
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Copyright © 2025 The Author(s). Published by Vilnius Gediminas Technical University

ISSN 1392-3730 / eISSN 1822-3605

JOURNAL of CIVIL ENGINEERING  
and MANAGEMENT

OPTIMISING SCHEDULED MAINTENANCE ON OPERATIONAL BUILDINGS: 
A MICROSERVICE-BASED BIM FRAMEWORK

Edoardo DE SANTIS , Francesco Livio ROSSINI

DICEA Department, Sapienza University of Rome, Rome, Italy

Article History:  Abstract. Operation and Maintenance (O&M) aims to preserve the quality of the building throughout its life, keeping 
maintenance costs within acceptable limits. Maintenance involves different tasks, from replacing air conditioning filters 
to restoring structural elements. Each task has an optimal frequency, which can be flexible within a specific time range, 
a cost, and a duration. These maintenance activities may disrupt building operations by repeatedly interrupting ongo-
ing activities. This research seeks to reduce these disruptions by grouping tasks within reasonably close time frames to 
schedule preventive maintenance plans while respecting their frequency. We propose an optimisation model, solvable 
using a general-purpose solver, which identifies the best time range for grouping O&M tasks. By penalising deviations 
from the optimal period, the model ensures that tasks are performed at the most cost-effective time. Integrated with-
in a microservice-based architecture, the optimisation engine seamlessly links an input database and a BIM model, or-
chestrated using Dynamo for Revit. A case study illustrates the effectiveness of this system, consolidating multiple tasks 
into optimised work clusters and significantly reducing operational disruptions. The originality of this work lies in its in-
novative combination of optimisation techniques and BIM tools, providing a practical and scalable solution for efficient 
O&M management.

	■ received 19 November 2024 
	■ accepted 22 August 2025

Keywords: maintenance, architecture, project management, O&M, BIM, microservice, scheduling, optimisation, Integer Linear Programming.

  Corresponding author. E-mail: edoardo.desantis@uniroma1.it

1. Introducion
Operation and Maintenance (O&M) in buildings is criti-
cal to preserving functionality, safety, and value through-
out their lifecycle. The O&M phase is usually the longest 
in a building’s  lifecycle (Li et al., 2024), involves complex 
interactions among various stakeholders, facilities, profes-
sionals, and management activities, as well as diverse tasks 
such as scheduling, space planning, repairs, and emergen-
cy management (Gnekpe et al., 2024). It encompasses the 
daily functions, duties, and labour required to ensure that 
a facility asset retains its original functionality and remains 
available for its primary use. Effective O&M ensures that 
building systems operate optimally while minimising costs 
and disruptions, which is particularly significant as approxi-
mately 70–80% of facility asset costs are incurred during 
this phase (Yussuf & Asfour, 2024; Zhang et al., 2023). Fur-
thermore, the majority of the current building stock was 
built before the third millennium, meaning they were de-
signed with outdated approaches for maintenance, ener-
gy consumption, ICT infrastructure integration, and opera-
tional aspects (Gao & Pishdad-Bozorgi, 2019). These fac-
tors account a significant impact on the total lifecycle costs 

for building owners (Abuhussain et al., 2024). This high-
lights the importance of maintenance strategies in pro-
longing the useful life of structures, optimising costs, and 
enhancing user satisfaction. 

Three main maintenance approaches are common-
ly adopted: preventive, corrective, and condition-based 
(Horner et al., 1997). Preventive Maintenance (PM) is con-
figured to perform maintenance activities at predeter-
mined intervals or based on predetermined criteria, re-
gardless of the equipment’s  current operational state. 
The primary objective of PM is to reduce the likelihood 
of equipment failure and extend its lifespan through sys-
tematic inspections, replacements, and repairs. Corrective 
Maintenance (CM), on the other hand, refers to the ac-
tions taken to restore equipment to operational condition 
after a failure has occurred. This strategy is typically reac-
tive and involves repairs or replacements only after a fault 
has been identified, leading to unplanned downtime and 
potentially increased operational costs. Condition-Based 
Maintenance (CBM) incorporates real-time monitoring 
of equipment conditions and operational parameters to 
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dictate the timing of maintenance interventions. This ap-
proach allows for maintenance to be performed only when 
indicators suggest that a system’s performance is degrad-
ing, thereby optimizing maintenance frequency and costs.

Maintenance scheduling presents significant challeng-
es, particularly in complex facilities such as office buildings, 
universities, or hospitals. Unplanned downtime and inef-
ficient planning often lead to operational disruptions and 
cost overruns. Conventional approaches frequently fail to 
address the interdependencies between tasks, resulting in 
fragmented schedules and compromised efficiency (Konig 
et al., 2012; Ni et al., 2003). O&M tasks are often interpret-
ed as a series of independent projects that must be organ-
ised in conjunction with the ongoing operational activities 
within the building (Wettewa et al., 2024). This issue is par-
ticularly relevant for infrastructural facilities that must re-
main functional even in scenarios of risk and disaster (Hos-
seinzadeh et al., 2023). Recent shifts, driven by events like 
pandemics, natural disasters, and advancements in digitali-
sation, have reframed maintenance as a continuous pro-
cess of innovation rather than repetitive interventions to 
ensure functionality (Scaife, 2024).

Building Information Modelling (BIM) has emerged as 
a transformative tool for improving maintenance manage-
ment by providing a parametric and detailed representa-
tion of building components, facilitating reliable informa-
tion exchange from design to O&M phases (Peng et al., 
2017). On the other hand, the heterogeneity of informa-
tion, complexity in storage, and specialised functions of 
users result in increasingly non-intuitive data (Torres-Sainz 
et al., 2024). Additionally, BIM allows the integration and 
synchronisation of extensive data, supporting stakeholder 
collaboration. It also enables visualisation and manage-
ment of non-repetitive tasks in construction and mainte-
nance (Dallasega et al., 2019). However, current BIM-based 
systems rarely integrate O&M  scheduling into a  unified 
framework, missing the ability to monitor spatial and con-
textual information effectively. 

BIM-based facility management systems enhance 
scheduling and task planning compared to traditional 
manual approaches (Golabchi et al., 2016). Several studies 
report that using BIM enables real-time access to facility 
data, automates fault detection, and streamlines work or-
der management (Davtalab, 2017). For example, a BIM sys-
tem with augmented reality integration reduced task com-
pletion times significantly, while real-time data-driven BIM 
implementations and lean-agile approaches shortened op-
eration and maintenance cycles (Khan et  al., 2023). Im-
proved accuracy of geometric information and more effec-
tive information handover also support efficient resource 
allocation and proactive maintenance scheduling (Kelly 
et al., 2013). These findings suggest that BIM’s integrated 
digital environment affords scheduling and planning effi-
ciencies that traditional approaches often lack (Golabchi 
et al., 2016).

A comprehensive system architecture that bridges the 
BIM environment with task scheduling processes can ad-

dress these gaps. Leveraging microservices and orchestra-
tors to manage data flow and automation, O&M activities 
can be transformed from isolated projects into intercon-
nected processes that align with the ongoing operational 
needs of the building (Dubey et al., 2024). 

Advances in optimisation techniques, such as Integer 
Linear Programming (ILP) (Schrijver, 1998), have been lev-
eraged to address some of these issues. These techniques 
employ exact algorithms to find the optimal solution, or, 
when computational complexity is excessive, heuristic al-
gorithms to identify feasible solutions. An advantage of 
utilising ILP is the wide availability of powerful solver pack-
ages, ranging from open-source tools such as SCIP and 
CBC to commercial solvers like CPLEX and Gurobi which 
offer academic licences alongside enterprise-grade solu-
tions (Ashouri et  al., 2013). Also, some studies have ex-
plored grouping maintenance activities using hybrid clus-
tering approaches that combine hierarchical and k-means 
algorithms (Ahmed et al., 2022). 

The review of existing literature reveals several key 
gaps that this study aims to address. Firstly, there is a lack 
of integration between BIM and scheduling optimisation 
models; current approaches rarely establish a connection 
between advanced scheduling algorithms and the spatial 
or contextual data embedded within BIM environments. 
Secondly, the use of microservices in O&M planning re-
mains underexplored. Despite their potential to enable 
modular, scalable, and resilient system design, microser-
vice-based architectures have yet to be widely adopted to 
support multi-user, multi-project environments in the do-
main of building maintenance and operations.

In light of these gaps, the objectives of this research 
are as follows:

	■ To develop a mathematical optimisation model that 
clusters maintenance tasks to minimise operational 
disruption and ensure compliance with time-related 
constraints.

	■ To integrate this model with BIM, enabling spatial vi-
sualisation of the schedule within the building mod-
el.

	■ To leverage microservice architecture for scalable, 
modular, and collaborative O&M scheduling.

This study introduces a  novel system that combines 
BIM, optimisation techniques, and a  microservice archi-
tecture to support the efficient scheduling of preventive 
maintenance in operational buildings. The system enables 
the grouping of tasks into optimised clusters, thus reduc-
ing the number of active workdays and minimising spa-
tial disruptions. The microservice design promotes flexi-
bility, allowing future integration with external modules, 
such as IoT data feeds or FM platforms, while the BIM in-
tegration ensures spatial and contextual awareness. A case 
study illustrates the feasibility and impact of the proposed 
methodology, reducing active maintenance days by over 
58% compared to conventional scheduling. The outcome 
is a scalable, adaptable, and practical solution to a persis-
tent challenge in facility operations.
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This paper is structured to explore the proposed meth-
odology and its application comprehensively. Section 2 fo-
cuses on the primary methodology, beginning with the 
Model Definition (Section 2.1), which explains the problem 
parameters, variables, objective function, and constraints. 
This is followed by Model Solution (Section 2.2), which ad-
dresses solver selection, implementation, visualisation, and 
results from an example. Section 3 discusses the System 
Architecture, emphasising the role of the microservices 
structure, the BIM integration, and the use of Dynamo for 
orchestrating system components. A Case Study (Section 
4) applies the methodology to a realistic scenario, examin-
ing the database setup, optimisation process, and analysis 
of the results. Section 5 discusses results, limitations, and 
future work. Finally, Section 6 concludes the paper.

2. Optimisation Engine

This section outlines the methodology developed to opti-
mise the scheduling of O&M tasks in an operational build-
ing through an ILP formulation and its solution. The ap-
proach tackles challenges such as minimising costs, en-
hancing scheduling efficiency, and reducing operational 
disruptions. The outcome of this section is the definition 
of an Optimisation Engine that, in Section 3, will be inte-
grated with a BIM workflow and a microservice-based sys-
tem architecture.

While the overall structure of the model draws on 
common ILP principles used in scheduling problems, the 
formulation introduces novel elements specific to the con-
text of O&M  in operational buildings. In particular, the 
inclusion of extended scheduling intervals with cost pen-
alties for early or late starts, constraints on simultaneous 
task execution, and the mapping of tasks to spatial ele-
ments within a BIM-integrated environment represent dis-
tinct contributions not previously formalised in this way.

2.1. Model definition
A set of decision variables is introduced to support the for-
mulation of the problem. Given the nature of the problem, 
an ILP approach is deemed appropriate. This paragraph 
details the construction of the formulation, consisting of 
a linear objective function and a set of linear constraints.

The initial step involves the definition of the model 
that will be solved in the following sections. The objective 
is to minimise the working days in an operational build-
ing thereby limiting the duration and extent of off-limits 
areas during maintenance operations. This approach aims 
to avoid or reduce maintenance activities that could inter-
fere with daily operations and, in some cases, pose a risk 
to occupants due to the use of auxiliary work equipment. 
To this extent, a  set of variables is defined to guide the 
solution. ILP formulations are well-suited to represent the 
defined problem due to their capability to handle such 
constraints. This paragraph outlines the construction of the 

formulation with a set of linear constraints and one objec-
tive function.

In this study, the ILP formulation focuses on temporal 
clustering of maintenance activities, abstracting resource 
and spatial interdependencies into an aggregate concur-
rency limit Z. This simplification was chosen to clearly 
isolate and evaluate the clustering effect and to ensure 
a  compact, reproducible case study. The model is de-
signed to be modular: additional constraints for shared re-
sources, personnel allocation, and spatial conflicts can be 
integrated within the same mathematical framework (see 
Section 2.1.5) but were not activated in the current work.

2.1.1. Problem parameters

The scheduling problem involves a set of parameters that 
define the characteristics of the building and its mainte-
nance activities. To generalise the problem, a set is defined 
that includes:

	■ T: Number of time units in the project schedule.
	■ N: Number of maintenance activities to be sched-
uled.

	■ Z: Maximum number of concurrent activities in the 
same time unit.

	■ F: List of time units during which activities cannot 
be carried out.

	■ di: Duration of activity i.
	■ li, ri: Time unit of the beginning and end of the 
standard time interval in which maintenance activity 
i should start to reduce extra costs.

	■ gli , gri: Number of time units to add, respectively be-
fore li and after ri, providing flexibility for early and 
late starts of activity i, defining an extended time in-
terval in which activity i can start, if necessary, with 
extra costs.

	■ P: Maximum number of activities that can start with-
in the margin given by the extended time interval.

	■ ci: Extra cost per time unit for any delay or antici-
pation from the standard time interval for activity i.

	■ C: Maximum extra cost allowed for the whole sched-
uling solution. 

To accommodate varying project requirements and re-
source constraints, the values of the problem parameters 
can be adjusted. This parameter relaxation allows for tai-
lored scheduling solutions, optimising the trade-off be-
tween strict adherence to constraints and a more flexible 
schedule that can better adapt to real-world construction 
scenarios. 

For example, the flexibility to adjust Z, the maximum 
number of concurrent activities allowed within a time unit 
allows the model to handle varying resource availability. 
Similarly, the list F, which designates time units during 
which no activities can be carried out, accounts for op-
erational restrictions or other project-specific constraints. 
Furthermore, the standard time interval can be extended 
by adding gli and gri , providing flexibility for early or late 
starts, creating an extended time interval (Malucelli & Ni-
coloso, 2007). By adjusting these parameters, the strict-
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ness or flexibility of the schedule can be controlled, ac-
commodating potential delays or early starts while deal-
ing with additional costs. The model further allows for the 
inclusion of constraints on these costs through parameters 
such as ci (extra cost per time unit of delay or anticipation 
for activity i) and C  (the maximum extra cost allowed for 
the project).

2.1.2. Variables

The decision variables required for the ILP formulation are 
defined as follows:

	■ xij: Binary variable representing whether each activ-
ity i starts on time unit j (1 if activity i starts on day 
j, 0 otherwise).

	■ yj: Binary variable representing whether there are any 
activities scheduled in time unit j (1 if time unit j has 
at least one activity carried out, 0 otherwise). 

	■ wij: Auxiliary binary variable used for modeling pur-
poses, representing whether activity i  is active on 
time unit j  (1  if activity i  is active on day j, 0  oth-
erwise).

	■ ki : Auxiliary variable representing the number of time 
units an activity i starts outside its standard interval.

2.1.3. Variables

The objective function of the problem is to minimise the 
total number of time units with scheduled activities to re-
duce operational disruption and to reduce risks to the oc-
cupants. It is formulated as follows:

1
min .

T
jj

z y
=

=å  	 (1)

The optimisation model aims to find an optimal sched-
ule that efficiently allocates activities to time units, mini-
mising the number of days construction workers occupy 
the building. By minimising the value of z, the model im-
proves the utilisation of available time slots.

2.1.4. Constraints

A set of constraints is established to ensure the problem is 
modelled accurately. The following constraints have been 
defined for this purpose:

	■ Each maintenance activity must be scheduled to start 
exactly once inside the extended interval.
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+

= -
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	■ At the same time, we must restrict the other values 
to zero, meaning that each activity cannot be sched-
uled outside the extended interval.
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	■ The duration of each activity must be satisfied. Spe-
cifically, the sum of the values of the auxiliary vari-

able wi,j must be, for each activity i, equal to its du-
ration di.

   
,1

for  1, , .
T
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= = ¼å 	 (4)

	■ This constraint introduces a  link between xi,j  and 
wi,j and helps to model the duration of each activity. 
It ensures that the activity is considered in progress 
at a particular moment if it started in the same time 
unit or in one of the following di time units. 
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	■ The number of all the activities starting within the 
extensions of the standard interval must not exceed 
the value of P.
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	■ This constraint links the variables in the objective 
function to those in the problem. It ensures that yj 
takes value 1 when at least one activity is scheduled 
during time unit j. Specifically, the variable is forced 
to be 1  if the number of activities carried out dur-
ing that time unit (represented on the left-hand side 
of the inequality) is greater than or equal to 1. Con-
versely, if such number is 0, the objective function, 
in order to minimise its value, would assign value 
0 to yj. 
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	■ The number of activities going on in each time unit 
must not exceed Z, the maximum number of concur-
rent activities allowed in each time unit.
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	■ The sum of the extra cost due to working in the ex-
tensions of the standard interval must not exceed 
the value of C.
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	■ Each activity must not be performed during time in-
tervals included in F.

   , 0 for  1, , , .i jw i N j F= = ¼ Î  	 (12) 

	■ These variables are constrained to assume binary 
values.
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   { }, 0,1 for  1, , , 1, , ;i jx i N j TÎ = ¼ = ¼  	 (13)

   { }, 0,1 for  1, , , 1, , ;i jw i N j TÎ = ¼ = ¼  	 (14)

   { }0,1 for   1, , .jy j TÎ = ¼  	 (15)

	■ The last variable can assume every value greater 
than or equal to zero.

   0 for  1, , .ik i N³ = ¼  	 (16)

2.1.5. Potential model extensions

The formulation above captures the temporal clustering 
of maintenance activities with a global concurrency lim-
it Z and the defined cost and flexibility parameters. This 
scope was deliberately selected to isolate and evaluate 
the benefit of time-based clustering within a BIM-enabled 
workflow, and to maintain a compact, transparent optimi-
sation model for the case study.

For operational deployment, the same ILP framework 
can be extended with additional constraints to represent 
common real-world interdependencies. Examples include:

■ Cumulative resource capacities: 
Let K be the number of resource types, such as tech-

nicians or equipment units. Each activity i  requires an 
amount ,i kr  of resource type k, while the total avail-
able capacity of that resource at time unit j  is given by 

,j kR
 
. To ensure feasibility, the sum of all resource de-

mands must not exceed availability, which is enforced 
through the constraint , , ,1

N
i k i j j ki
r w R

=
£å  for each time 

unit 1, ,j T= ¼ , and resource type 1, ,k K= ¼ .

■ Spatial or operational conflicts: 
A binary conflict matrix D  is introduced to indicate 

whether two activities i and i¢ cannot occur simultane-
ously due to adjacency, access restrictions, or opera-
tional interference. Element , 1i id ¢ =  if activities i and i¢ 
cannot be accessed simultaneously, and , 0i id ¢ =  oth-
erwise. For each conflicting pair ( ),i i¢ , the constraint 

, , 1i j i jw w ¢+ £  for all 1, ,j T= ¼  guarantees that these 
activities are not scheduled at the same time. In practice, 
D is treated as input data derived from BIM (e.g., room 

adjacency or blocked circulation paths) and operational 
rules (e.g., noise or safety constraints) and can be up-
dated without altering the core formulation.

■ Area-level capacity limits: 
Let A be the number of areas in the building, and Sa 

the set of tasks assigned to area a. The maximum num-
ber of tasks allowed to be active in area a during time 
unit j is given by ,a jZ . This is modelled by the constraint 

, ,
a

i j a ji S
w Z

Î
£å , for each time unit 1, ,j T= ¼ , and area 

1, ,a A= ¼  allowing differentiated limits per zone, re-
specting each local capacity.

All these are standard linear constraints that are com-
patible with the decision variables and solver approach 
presented above and can be implemented as modular 
additions in the same optimisation engine. In this study, 
they were not activated, as the objective was to demon-
strate the temporal clustering principle and BIM integra-
tion pipeline on a simplified, clearly defined scenario.

2.1.6. Visual summary of model components

The relationships between the problem parameters, deci-
sion variables, and constraints are summarised visually to 
provide an overview of the core elements of the ILP for-
mulation.

Figure 1 illustrates the interaction between each com-
ponent of the model. In this example, the problem in-
volves ten time units (T = 10) and two activities (N = 2). 
For activity 1, the standard time interval is spanning four 
time units from 1 4l =  to 1 7r = , and the extended time in-
terval spans eight time units, considering three time units 
for early starts (

1
3lg = ) and one time unit for late starts  

(
1

1rg = ) of the maintenance activity. The orange bar repre-
sents the duration of the activity, which is four time units  
( 1 4d = ), starting from the fifth time unit ( 1 2s =  5). 

It is evident that the smallest value of 
ii ll g-  must be 

greater than the first time unit of the scheduling problem, 
and the total number of time units T must be greater than 
the greatest value of 

ii r ir g d+ +  to allow the scheduling 
problem to work correctly.

Figure 1. Visual summary of most of the model components
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The values of the variables are also represented. For 
example, ,i jx  for activity 1 and time unit 5 is 1,5 1x =  since 
the activity starts at that time unit. On the other hand, all 
other 1, jx  values are zero since they are not the starting 
point of the activity. Similarly, 1,5 1,6 1,7 1,8 1w w w w= = = =  , indicating that the activity is ongoing during those time 
units, while it equals zero for all the other time units. Last-
ly, it is shown that 5 6 7 8 1y y y y= = = = , as at least one 
activity is carried out during those time units.

2.2. Model solution
While the previous section presented the proposed ILP 
formulation of the problem, this section focuses on its so-
lution. 

A  mathematical optimisation solver was employed. 
Several options are available, such as CPLEX, SCIP, or 
Gurobi Optimizer. Gurobi Optimizer was selected due to 
its strong support for multiple programming languages, 
particularly its seamless integration with Python (Guro-
bi Optimization, LLC, 2024). This compatibility aligns well 
with the requirements of the project, as Python facilitates 
smooth integration with the microservice architecture that 
will be discussed in Section 3.

The process began with the creation of a Gurobi en-
vironment and an empty optimisation model, which acts 
as a container for variables, constraints, and the objective 
function that define the optimisation problem. In this case, 
binary variables x, y, and w, and variable k are created with 
the Model.addVar() function. Then, all the constraints and 
the objective function are defined through the Model.ad-
dConstrs() and Model.setObjective() functions, respectively. 

Once fully defined, the model is ready to be solved and 
optimised by Gurobi, which outputs the value of each de-
fined variable, the objective function value, and a set of 
technical information. 

Based on the solver’s output, a JSON file was generat-
ed to summarise the essential information in a format ac-
cessible to both users and other system architecture com-
ponents. In particular, the only relevant information from 
the solution is the values , 1i jx =  which indicates that ac-
tivity i should start at time j, and the variable yj = 1, which 
indicates that time unit j has at least one activity going on. 
All other variables are functional to the problem’s solution 
but are not directly used for interpreting the results. The 
JSON file also includes all input data, such as activity pa-
rameters and problem variables, for future reference. 

This file can additionally be used to generate visualisation 
diagrams for user interpretation. These graphical represen-
tations help project managers and stakeholders better un-
derstand the impact of the optimisation and make informed 
decisions. They provide a clear, intuitive way to assess the 
results, offering an immediate understanding of the activity 
timelines, as illustrated in Figures 2 and 3. The X-axis rep-
resents time, while the Y-axis displays activities positioned 
on horizontal tracks. For the optimised solution, the activi-
ty’s start time and duration are highlighted on the timeline. 

The input data for this example is as follows: T = 30, 
N = 6, P = 3, Z = 3. For simplicity, and to focus on the pro-
cess demonstration, in this illustration parameters such as 
cost and the list of days to avoid have been omitted. The 
values of the input parameters are shown in Figure 2; for 
instance, 1 23r = , 1 27l = , 

1 1
2l rg g= = . 

Figure 2. Visual diagram of example input data

Figure 3. Visual diagram of example output data
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Figure 3 presents the output diagram. In this example, 
the variables , 1i jx = , which indicates the starting times, 
are x2,8, x3,8, x6,9, x1,22, x4,22, x5,23. The variables 1jy = , rep-
resenting time units with at least one maintenance task 
executed, are: y8, y9, y10, y11, y12, y13, y22, y23, y24, y25. In 
other words, the optimisation results show that the best 
solution is to group activities 2, 3, and 6 with working time 
units from 8 to 13 and activities 1, 4, and 5 with working 
time units from 22 to 25. This configuration minimises the 
total active time units to 10. 

A  comprehensive real-world case study will be ex-
plored in Section 4.

3. System architecture
The previously discussed Optimisation engine (Section 
2) can be integrated within a  broader system architec-
ture that bridges the BIM environment with task sched-
uling processes. Figure 4 outlines the four main compo-
nents of the system: a database, the Optimisation Engine, 
a BIM model, and an orchestrator that coordinates these 
elements. Data is organised in an accessible format and 
processed through the Optimisation Engine. The result-
ing optimised schedule is then visualised and integrated 
into the database and the BIM environment, facilitating 
decision-making.

The system adopts a microservice architecture (Nada-
reishvili et al., 2016), enabling independent development, 
deployment, and scaling of the core components. This ap-
proach enhances flexibility, allowing each service to use 
the most suitable technologies for its functionality. It also 
supports seamless integration of new modules or updates, 
such as connectivity to facility management software or 
the incorporation of new additional functionalities.

Following this logic, the Optimisation Engine was en-
capsulated within a container, allowing it to be executed 
on a server via POST HTTP requests. This approach ensures 
that multiple users can access and use the engine simulta-
neously, enabling scalability and promoting collaborative 
use across different teams or projects.

3.1. Database
One system component is a database to store data before 
and after processing by other modules. To enhance acces-
sibility for a broader user base, a spreadsheet-based da-
tabase is utilised to manage input and output data. This 
solution is beneficial for users who are more comfortable 
working in familiar environments like Microsoft Excel or 
Google Sheets, and it simplifies tasks such as updating, 
reviewing, and sharing. The spreadsheet format provides 
a flexible interface for manual adjustments while still al-
lowing the storing of structured data, such as task sched-
ules, resources, and other inputs necessary for optimisa-
tion. 

Moreover, the spreadsheet database integrates effec-
tively with the microservice architecture, enabling rapid 
data exchange between the optimisation model, visuali-
sation tool, and BIM systems. However, the data in the 
spreadsheet must comply with the specified model; oth-
erwise, the other components may not function correctly, 
potentially causing issues in the optimisation process and 
data integration.

The database is structured to meet the input require-
ments of the Optimisation Engine, including task dura-
tions, associated costs, and temporal constraints. Each 
task entry is linked to a specific room in the BIM model 
representing the building. This data is later used to inte-
grate the optimisation results into the model, visualising 
the maintenance schedule.

It may be worth considering replacing the spread-
sheet-based database with a more modern and efficient 
solution in a microservice-based structure. However, this 
might come at the expense of user accessibility. Alterna-
tively, a module could be added as an interface, allowing 
users to retain simplified usage while the system leverages 
a more advanced back-end database.

3.2. BIM environment
Another component is the BIM model of the building to be 
maintained. Autodesk Revit was selected due to the wide-
spread diffusion in both the academia and the AEC sector.
Its flexibility and functionalities make it ideal for modelling, 
visualising, and managing building information. Neverthe-
less, from a microservice-based perspective, the system ar-
chitecture could potentially support multiple models, even 
across different software platforms.

Within the BIM environment, the building is modelled 
in detail, with custom parameters added to each element 
to store information related to maintenance tasks. Since 
each room and building component may require multiple 
maintenance activities over time, only the details of the 
first scheduled activity for each room was stored, as deter-
mined by the results by the optimisation output. This ap-
proach ensures the BIM model reflects the most immedi-
ate maintenance needs while preventing unnecessary clut-
ter from storing all tasks simultaneously.Figure 4. Summary diagram of the system architecture
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To achieve this, four parameters are defined within the 
model: NextActivityId, NextActivityName, NextActivityStart-
Date, and NextActivityEndDate. The results from the Opti-
misation Engine are mapped back into these parameters 
of the BIM elements, ensuring that the model reflects both 
the spatial and temporal aspects of the project.

Beyond visualisation, the BIM platform can also be em-
ployed to provide structured data to facilitate spatially-
aware optimisation. For example, room adjacency data, 

routes of access, or types of area can be accessed directly 
from the BIM model and translated into conflict matrices 
or zone capacity parameters to be used by the Optimisa-
tion Engine. While these spatial constraints were not uti-
lised in this study, the framework has been set up so that 
this kind of data is able to be generated automatically in 
the BIM environment and propagated by the orchestrator 
to the Optimisation Engine. This ensures that the frame-
work can evolve from schedule visualisation towards spa-
tially informed scheduling without requiring changes to 
the underlying design.

3.3. Orchestrator component
The critical component of the system is the orchestrator, 
which manages and coordinates individual microservices 
within a distributed architecture. For this implementation, 
Dynamo for Revit was selected due to its visual program-
ming environment, which offers flexible and intuitive con-
trol over data workflows and benefits from its native inte-
gration with the chosen BIM software.

The orchestrator serves as a bridge between the BIM 
environment, the Optimisation Engine, the database, and 
any other additional component. When interacting with the 
input database, maintenance data is translated into a for-
mat suitable for analysis by the Optimisation Engine and 
requests are sent to the server hosting the engine, as il-
lustrated in Figure 6. Additionally, the same Dynamo script 
triggers the visualisation modules, which generate graph-
ical representations of the optimisation results, provid-
ing users with clear insights into the proposed schedules.

A dedicated script is also employed to synchronise the 
optimised schedule back into the BIM model. This script 
updates the model by embedding the optimisation re-
sults, specifically highlighting each room or area’s  first 
scheduled maintenance activity. The mapping between 
data and building elements is performed by referencing 

Figure 5. Room modelled in a BIM environment and its four 
associated parameters

Figure 6. Dynamo script to read input data, process the optimisation, visualise results, and export results
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the elements through their IDs, ensuring that the sched-
ule is accurately integrated within the spatial context of 
the building.

In addition to exchanging task and schedule infor-
mation, the orchestrator can also serve as the channel 
through which spatial attributes from BIM are translat-
ed into optimisation-ready inputs. For instance, Dynamo 
scripts can extract adjacency relationships, room catego-
ries, or circulation constraints from the BIM model. This 
creates a bidirectional flow where BIM not only visualises 
the scheduling results but also actively informs the opti-
misation process with spatial awareness.

4. Case study
To evaluate the functionality of the proposed method-
ology, a  case study was conducted by defining a  set of 
maintenance activities commonly scheduled in operation-
al buildings, such as academic institutions or office build-
ings. The data employed in this case study are realistic in 
nature, although generated for research and experimen-
tal purposes.

An existing university building from the authors’ insti-
tution was selected for modelling. The building comprises 
both intermittently and continuously used spaces, includ-
ing receptions, hallways, study rooms, administration of-
fices, and libraries. As universities are typically high-occu-
pancy environments with constant movement of staff and 
students, minimising disruption caused by maintenance 
activities is essential.

A  set of 19  distinct maintenance activities, ranging 
from cleaning air conditioning filters to replacing light 

bulbs, was defined. Each activity was assigned an Id, a de-
scription, and parameter values l, r, gl, gr, d, and c as pre-
sented in Table 1. 

The optimisation model was configured with a  total 
number of time units T = 365, assuming yearly planning 
of the maintenance activities. Certain time units were ex-
cluded from scheduling due to known high-priority events 
(e.g., conferences) represented by F = [30, 31, 32, 33, 34, 
35, 105, 106, 107, 108, 212, 213, 214, 300, 301, 302, 303, 
304, 305]. Additionally, the following constraints were de-
fined: a maximum of Z = 5  concurrent activities, a  limit 
of P = 20 on the maximum number of activities starting 
early or late, and a maximum total cost C = 1000 for early 
or late starts.

Although only 19 unique maintenance activities were 
defined, many of them recur multiple times over the 
course of the year based on standard maintenance fre-
quencies or manufacturer recommendations. Using this 
information, the number of occurrences for each activi-
ty was determined and it is represented by the param-
eter p of Table 1. Altogether, these recurring activities re-
sult in a total of N = 56 activity instances across the year. 
For simplicity, Table 1 only displays l and r parameters for 
the first occurrence of each activity. However, the param-
eters of subsequent occurrences can be calculated using 
the activity’s  frequency p  as ( )365 / 1k i il l p k= + -  and 

( )365 / 1k i ir r p k= + - , respectively. In these expressions 
lk and rk are the adjusted left and right margins for the 
standard time intervals of the kth occurrence of activity i, 
and pi is the number of times it recurs annually. This en-
sures maintenance is evenly distributed over the planning 
horizon.

Table 1. Values of the parameters for each unique maintenance activity (l and r only of the first occurrence)

Id Maintenance activity l r gl  gr d c p

hvc001 HVAC: Cleaning of air conditioning filters 31 61 15 15 7 60 2
hvc002 HVAC: Replacement of air conditioning filters 99 129 20 20 3 15 1
mep001 MEP: Inspection for water leaks in plumbing systems 120 150 20 20 3 23 1
mep002 MEP: Inspection of electrical grounding systems 55 85 15 15 1 41 2
mep003 MEP: Sanitisation of air ducts and ventilation grilles 137 167 15 15 10 57 2
mep004 MEP: Thermal shock treatment of the sanitary water system 277 307 15 15 1 36 1
mep005 MEP: Lift systems inspections and maintenance 130 160 20 20 2 17 1
mep006 MEP: Replacement of light bulbs and fixtures as required 280 310 30 15 5 39 1
bld001 Building: Painting and decoration of shared areas 18 48 17 17 5 38 1
bld002 Building: Cleaning of windows and window frames 15 30 7 7 5 20 6
bld003 Building: Inspection of furniture for wear and tear 84 114 30 30 1 55 2
bld004 Building: Rodent control and prevention measures 45 75 15 15 2 25 2
bld005 Building: Indoor plant care and maintenance 10 17 3 3 1 30 12
ict001 ICT: maintenance of data network and systems 25 27 15 15 5 35 2
ict002 ICT: management and distribution of consumables 18 28 3 2 1 52 12
fir001 Fire Safety: testing of evacuation speaker system 25 55 15 15 1 50 2
fir002 Fire Safety: inspection and servicing of fire extinguishers 55 85 20 5 2 33 2
fir003 Fire Safety: inspection and maintenance of emergency doors 90 120 20 5 1 47 2
fir004 Fire Safety: inspection and maintenance of emergency lights 110 140 20 5 2 46 2

Note: The data in this table is realistic but was created for research and experimental purposes.
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After preparing the input data, the Optimisation En-
gine was executed using the  dedicated Dynamo script. 
From the output the start times for all 56 scheduled activ-
ities were extracted and summarised in Table 2. Each line 
is an activity, identified by the Id, and in column s the start 
times for every occurrence of each unique maintenance 
activity are listed. For instance, activity ‘hvc001’ has a num-
ber p = 2 of occurrences in the year that start at time unit 
17 and time unit 199.

Additionally, the results are visualised in an out-
put diagram, ordered by starting time. Figure 7 presents 
a  cropped view of this diagram, focusing on time units 
from 10 to 60 for nine of the 56 activities.

From the diagram, the first two activity clusters can 
be observed, optimised to minimise operational disrup-
tion in the building and consequently to reduce risks for 
the occupants. For example, between time units 17 and 23, 

the first occurrences of activities hvc001, bld005, bld001, 
ict002, bld002, and ict001 are grouped into a single sev-
en-day cluster, with only two activities starting earlier than 
their optimal frequency. If executed independently, these 
six activities would have occupied the facility for a cumu-
lative total of 21 days. Through optimisation, this duration 
is reduced by 66.7%.

A full analysis of the diagram shows that the 56 activi-
ties are grouped into 12 clusters, reducing the total num-
ber of working days to 62. In contrast, a non-optimised 
scenario, where each activity’s  start time coincided with 
the left value of its standard interval (si = li), would result 
in 151 working days. Overall, the optimisation reduces the 
total number of active maintenance days by 58.9%. 

The distribution of the number of activities per clus-
ter is as follows: [6, 3, 6, 4, 8, 2, 6, 3, 6, 5, 5, 2], with corre-
sponding cluster durations of [7, 1, 5, 1, 10, 1, 7, 1, 5, 1, 10, 
1] time units. This results in an average of 4.7 activities per 
cluster and a mean cluster duration of 4.8 days, indicat-
ing efficient grouping without overloading the schedule. 
Among the 56 activities, 17 required early or late starts, 
slightly deviating from their optimal time intervals. These 
deviations were accepted within the model’s predefined 
constraints. 

The resulting schedule shows that maintenance efforts 
are concentrated in well-defined time blocks, improving 
planning and coordination across teams. These outcomes 
demonstrate the practical advantages of the proposed op-
timisation approach in real-world O&M scenarios.

It should be noted that the results are influenced by 
the parameters defined initially. Adjusting these param-
eters may lead to a  different solution. Furthermore, al-
though the solution provided is exact, multiple equivalent 
solutions may exist and are not explicitly presented by the 
Optimisation Engine.

5. Discussion
The current modelling approach, while effective in opti-
mising maintenance scheduling, presents several areas 
for improvement. One key limitation is the assumption of 
static occupancy patterns across the building. In practice, 
room usage varies dynamically, particularly in high-traf-
fic areas such as corridors or communal spaces. To ad-

Figure 7. Results of the optimisation visually represented in this cropped view of the diagram, showing time units 10–60

Table  2. Optimised start times for every occurrence of each 
unique maintenance activity

Id s

hvc001 17, 199
hvc002 129
mep001 132
mep002 75, 230
mep003 128, 321
mep004 290
mep005 131
mep006 258
bld001 18
bld002 19, 73, 131, 201, 258, 321
bld003 109, 290
bld004 75, 258
bld005 17, 46, 73, 109, 132, 169, 199,  

230, 261, 290, 321, 350
ict001 19, 201
ict002 18, 46, 76, 109, 137, 169, 205,  

230, 259, 290, 330, 350
fir001 46, 205
fir002 75, 261
fir003 109, 290
fir004 133, 321



Journal of Civil Engineering and Management, 2025, 31(8), 881–892 891

dress this, future iterations of the system could integrate 
real-time occupancy data sourced from IoT sensors, al-
lowing the model to dynamically adjust scheduling con-
straints and avoid disruptions during peak usage hours. 
Additionally, the current constraint on the number of con-
current activities is applied globally, without distinguishing 
between different room functions. Introducing function-
specific limits, for example, stricter restrictions for hallways 
or receptions during business hours, would enhance the 
realism and practicality of the schedule.

Another important limitation concerns the treatment of 
maintenance tasks as independent. While this simplifica-
tion was deliberate in order to isolate and test the tempo-
ral clustering principle, in operational practice tasks often 
share resources (e.g., staff or equipment) and may gener-
ate conflicts if scheduled in spatial proximity. To address 
this, the same ILP formulation can be readily extended with 
additional constraints for resource capacities, spatial con-
flicts, and area-specific activity limits (see Section 2.1.5).

From a technical perspective, the integration with BIM 
remains limited in scope. Currently, only a small number 
of parameters are embedded in the BIM model, and spa-
tial constraints, such as adjacency, shared infrastructure, 
or restricted access zones, are not yet considered in the 
optimisation. This limits BIM’s role to a post-optimisation 
visualisation tool rather than an active driver of sched-
uling. Accordingly, future developments should move to-
wards embedding spatial and functional constraints direct-
ly from BIM into the optimisation model, leveraging adja-
cency matrices, access rules, or circulation paths derived 
from the building geometry. These improvements would 
significantly enhance the system’s adaptability and appli-
cability across diverse operational settings.

The reliance on Autodesk Dynamo also poses interop-
erability issues, as this restricts usability for teams using al-
ternative BIM platforms. Moreover, the mapping between 
optimisation data and building elements relies on Revit el-
ement IDs, which are susceptible to change during model 
updates, potentially breaking the data link. A more robust 
solution would involve persistent, unique identifiers or the 
use of standardised metadata tags to ensure consistent 
referencing across software environments.

Finally, the assumptions of uniform cost penalties and 
static occupancy patterns have not yet been validated 
against empirical building data. This study relied on realis-
tic but synthetic data to demonstrate the feasibility of the 
approach. While this is appropriate for a framework, future 
work should include benchmarking against actual main-
tenance records and occupancy datasets to test sensitiv-
ity to assumption choices and confirm practical relevance.

6. Conclusions
From the state-of-the-art analysis, a  need emerges 
for a  novel approach to reducing inefficiencies in the 
O&M phase, identified as the most expensive stage of the 
building lifecycle. In response to this, the presented study 
introduces a methodology for optimising O&M schedules 
by integrating a mathematical optimisation model within 

a  microservice-based system architecture, supported by 
a BIM environment.

The proposed approach consolidates maintenance 
tasks into optimised clusters, effectively reducing their fre-
quency, and thus associated disruption or risks to the oc-
cupants. This is achieved while ensuring compliance with 
task-specific temporal constraints and maintaining cost ef-
ficiency. The integration of the optimisation engine with 
a spreadsheet-based database, BIM tools, and an orches-
trator allows for a streamlined workflow from data input 
through to visualisation and execution within the build-
ing model. The case study confirms the system’s capabil-
ity to manage realistic maintenance scenarios, demonstrat-
ing both practical feasibility and potential for application 
in real-world settings.

This system directly affects operations and facility man-
agers. By minimizing maintenance frequency and area cov-
erage, the system lessens building downtime and labour 
coordination complexity. Spatial integration in the BIM 
model simplifies planning, especially for multi-use or high-
traffic areas. Also, the modular design accommodates dif-
ferent stakeholders working with the system using tools to 
which they are accustomed (e.g., spreadsheets), supporting 
easy adoption at no great cost of learning. These function-
alities allow managers to make effective, fact-based deci-
sions and improve service continuity and user satisfaction.

It should be noted that the model, as applied here, de-
liberately emphasises temporal clustering to demonstrate 
the feasibility of the optimisation–BIM pipeline on a sim-
plified case. The omission of interdependencies such as 
shared resources or adjacency conflicts does not repre-
sent a  structural limitation, but rather a  scope decision. 
As shown in Section 2.1.5, the ILP framework can be ex-
panded to include cumulative resource capacities, spatial 
or operational conflicts, and differentiated area-level con-
straints, without altering the optimisation core.

In summary, this work establishes a framework founda-
tion for BIM-enabled, optimisation-driven O&M planning. 
While simplifications were made for clarity, the extensibil-
ity of the ILP formulation, the modular microservice de-
sign, and the planned empirical validation together en-
sure that the framework remains scalable, adaptable, and 
practically relevant.
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