the estimation
process into distinct phases,
which can lead to more
organized and systematic
analysis.

The two-step neural network
architecture introduces more
complexity compared to single-
step ANN models which may
increases the risk of overfitting
and makes the model harder to
interpret or validate.

Arifuzzaman

To develop a model to predict

Classification

The method offers

Small changes in the input data

transportation’s unpredictable
and uncertain issues.

et al. (2022) cost contingency in the and Regression | a transparent and can result in significant changes in
early stage with little project | Tree (CART) interpretable modeling the structure of the decision tree
information. approach and suit for which may reduce model stability
regions that have limitation |and reliability.
to access the database.
Salah and To provide a new fuzzy-set- Fuzzy set The model is designed to be | Constructing a fuzzy inference
Moselhi (2015) | based model for calculating theory applicable across different | system such as defining rules,
the cost contingency over phases of a construction membership functions, and
the life cycle of construction project, from planning to aggregation methods can be
projects. execution. complex and time-consuming.
Wang et al. To develop a model which Bayesian Bayesian Networks Bayesian Networks depend
(2016) can address the hazmat network-based | effectively address the substantially on both high-quality

uncertainties inherent
in hazardous materials
transportation by modeling
probabilistic dependencies
among various risk factors.

data and expert knowledge to
construct the network structure
and estimate the conditional
probabilities between variables.

ElImousalami (2020) developed project conceptual cost
models for canal improvement projects. Out of 20 Al and
ML algorithms, the XGBoost algorithm presented the most
accurate results, where a MAPE of 9.091% and an adjusted
RZ of 0.929. Lathong and Wisaeng (2024) who have pro-
posed a hybrid ML method by combining ANN with De-
cision Trees (DTs) to enhance construction cost prediction
accuracy. Their best model achieved a MAPE of 11% and
RZ of 0.921.

Hyperparameter tuning plays a pivotal role in enhanc-
ing machine learning model accuracy. Bergstra and Ben-
gio (2012) argued that Random Search is one of the best
hyperparameter for ensembled-ML. Meanwhile, Bayesian
Optimization has emerged as a more sophisticated al-

ternative, using probabilistic models to guide the search
process. Snoek et al. (2012) demonstrated that Bayesian
methods can achieve superior optimization performance
with fewer iterations and making them suitable for re-
source-intensive tasks.

3. Methodology

The methodology applied in this study involved ensem-
ble ML algorithms such as random forest (RF) and ex-
treme gradient boosting (XGBoost) regression, and the
implementation of the SMOGN algorithm to predict the
cost contingency. SMOGN can address the issue of per-
formance deterioration caused by imbalanced data in re-
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gression problems (Branco et al., 2017). Real datasets often
suffer from imbalanced distributions (Torgo et al., 2013).
Therefore, SMOGN was utilized for over-sampling the ra-
re data points and increasing the robustness of the ML
model to estimate the cost contingency of transportation
projects.

Figure 1 demonstrates the ML modeling framework of
this study. The following are consecutive steps for predict-
ing the construction cost contingency: (1) data collection
where the FDOT transportation project datasets from the
open website were collected and a thorough understand-
ing of the contingency construction project is required;
then, through the existing features of datasets, a compre-
hensive literature review about the factors influencing cost
contingency was conducted, and 13 predictor variables
categorical and eight numerical variables) with cost contin-
gency as the target variable was obtained; (2) EDA, which
is the process of understanding the correlation between
the variables and the distribution of the dataset. This
stage also involves data cleaning and removing the miss-
ing values in the dataset. After conducting EDA, 814 da-
tasets were obtained and analyzed in the next step; (3)
data pre-processing, in which the SMOGN algorithm was
used to handle imbalanced data and improve the qual-
ity of the dataset. This algorithm changes the number of
rows in the dataset from 813 to 780; the categorical vari-
ables of the dataset were converted to dummy variables;
finally, nine predictor variables were selected after adopt-
ing Pearson'’s correlation, Boruta algorithm, and recursive
feature elimination techniques; (4) developing ML model,
where the model is built by dividing the dataset into 80%

for training and 20% for testing; to enhance the ML model,
random search hyperparameter optimization was imple-
mented. Moreover, 10 k-fold cross-validations were also
applied. The optimized hyperparameters were derived and
the built ML ensemble-based (RF and XGBoost regression)
model from the training process can be used for testing
datasets. Before choosing RF and XGBoost, various ML al-
gorithms were tested, and this algorithm was found to be
the most appropriate for predicting construction cost con-
tingency; (5) ML model performance evaluation, in which
the performance of the developed ML models was evalu-
ated and four regression performance metrics (MAE, RZ,
RMSE, and MAPE) of the training and testing datasets were
compared.

3.1. ML ensemble-based algorithms
for cost contingency prediction

ML algorithms can be categorized into single and ensem-
ble methods. Unlike single prediction methods that use
only one learning algorithm, ensemble prediction meth-
ods integrate multiple prediction models when outputting
data. A group of classifiers is built using ensemble meth-
ods that categorize new data by weighing the classifier
predictions (Dietterich, 2000). In other words, the ensem-
ble learning process involves integrating and applying dif-
ferent learning algorithms. Compared to a single learning
algorithm, ensemble learning algorithms have been suc-
cessfully shown to have better prediction accuracy and can
increase generalization (Ghimire et al., 2012; Opitz & Mac-
lin, 1999; Sagi & Rokach, 2018).

Figure 1. Modeling of the proposed ML framework for construction cost contingency prediction
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The ensemble model is different from a single predic-
tion model, which has only one learning model. Ensem-
ble models include multiple base models that are creat-
ed through various techniques, such as resampling, ma-
nipulation, or randomization of the training data, learning
algorithms, and learning parameters (Wang & Srinivasan,
2017). Dietterich (2002) and Polikar (2006) asserted that
ensemble algorithms increase predictive performance
for several reasons. First, they avoid overfitting when the
amount of data is small. This was also proven by Cha et al.
(2021), who predicted demolition waste using RF and XG-
Boost machine algorithms with small datasets and cat-
egorical variables. Second, ensemble approaches have
computational advantages because they reduce the pos-
sibility of attaining a local minimum by integrating sever-
al learners. Third, integrating various models can expand
the search area and lead to a more accurate match with
the data space that can represent the optimal hypothesis.

3.1.1. Random forest (RF)

One of the robust ensemble model algorithms based on
the classification and regression tree (CART) is RF. RF is an
ensemble method based on the bagging technique. Bag-
ging is an abbreviation for bootstrap aggregation, a meth-
od of aggregating base learners trained on slightly differ-
ent training data through bootstrapping (Breiman, 1996).
Bootstrapping refers to the process of creating a dataset
of the same size as the original dataset by allowing redun-
dancy from the given training data (Hall, 1994). Breiman
(2001) developed a more robust RF algorithm that can be
applied to regression. Figure 2 shows how the random
forest regression works. The RF model predicts outcomes
by using the bootstrap resampling technique to generate
multiple data from the original data. For each bootstrap
sample, a decision tree was constructed, and the predic-
tions from all decision trees were averaged. The model in-

creases the diversity of the decision trees by using a sam-
ple with replacement and randomly varies the predictor
combinations across multiple tree iterations. An increase in
the number of trees can prevent overfitting and is less im-
pacted by outliers. Moreover, there are two crucial former
parameters of RF: the number of regression trees (N es-
timators) and the maximum depth of node random vari-
ables (Zhou et al., 2019).

The steps in developing the RF model are as follows:
(1) use the original data to create ntree bootstrap sam-
ples; (2) for each bootstrap dataset, a tree was grown; at
each node of the tree, a random subset of features mtry
was used to determine the best split and grow the tree to
make each terminal node have nodesize cases; (3) aggre-
gate information from ntree trees to predict new data; for
example, perform a majority vote for classification; and (4)
use the data not included in the bootstrap sample to ob-
tain an out-of-bag (OOB) error rate. Creating a regression
tree for each bootstrap training set involves the following
procedure. The next step involves generating a regression
tree for each bootstrap training set. N estimators’ regres-
sion trees are created, forming a “forest” without pruning.
During the growth process of each tree, not all optimal
attributes are selected as internal nodes for branching. In-
stead, the optimal attribute is chosen from the randomly
selected maximum depth attributes for branching. This in-
creases the difference between the regression models by
constructing different training sets, thereby enhancing the
prediction performance of the combined regression mod-
el. A regression model sequence {t1 (x),t2 (x),...,tk (x)} is
obtained by n-time model training, which is then utilized
to create a multi-regression model system (forest). Then,
the predictions made by the regression tree of the N es-
timators are compiled, and a simple average approach is
used to determine the value of the new sample. Egn (1)
below is the final regression decision equation:

Figure 2. Schematic diagram of the random forest regression
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B ()= > k) y
k=1
where K is the number of regression trees, t; is a single
decision tree regression model, and fr;S (x) represents the
combined regression model (N estimators). The estimat-
ed value is the weighted sum of the regression outcomes
of each tree. Therefore, as RF is recognized as one of the
best classifiers and as this algorithm can handle the im-
balance class, RF provides a powerful prediction compared
to other ML algorithms (Fernandez-Delgado et al., 2014;
Breiman, 2001).

3.1.2. Extreme gradient boosting (XGBoost)

Gradient tree boosting is a ML method that stands out in
numerous applications, among other techniques utilized
in practice. A large-scale ML method for boosting trees
is extreme gradient boosting (XGBoost), which is an ad-
vanced supervised learning algorithm (Chen & Guestrin,
2016). XGBoost has gained broad recognition in various
fields (Wang et al., 2020) of ML and data mining because
of its superior performance and outstanding results with
only a small amount of data (Bekkerman, 2015). Moreo-
ver, Chen and Guestrin (2016) verified the benefits of this
algorithm. First, regularization in the algorithm introduced
by XGBoost has the ability to handle overfitting by offering
row and column sampling. Second, the algorithm used by
the model is integrated and based on gradient lifting deci-
sion tree optimization, which may satisfy both construction
and performance criteria. Third, the model can record the
significance of characteristic indices through tree nodes
and has a high interpretability.

XGBoost works on the principle of applying a greedy
strategy to learn individual base trees to address regres-
sion problems, and the advanced framework of the gra-
dient-boosted regression trees (GBRT) model, is shown in
Figure 3. To enhance the precision of the predictions, new
decision trees are continuously constructed to fit the re-
siduals of the previous prediction. This technique helps
minimize the difference between the predicted and actual
values. Chen and Guestrin (2016) claimed that the XGBoost
algorithm adds a regularization component, expressed by
Q ej), to the standard loss function to avoid model over-
fitting. The final prediction of the XGBoost model can be

Input for tree > [Xy-3"]

X = predictors
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defined using Eqgns (2) and (3), respectively:

L= )+ Y0l @

i

Tj
Zo(ej)_yrﬁgxkz;
; =

where the loss function is denoted as [; the predicted value
is y, and the actual value is y. ©; controls the structure of
the j-th tree; y is the minimum loss reduction required to
process node partition in the regression tree, A is the regu-

larization of the weight of leaves in the regression tree, T;

is the number of leaves in the j-th regression tree, and w,((j)
is the weight of the k-th leaf in the j-th regression tree. It
has been proved that a larger T; will reduce the objective
function but will be penalized by a larger factor y.

Lf
k 1

3)

3.1.3. Synthetic minority over-sampling for
regression with Gaussian noise (SMOGN)

Torgo et al. (2013) introduced the synthetic minority over-
sampling technique for regression (SMOTER) algorithm
to address the issue of performance deterioration caused
by imbalanced data. This approach can balance rare and
the most frequent instances by altering the distribution of
a given training dataset. To address imbalanced regres-
sion issues, where crucial user cases are underrepresent-
ed in the available studies, Branco et al. (2017) introduced
Gaussian noise to SMOTER, thus creating SMOGN. Addi-
tionally, Zhu et al. (2021) employed SMOGN in data pre-
processing to predict the rockhead position based on lim-
ited borehole data. The SMOGN, using the SMOTE algo-
rithm, can only produce new syntactic instances when the
seed example and the chosen k-nearest neighbors (KNN)
are sufficiently close. However, when the two examples are
“further distant”, Gaussian noise is introduced. In Figure 4,
the main principle of SMOGN is to create new synthetic
samples using the five seed case nearest neighbors, which
are assumed to have comparable cost contingency and
attributes (such as project amount and duration). In addi-
tion, the SMOGN algorithm works in two areas: safe and
unsafe. If the selected neighbor is safe, it means that it is
within a suitable distance for SMOTE to perform interpola-
tion. Otherwise, if the neighbor is far, it is better to gener-
ate a new example with Gaussian noise on the seed case.
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Figure 3. Schematic diagram of the gradient-boosted regression tree
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Figure 4. Example of the SMOGN algorithm

3.2. Dataset summary and exploratory
data analysis (EDA)

This study established a framework to predict the cost
contingency in transportation construction projects us-
ing ML. The dataset was obtained from the FDOT web-
site at https://www.fdot.gov/ which has 1277 transporta-
tion projects. After sorting and grouping, the dataset used
in this study was limited to the transportation projects that
were constructed in the 2013-2017 bid year. The project
from the 2013-2017 bid year dataset was the only avail-
able dataset containing the necessary input features for
the analysis, and there were difficulties in collecting sensi-
tive data due to limited access on the website. FDOT is re-
sponsible for managing, regulating, and maintaining pub-
lic transportation throughout Florida through a decentral-
ized agency. The site provides considerable transporta-
tion project data with various other information as the
features (variables) and real cost contingency as the de-
pendent variable. The collected raw dataset had 13 inde-
pendent variables and 813 observations (rows) with a mix-
ture of categorical and numerical variables. Python version
3.6.5 running on Jupyter Notebook was utilized to check
the data type of each variable, dtypes, and the built-in
function of pandas.

EDA plays an important role in the data analysis pro-
cess. This step is required to review the characteristics of
our datasets and is typically used to develop hypotheses
rather than to reach definitive conclusions based on the
findings of the study (Abt, 1987). Before designing the ML
cost contingency prediction model, the overall FDOT trans-
portation dataset used in this study was explored. The first
step in the data analysis process is to visualize the data.
This is a pivotal process because various characteristics
such as patterns, outliers, changes over time, and relation-
ships between variables can be observed through this pro-
cess. When designing a prediction model, it is vital to in-
clude features found as graphs that visually represent data
because, depending on the data type and characteristics,
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it is possible to make decisions about which prediction
model is suitable and which graph is appropriate for fur-
ther analysis. It was found that the greater the number of
bidders, the higher the cost contingency, as the number of
bidders may show the level of competition between con-
tractors. In addition, new transportation construction proj-
ects have the highest contingency cost. Conversely, traf-
fic operation projects were found to be the lowest. From
the perspective of the type of contract, design-bid-build
(DBB) projects have a high-cost contingency compared to
design-build (DB) projects. It was also found that the dis-
tribution of the target variable (cost contingency) and the
imbalanced distribution are strongly affected by outliers in
the 813 datasets. There is a high probability that problems
will occur in the ML process because of the imbalanced
dataset (Kaur et al., 2019). Therefore, to solve this prob-
lem, we implemented the SMOGN algorithm in the pre-
processing step to deal with imbalanced regression data
issues (Branco et al., 2017, 2019; Kunz, 2020).

3.3. Model variables

The process of developing models involves predictors or
features as independent variables in building ML algo-
rithms. Thoroughly identifying and understanding the fac-
tors that affect the dependent variable (cost contingency)
can enhance the prediction accuracy. Therefore, develop-
ing cost contingency prediction methods requires a com-
prehensive literature review to identify potential predic-
tor variables. In the raw dataset of this study, 13 predic-
tor variables (features) with one response variable (tar-
get) were considered. The predictor variables found and
used in this study were project amount, project duration,
roadway length, bridge length, project type, contract type,
number of bidders, latitude, longitude, area classification,
district, weather conditions, and inflation rate. A summary
of the predictor variables used in this study is provided
in Table 2.

In the construction industry, several factors must be
considered when determining contingency costs. Given
the unique nature and varying characteristics of construc-
tion projects (Manu et al.,, 2010), cost contingencies differ
across projects. Flyvbjerg et al. (2002) proved that differ-
ent project types and geographic locations have statistical
significance in determining the cost contingency in infra-
structure projects. This is also similar to the study by Can-
tarelli et al. (2012), who discovered that the sum of the
contingency cost of infrastructure projects in the Nether-
lands varies based on factors such as location, geographi-
cal area, and project type. According to their findings, rail
projects have an 11% lower cost contingency than other
project types (road, tunnel, and bridge projects). More-
over, the authors found that projects in North-West Eu-
ropean countries experienced various cost contingencies
compared to those in other geographical areas.

A broad understanding of the factors that impact
the cost contingency amount will help construction proj-
ect parties during the lifecycle of the project. Laryea and
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Table 2. Summary of the features or variables used in this study

Variables or

duration estimated by FDOT

Features Description Type Measurement References

Real The real cost contingency of Continuous | 105, ..., 624195 (US$) The target or response

contingency | construction transportation projects variable

Number of | The number of bidders or contractors |Continuous |1, 2, ..., 14 Lhee et al. (2012, 2014),

bidders who have participated in the projects Smith and Bohn (1999)

Roadway The length of the roadway Continuous |0, ..., 86.01 (miles) Mahamid (2013), Thal et al.

length (2010)

Bridge The length of the bridge Continuous |0, ..., 2.462 (miles) Wang et al. (2016), Thal

length et al. (2010)

Project The total cost of the project estimated | Continuous | 41651, ..., 90881467 (US$) Mahamid (2013), Espinoza

amount by FDOT (2011), Arifuzzaman et al.
(2022), Lhee et al. (2012,
2014), Chan and Au (2008),
El-Touny et al. (2014), Thal
et al. (2010)

Project The total duration of the project Continuous |21, ..., 1400 (days) Espinoza (2011), Lhee et al.

(2012, 2014), Cantarelli et al.
(2012), Glnhan and Arditi
(2007), Chan and Au (2008),
El-Touny et al. (2014)

constructed, classified into the worst
to most favorable conditions

Inflation The inflation rate at the time of Continuous |-0.2, ..., 2.738 (%) Ammar et al. (2022),

rate bidding project in percent Arifuzzaman et al. (2022),
Wang and Chou (2003),
El-Touny et al. (2014),
Asamoah et al. (2023)

Contract The type of contract procurement of | Categorical | Design-bid-build (DBB) and Arifuzzaman et al. (2022),

type projects that are divided into design- design-build (DB) Sonmez et al. (2007), Lhee

bid-build (DBB) and design-build (DB) (2014)
Weather The general weather conditions Categorical | Worst, bad, fair, good, and Wang and Chou (2003),
condition of the area where the project was favorable El-Touny et al. (2014), Chen

and Hartman (2000)

Project type | The type of transportation projects is | Categorical
classified into 10 types.

Resurfacing, reconstruction, Salah and Moselhi (2015),
widening and resurfacing, new Arifuzzaman et al. (2022),
construction, bridge construction, [ Cantarelli et al. (2012),
bridge repair, interstate Flyvbjerg et al. (2002), Thal

rehabilitation, traffic operations, et al. (2010), Lhee (2014)
miscellaneous construction, and
other transportation projects

Latitude A coordinate that specifies the North- | Continuous
South position, measured in degrees
relative to the equator

243315, ..., 650001 (degrees) Arifuzzaman et al. (2022),
Cantarelli et al. (2012),
Flyvbjerg et al. (2002), EI-
Touny et al. (2014)

Longitude | A coordinate that specifies the East- Continuous
West position, measured in degrees
relative to the Prime Meridian

800249, ..., 1650001 (degrees) Arifuzzaman et al. (2022),
Cantarelli et al. (2012),
Flyvbjerg et al. (2002), EI-
Touny et al. (2014)

were located

Area The classification area where the Categorical | Urban (U) and rural (R) Lhee (2014), Cantarelli

classification | projects were constructed: urban or et al. (2012), Flyvbjerg et al.
rural (2002), El-Touny et al. (2014)

District The district area where the projects Categorical | D1, D2, D3, D4, D5, D6, and D7 Arifuzzaman et al. (2022),

Cantarelli et al. (2012), El-
Touny et al. (2014)

Hughes (2009) stated that the main factors of cost contin-
gency are the total project amount, level of competition,
duration of the project, clarity of bid documents, inflation,
weather conditions, and punctuality of payment from the
project’'s owner. Hoseini et al. (2020b) explained that tech-
nical, economic, psychological, and political factors influ-

ence the amount of cost contingency. In their study, tech-
nical factors included inaccuracies in the estimation ap-
proach, insufficient data, and the lack of experience of the
project team. Economic factors involve the economic in-
terests of the parties that will choose the project and proj-
ect promoters who may purposely underestimate the proj-
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ect cost. Misconception planning and optimism bias are
two psychological factors that can cause a project’s scope
to be underestimated or overestimated for organization-
al benefits. Political factors include strategic misrepresen-
tation through intentional and strategic cost estimation
when estimating project outcomes. Cataldo et al. (2019)
stated that endogenous and exogenous factors can affect
cost contingency, where endogenous factors are project
characteristics over which the project team has control and
exogenous factors are external ones such as economic,
political, and environmental factors that may affect the
cost of the project.

The size or amount of a construction project influenc-
es its contingency. Karlsen and Lereim (2005) examine the
management of cost uncertainty in engineering projects
depends on base estimate, contingency, and allowance
where they highlighted that project managers should con-
trol these risk reserves. In addition, bidding factors, such
as the level of competition of the project, also affect the
budget of contingency determination. The number of bid-
ders indicates the level of competition between the con-
tractors who bid on the project. The higher the number of
bidders, the higher the contingency allocation because of
the high workload. Additionally, Ammar et al. (2025) rec-
ognizing the factor prior to the bidding stage is crucial to
estimate appropriate contingency amounts.

Ameh et al. (2010) identified 42 factors that may cause
cost contingencies in Nigeria's telecommunication proj-
ects. The study revealed that the lack of contractor expe-
rience, soaring prices of imported materials, and variations
in the prices of materials are major factors when consid-
ering the budget for contingency. Kasimu (2012) also an-
alyzed 41 risk factors that are significant for the deter-
mination of cost contingency. The major factors include
changes in material prices, underestimation, lack of proj-
ect management, and additional costs of reworks. Because
cost contingency is an important component of a contrac-
tor's bid estimate, Enshassi and Ayyash (2014) classified
the factors that influence the cost contingency amount
from the contractor’s perspective into 12 groups based
on factor characteristics and source. The groups of factors
are project-related, design-related, construction-related,
bidding-related, contractor-related, owner- or consultant-
related, resource-related, environmental, legal, economic,

Table 3. SMOGN input arguments in this study

869

technical or managerial, and political. Moreover, the au-
thors highlighted that natural and environmental risks are
the hardest to foresee and detect, but when these risks
occur, they have a large impact that drives the need for
cost contingency plans. In contrast, from the perspec-
tive of quantity surveyors, environmental factors (such as
weather and ground conditions) and economic point-of-
view factors (such as inflation rate and cash flow) are the
most influential factors in cost contingency determina-
tion for building construction projects in Ghana (Asamoah
et al.,, 2023).

3.4. Data pre-processing

3.4.1. Solving the issue of imbalanced
data using SMOGN

In this study, SMOGN was utilized for over-sampling rare
data points and increasing the robustness of the ML mod-
el to estimate the cost contingency of transportation proj-
ects. Moreover, in this study, the imbalanced learning re-
gression Python package, as detailed in Table 3, was used
to develop the SMOGN algorithm (Wu et al.,, 2022). After
conducting SMOGN, the number of observations (rows)
in the original dataset decreased from 813 to 780. Addi-
tionally, in the results of both the original and modified
datasets, the distribution of the response variable in the
modified dataset becomes more evident and outliers are
reduced by SMOGN, as shown in Figure 5.

3.4.2. Handling categorical variables

Some categorical variables in the dataset of this study
were classified as object data types. After checking the da-
ta type with Python, project types, contract types, weather
conditions, districts, and area classification features were
categorized as object data types or categorical variables.
To deal with these variables and to make subsequent ML
analysis easier, the “pd.get_ dummies" function of the Py-
thon Pandas library was applied to obtain vector-dimen-
sional values for 0 s and 1 s. Dummy coding is the pre-
ferred method when comparing multiple treatment groups
with a control group (Myers et al., 2010). Moreover, com-
pared with the effects of coding, dummy coding can be
set up more quickly and easily (Daly et al., 2016). Thus,
this method was chosen to handle categorical variables
in this study.

N

y" argument

Argument Explanation Input Argument
data A Pandas DataFrame that is passed as the “data” input includes the training set split Transportation
y A string that identifies a continuous target variable by header name is accepted as the “Real Contingency_Target”

is performed

samp_method | When "extreme” is given in the "samp_method” argument, it means that over-sampling

"extreme”

replace

The Boolean argument is required for “replace”. Replace the sampling if “True” is input | True

rel_thres

The value between 0 and 1 is required for the “rel_thres” argument. It defines the rarity |0.7
threshold. The over-sampling boundary increases in height with the increased threshold.
Conversely, the threshold decreases with a decrease in over-sampling

pert A number between 0 and 1 is required for the "pert” argument. It shows how much 0.08
noise should be perturbed while adding Gaussian Noise
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3.4.3. Selection of predictor variables

The complexity of a model can be impacted by a large
number of predictor variables, which can lead to overfit-
ting (Alpaydin, 2020). Hence, when modeling with ML al-
gorithms, it is crucial to select the most influential pre-
dictor variables before developing models to increase the
prediction accuracy. This can be achieved through pre-
dictor or feature selection approaches (Guyon & Elisseeff,
2003). Wrapper and filter algorithms are classified as fea-
ture selection tools in ML. Wrapper algorithms use a ML
technique to train on a dataset and learn from it, choos-
ing the best subset based on accuracy. In contrast, with-
out considering learning bias, filter algorithms employ raw
data taken from the dataset to identify key variables.
Both the filter and wrapper algorithms were imple-
mented to determine the independent variables using the
Boruta algorithm, recursive feature elimination (RFE), and
Pearson’s correlation. Boruta is a wrapper RF algorithm
that can be run quickly, even without parameter tuning
(Kursa & Rudnicki, 2010). Boruta has advantages such as
dealing with nonlinear variables and performing at a high
computational speed (Cao et al.,, 2018). Additionally, RFE

Table 4. Results of feature selection algorithms

is a wrapper algorithm that recursively removes features
and builds models based on the remaining ones, using
accuracy to identify the most predictive features and fea-
ture combinations (Artur, 2021). In contrast, Pearson'’s cor-
relation is a filter algorithm that measures the correlation
between variables and how much they affect each other
(Shardlow, 2016). Table 4 presents the results of Boruta
and RFE. Rankings other than 1 or False mean that these
features do not have a major influence on cost contingen-
cy (the dependent variable). Pearson’s correlation between
the predictor variables toward the cost contingency shows
that project amount and project duration may have a sig-
nificant effect. The bridge length, weather conditions, area
classification, and district variables were not selected for
ML model training in this study.

4. Results
4.1. Model establishment

The data used for developing the ML models comprised
780 rows, with cost contingency as the target variable and
nine predictor variables. Before developing the model, it

) Boruta algorithm RFE algorithm Pearson’s correlation
No. Variables or features Rank Keep Rank Keep (toward the cost contingency)
1 Project amount 1 True 5 False 0.347
2 Project duration 1 True 2 False 0.379
3 Roadway length 1 True 1 True -0.021
4 Bridge length* 2 False 7 False 0.037
5 Number of bidders 1 True 1 True 0.048
6 Inflation rate 1 True 1 True -0.001
7 Latitude 1 True 3 False 0.025
8 Longitude 1 True 4 False 0.011
9 Contract type 7 False 1 True 0.122
10 Weather condition* 5 False 6 False -0.041
11 Project type 3 False 1 True —0.008
12 Area classification* 6 False 8 False 0.083
13 District* 4 False 9 False -0.001

Note: *The features which were not included in the final ML model.
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is crucial to separate the data into training and testing
sets to prevent overfitting. First, the data were divided into
80:20 sizes (624 data for training and 156 data for testing),
and the random size value was 42 using the scikit-learn li-
brary. This ratio was chosen because 80% of the training
dataset has been empirically proven to increase the per-
formance of ML models (Gholamy et al., 2018).

ML algorithms require specific input parameters. The
ML model development in this study used the default pa-
rameters provided by Python Scikit-Learn. To achieve the
optimum values of parameters, hyperparameter optimiza-
tion is required. Hyperparameter optimization is a process
for determining the best parameters or configurations for
an ML model. This is a critical task in ML because mod-
el performance highly depends on the parameters used.
The hyperparameter is determined before training begins
and is not updated during training. The purpose of hyper-
parameter optimization is to maximize the model perfor-
mance in data testing or validation. This method can im-
prove model performance by finding better parameters
than those generated manually or randomly. Moreover,
it can reduce overfitting by identifying the most common
parameters in the training data (Agrawal, 2021). Therefore,
random search hyperparameter optimization was used in
this study.

Random search hyperparameter optimization is an al-
gorithm that attempts a random combination of param-
eters from a certain range. Bergstra and Bengio (2012)
found that within a very small fraction of the calculation
time, a random search over the same domain can gener-
ate models that are as good as or better than other opti-
mization methods. This method was chosen because ran-
dom search optimization is robust hyperparameter optimi-
zation. Chakraborty and Elzarka (2019) applied and proved
that random search optimization is genuinely effective as
hyperparameter optimization to predict the energy con-
sumption of buildings with XGBoost, ANN, and degree-
day-based ordinary least square regression models. In this
study, random search was set to develop and maximize
the ML models with 10 cross-validations as the default
value (Chakraborty & Elzarka, 2019).

Hyperparameter tuning for each machine learning
model to optimize predictive performance were performed.
Random search was used for models with a relatively small
hyperparameter space, allowing for efficient exploration of
a wide range of values and focus more broadly (Bergstra &
Bengio, 2012). On the other hand, Bayesian hyperparam-
eter builds a probabilistic model which then chooses the
next hyperparameter set to try based on both exploration
by trying uncertain areas and exploitation by trying areas
expected to perform well (Snoek et al., 2012). Tables 5 and
6 show the results of the best hyperparameters obtained
from the random search optimization in the RF and XG-
Boost model respectively. Moreover, Tables 7 and 8 show
the results of best hyperparameter obtained from Bayes-
ian optimization.

4.2. Model evaluation

4.2.1. Performance metrics evaluation
of regression ML models

After setting the hyperparameter and building the ML
ensemble-based algorithms, 80% of the training dataset
was used to fit the models. The results of the evaluation
parameters of the developed models are discussed next.
There are some useful statistical evaluation metric param-
eters for the regression model to evaluate and examine
the performance of the ML model. In this study, the MAE,
R2, RMSE, and MAPE of the training and test datasets from
the RF model was evaluated and compared using the fol-
lowing equations:
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where n is the number of observations, y; is the actual
cost contingency, and y; represents the predicted cost
contingency by the models. The MAE is defined in Eqn
(4) as a measurement of the average error for all predic-
tions, and a lower MAE indicates higher accuracy. Egn (5)
shows the RZ which measures the goodness-of-fit and the
performance of the model; the closer R? is to 1, the better
the performance. Moreover, Eqn (6) is the RMSE, which is
the difference between predicted values by the model and
the actual values. RMSE is often used to compare the per-
formances of ML algorithms (Verrelst et al., 2012). A lower
RMSE has the same meaning as a low MAE. Furthermore,
Egn (7) shows the MAPE, which measures the average ab-
solute percentage error between the actual values and the
values predicted by the model. The contingency of the
prediction cost for both the training and testing datasets
by the four regression statistics indicators (MAE, R2, RMSE,
and MAPE) was analyzed after running the RF and XG-
Boost model using the parameters obtained with the ran-
dom search hyperparameter optimization.

4.2.2. Comparison of prediction accuracy

To verify the performance of the obtained model, the pre-
dictive results of the RF were also compared with those
of other ML such as ANN. Figure 6 displays a bar chart
comparison of the regression metrics of the testing data-
set between RF, XGBoost, and ANN. In terms of R, MAE,
RMSE, and MAPE, the statistical metrics of ANN showed
lower performance compared to RF and XGBoost model.
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As shown in Table 9, the testing dataset performance met-
rics of the RF model exhibit excellent results with an MAE
of US$1,369, R? of 0.997, RMSE of US$ 2,908, and MAPE
of 0.052 followed with XGBoost and ANN. Additionally,
Figure 7 exhibits a comparison of the prediction by the
three ML models and the actual cost contingency in the
10 examples of testing datasets. It shows that out of three
ML models, the RF (the red dotted line) and XGBoost (the

Table 5. Best hyperparameters of RF with random search optimization
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orange dotted line) prediction cost contingency models
constantly fit the real cost contingency data positively (the
blue solid line); consequently, ML ensemble-based can
generate accurate predictions as most of them are close
to the actual cost contingency. By reviewing the results
from the regression metrics evaluation, we can conclude
that the best model to predict cost contingency was car-
ried out by RF followed with XGBoost and ANN.

Parameters of random search
Parameter Description
Parameter space Optimum value
bootstrap The usage of bootstrap samples while creating trees [True, False] False
max_depth The tree's deepest point. If none, nodes are expanded until all leaves [int(x) for x in 90
are pure or until all leaves have fewer samples than the minimum np.linspace (10, 110,
number of split samples, whichever comes first num=11)]
max_features The number of features to consider when looking for the optimum split | [*auto”, “sqrt"] “sqrt”
min_samples_leaf |The lowest number of samples that must be present at a leaf node [1, 2, 4] 1
min_samples_split [ A split internal node requires a minimum number of samples [2, 5, 10] 5
n_estimators The total of trees in the forest [int(x) for x in 800
np.linspace(start=200,
stop=2000, num=10)]

Table 6. Best hyperparameters of XGBoost with random search optimization.

Parameters of random search
Parameter Description
Parameter space Optimum value

colsample_bytree | Percentage of columns (feature) to be used for each tree [1.0] 1.0
learning_rate The created tree reduces the weight used for prediction to prevent [0.20, 0.30, 0.40] 0.3

overfitting
max_depth The deeper the tree, the greater the likelihood of overfitting. The depth | [2, 4, 6, 8] 4

is infinite when 0 is set
n_estimators Repeat quantity, a greater chance of overfitting if the value is large [50, 75, 100, 125] 125
gamma Overfitting control, minimum loss function value to determine the [0.0, 0.1, 0.2] 0.2

additional division of leaf nodes. Avoid overfitting if the gamma value

increases
min_child_weight | The minimum number of samples for further segmentation of a node. |[1, 2, 3] 2

If it is less than min_child_weight, the node becomes an end node and

is no longer segmented

Table 7. Best hyperparameters of RF with Bayesian optimization

Parameters of random search

Parameter Description
Parameter space Optimum value
bootstrap The usage of bootstrap samples while creating trees [True, False] False
max_depth The tree's deepest point. If none, nodes are expanded until all leaves Integer (1, 50) 34
are pure or until all leaves have fewer samples than the minimum
number of split samples, whichever comes first
max_features The number of features to consider when looking for the optimum Real (0.1, 1.0) 0.498
split
min_samples_leaf | The lowest number of samples that must be present at a leaf node Integer (1, 20) 1
min_samples_split | A split internal node requires a minimum number of samples Integer (2, 20) 2
n_estimators The total of trees in the forest Integer (10, 500) 500
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Table 8. Best hyperparameters of XGBoost with Bayesian optimization
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Parameters of random search

Parameter Description
Parameter space Optimum value
colsample_bytree | Percentage of columns (feature) to be used for each tree Real (0.1, 1.0, ‘uniform’) 0.583
learning_rate The created tree reduces the weight used for prediction to Real (0.01, 1.0, 'uniform’) 0.145
prevent overfitting
max_depth The deeper the tree, the greater the likelihood of overfitting. | Integer (2, 12) 5
The depth is infinite when 0 is set
n_estimators Repeat quantity, a greater chance of overfitting if the value is | Integer (50, 5000) 1001
large
reg_alpha L1 regularization applied value for weights. This investigates | Real (1e-9, 100, ‘'uniform’) 97.754
the implementation when the number of features is large. The
higher this value, the lower of the overfitting occur
reg_lambda L2 regularization applied value for weights. This investigates | Real (1e-9, 100, ‘uniform’) 34.413
the implementation when the number of features is large. The
higher this value, the lower of the overfitting occur
subsample This is the data sampling rate used by weak learners for Real (0.1, 1.0, ‘uniform’) 0.779
learning. A lower value can prevent overfitting
Table 9. Performance metrics of regression using four different ML models
MAE (US$) R? RMSE (US$) MAPE
ML
Testing Training Testing Training Testing Training Testing Training
RF 1,369 1,199 0.997 0.998 2,908 2,457 0.052 0.124
XGBoost 2,190 2,728 0.965 0.970 3,326 3,510 0.056 0.173
ANN 4,326 4,895 0.783 0.775 6,393 7,124 0.149 0.236

Figure 6. Regression performance metrics comparison of ML models
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Figure 7. Comparison graph of prediction by the ML models and the actual cost contingency

The results of this study also reveal the feature impor-
tance of the developed ML models. Feature importance in
ML is used to identify the most influential variable (feature)
contributing to the model. Using ML ensemble-based al-
gorithm provides benefits, such as calculating the feature
importance automatically from a trained predictive model
(Zhu et al., 2021). The feature importance represents the
weight of each variable, and the higher the weight, the
larger the contribution of the variable to the developed
ML model. Figure 8 shows the feature importance score
ranking from the best model in this study. Project amount,
project duration, latitude, and longitude were found to be
the four most important factors influencing the construc-
tion cost contingency model. The project amount variable
was found to have the highest weight values of 0.298.
Moreover, the contract type variable was found to have
the lowest weight value of 0.001.

Project Amount
Project Duration
Longitude
Latitude

Features

Inflation Rate
Number of Bidders
Contract Type
Roadway Length
Project Type

F T T T T T T T T

0 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Weight

Figure 8. Feature importance score of the best model to predict
cost contingency in this study

5. Discussion

It is important to study the prediction techniques by ex-
ploring various ML algorithms for the development of big
data in the construction industry. Proposing a new tech-
nique for cost contingency prediction by integrating ML
algorithms has demonstrated by Lhee et al. (2016). In their
study, it was the first application of particle swarm optimi-
zation (PSO) to construction cost contingency. Addition-
ally, adopting other ML techniques to predict construction

cost contingency for Al development in this area was em-
phasized by El-Kholy et al. (2022). This study proposed an
ML model for predicting the cost contingency of construc-
tion projects by employing varied algorithms. The results
of this study are similar to those found by Cao et al. (2018),
who applied ML ensemble-based algorithms to predict
unit price bids of resurfacing transportation projects with
stable, accurate, and efficient prediction. The results of this
study show that among the tested ML algorithms, the best
prediction of cost contingency can be obtained by imple-
menting RF associated with random search hyperparam-
eter optimization. Moreover, in this study, continuous and
categorical variables to predict cost contingency transpor-
tation projects were utilized as predictor variables. Deal-
ing with continuous and categorical predictor variables is
suitable for using ML ensemble-based. Because the ba-
sic principle of ensemble-based algorithms is classifica-
tion, this technique can reduce the risk of choosing a poor
classifier through voting and then generate robust mod-
els (Dietterich, 2000). This is supported by the findings of
Cha et al. (2021), who validated that predicting with en-
semble algorithms such as bagging and boosting type is
powerful when the size of datasets is small and the type
of variables is categorical. Therefore, the ML ensemble-
based algorithms such as RF and XGBoost can build excel-
lent models with the samples used in this study compared
with other models such as ANN, as this ML algorithm are
broadly adopted for construction cost contingency predic-
tion (Hashemi et al., 2020). Moreover, the results of this
study present high accuracy compared with previous stud-
ies by Lhee et al. (2012, 2014), who applied ML algorithms
such as ANN to predict construction contingency.

The project amount variable was found to be the
most influential predictor for the cost contingency proj-
ect. These findings are in accordance with those of Lhee
et al. (2012), who developed a model to predict the cost
contingency in asphalt resurfacing projects using ANN. In
their study, a numerical input variable, such as the proj-
ect amount, was used to build the ANN models, and this
variable had the highest correlation with the cost contin-
gency. The results of this study also show that the project
duration variable has a close correlation with cost contin-
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gency. This was unexpected and differed from the find-
ings of Lhee et al. (2012, 2014), who found that project
duration tends to degrade the performance of the ANN
model in predicting cost contingency. Moreover, features
such as latitude and longitude were also found to be in-
fluential variables in predicting the cost contingency of
transportation construction projects. Latitude and longi-
tude represent the detailed location of the project and
have been applied as a prediction tool in other construc-
tion research areas. Won et al. (2018) used latitude, longi-
tude, and altitude as independent variables in their ML al-
gorithm to predict construction resource location, whereas
Anjum et al. (2021) developed a deep learning model for
floor opening detection in construction projects and uti-
lized latitude and longitude data in the geocoding pro-
cess. Consequently, in this study, the latitude and longi-
tude variables were the first findings in construction cost
contingency prediction using ML algorithms.

One of the methods used to reduce the effect of unbal-
anced data on the regression model is resampling. Over-
sampling, undersampling, and mixed sampling are classifi-
cations of resampling techniques. SMOGN is a resampling
technique that combines random undersampling with two
over-sampling techniques, including SMOTER and the in-
troduction of Gaussian noise (Branco et al., 2017). The goal
of SMOGN is to address the issue of unbalanced regres-
sion that can complicate the predictive model develop-
ment process. Branco et al. (2017) asserted that SMOGN
adjusts the number of rare and normal cases and approx-
imately keeps the same total number of datasets. The re-
sults of SMOGN in this study made the distribution of the
target variable (cost contingency) "skewed right” when
compared to the original dataset. Furthermore, in accor-
dance with the results of this study, SMOGN associated
with the XGBoost algorithm has been proven to success-
fully cope with the imbalanced distribution dataset prob-
lem and enhance prediction accuracy (Zhu et al., 2021).
Accordingly, applying the SMOGN technique in the pre-
processing step can help build the model based on the
characteristics of the dataset in this study.

This study differs from previous contingency prediction
research in some ways. First, this is the first study to imple-
ment ML ensembled-based algorithms such as RF and XG-
Boost, associated with random search hyperparameter op-
timization to predict cost contingency in construction proj-
ects. Second, this is the first study to employ SMOGN, an
effective resampling algorithm, in the pre-processing stage
to deal with imbalanced regression problems for cost con-
tingency. Third, this is the first study to use latitude and
longitude as predictor variables for cost estimation in the
construction project area. In previous related studies on
contingency prediction with ANN and MLR, independent
variables were used, such as project amount, project dura-
tion, roadway length, number of bidders, project type, let-
ting year, and weather conditions (Lhee et al,, 2012, 2014;
Thal et al,, 2010; Chen & Hartman, 2000). Unexpectedly,
there is no research on construction contingency predic-
tion models that consider latitude, longitude, inflation rate,
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and contract type as predictor variables. Therefore, we ex-
pect the future to bring more variables and ML models,
given the extensive development of artificial intelligence
(Al) and big data in the construction industry.

In a real construction project, the method that is com-
monly used to estimate cost contingency is the prede-
termined percentage (i.e., 5-10% of the total cost proj-
ect) based on intuitions, gut feelings, and past experienc-
es of estimators owing to the simplicity of this method
(Lhee et al., 2012). However, this method is not appropri-
ate because each construction project has its own unique-
ness. From the construction cost prediction overview, ML
can be used to reduce the time and enhance the accura-
cy of the prediction, which is an important aspect of the
project team’s decision-making process. ML construction
cost prediction models can be effectively applied if the
construction project team has sufficient datasets and the
skills necessary to become proficient in data analysis. This
can be achieved by (1) providing data analysis training
such as learning about language programming (i.e., Py-
thon, R, and other programming languages), which could
give more insights about big data in construction to all
project teams; (2) providing access to the large and high-
quality datasets for research needs; and (3) continuously
developing cost prediction models and developing an in-
tegrated web-based cost estimation model through col-
laboration between researchers and construction practi-
tioners. From a practical viewpoint, the implementation of
ML in the construction industry may be slow and challeng-
ing because of the barriers to adopting new technologies
(Nitithamyong & Skibniewski, 2004). Despite the challeng-
es, the adoption of big data, ML, and Al in improving sus-
tainability in the construction industry is inevitable and has
become a necessity (Bilal et al., 2016).

To enhance the practical application of the proposed
model of this study, the output of the RF algorithm using
feature importance and partial dependence plots were an-
alyzed. The model indicated that contingency percentages
are most influenced by the project amount, duration, infla-
tion rate, and contract type. Projects with longer durations
and higher budgets tend to require higher contingency
allocations. Additionally, urban projects with design-build
contracts and those located in regions with higher infla-
tion also exhibit elevated contingency needs. Hence, the
results of this model revealed that the transportation cost
contingency range from 8-14%.

6. Conclusions

As cost contingency is an important budget element and
has the same weight as the direct cost of a construction
project, a method to calculate this cost is crucial to achiev-
ing good performance. This study proposes a ML-based
framework for cost contingency prediction with a ro-
bust performance accuracy over traditional methods. The
methods in previous literature for calculating contingen-
cy mainly include ANN and fuzzy techniques, which have
some limitations in theory and practice. To date, no stud-
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ies have utilized an ML ensemble-based algorithm for pre-
dicting the cost contingency of construction projects. Ad-
ditionally, this study revealed some novel insights by re-
vealing previously unrecognized patterns and influential
factors. In this study, RF and XGBoost, ML ensemble-based
algorithms, were introduced to predict cost contingency
using the FDOT transportation construction project datas-
et. Moreover, employing SMOGN is remarkably effective in
handling imbalanced dataset problems and can enhance
the performance of ML model, as verified through real-
world dataset tests. In addition, applying hyperparameter
optimizations such as random search can also make the
prediction model robust. Furthermore, based on a com-
parison with other algorithm such as ANN applied to the
training and testing datasets, the results verified that RF
provides excellent predictions. Consequently, the frame-
work proposed in this study is applicable and can also
cover the limitations of previous contingency calculating
methods, such as accuracy, imbalanced datasets, and is-
sues with categorical variables. This study also contributes
to construction industry by demonstrating the potential of
ensembled-ML techniques in improving cost contingency
prediction. These results can guide researchers to adopt
ML in construction cost prediction and suggest practition-
ers to implement ML for mitigating budget risks early in
the project lifecycle in more advanced method and the
era of big data.

Through the feature importance score of the best mod-
el in this study, it was found that the project amount, proj-
ect duration, latitude, and longitude are the four best inde-
pendent variables (features) that have a significant impact
on the construction cost contingency model. In contrast,
despite the satisfactory performance of the model, this
study may have some limitations, which must be investi-
gated in future work. First, this study only focused on cost
contingency prediction; therefore, research on predicting
construction time contingency with ML algorithms is need-
ed. Second, this study only applied SMOGN to overcome
the imbalance problem; further studies on implementing
other resampling algorithm techniques in the pre-pro-
cessing step may need to be conducted. Finally, the study
only used the FDOT transportation construction project
datasets; thus, the predictor variables may be different if
adopting construction project datasets from other coun-
tries. Further studies implementing other ML algorithms
to predict construction contingency costs are necessary.
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