Decentralized system for construction projects data management using blockchain and IPFS
Abstract
Construction projects’ performance is not self-regulating. Therefore, a continuous progress tracking and monitoring process is highly demanded to avoid potential deviations or misalignments. The current practice for the progress tracking and monitoring process suffers from heavily intermediated workflows, human errors, transfer latencies, inaccuracies, and/or information holes. Such issues could gradually lead to severe delays or even complete project failure. This research introduces a novel Peer-to-Peer (P2P) system that relies on Blockchain Technology (BT) and Inter-Planetary File System (IPFS) for managing progress information and as-built digital assets or files. The system is developed based on a three-step approach. First, two chaincodes are formulated for mapping and governing the data operations. Second, a private blockchain network is configured based on Hyperledger Fabric as a hosting platform, including the relevant stakeholders. Third, a private IPFS network is configured and coupled with a cluster service to manage and distribute the off-chain visuals and as-built digital assets. A case study for a non-residential construction project is utilized to test and verify the system’s practicability and assess its performance. The research significance is anticipated in diverse practical areas, including but not limited to; boosting coordination and trust among stakeholders, tracing progressive elaboration of As-built digital assets, accelerating incremental payments processing, assessing overall project performance and on-site productivity, supporting delay analysis and claim/dispute management, and streamlining data flow between the construction phase and the operation and maintenance phase. Further, the system’s future is mapped by evolving it as a sub-unit in a more advanced data model.
Keyword : progress control, As-built assets, IPFS, blockchain, construction information systems
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Abdelrehim, M. S. A. (2013). Interactive voice-visual tracking of construction As-Built information. University of Waterloo, Waterloo, Ontario, Canada. http://hdl.handle.net/10012/7680
Adel, K., Elhakeem, A., & Marzouk, M. (2022). Decentralizing construction AI applications using blockchain technology. Expert Systems with Applications, 194, 116548. https://doi.org/10.1016/j.eswa.2022.116548
Ahmadisheykhsarmast, S., & Sonmez, R. (2020). A smart contract system for security of payment of construction contracts. Automation in Construction, 120, 103401. https://doi.org/10.1016/j.autcon.2020.103401
Akanmu, A., Anumba, C. J., & Olayiwola, J. (2020). Cyber-physical systems-based component tracking and operation. In C. Anumba, & N. Roofigari-Esfahan (Eds.), Cyber-physical systems in the built environment (pp. 45–61). Springer. https://doi.org/10.1007/978-3-030-41560-0_4
Alaloul, W. S., Qureshi, A. H., Musarat, M. A., & Saad, S. (2021). Evolution of close-range detection and data acquisition technologies towards automation in construction progress monitoring. Journal of Building Engineering, 43, 102877. https://doi.org/10.1016/j.jobe.2021.102877
Andrian, Y., Kim, H., & Ju, H. (2019). A distributed file-based storage system for improving high availability of space weather data. Applied Sciences, 9(23), 5024. https://doi.org/10.3390/app9235024
Benet, J. (2014). Ipfs-content addressed, versioned, P2P file system. arXiv preprint. https://arxiv.org/abs/1407.3561
Chang, S. E., Chen, Y.-C., & Lu, M.-F. (2019). Supply chain re-engineering using blockchain technology: A case of smart contract based tracking process. Technological Forecasting and Social Change, 144, 1–11. https://doi.org/10.1016/j.techfore.2019.03.015
Chen, Z., Xu, W., Wang, B., & Yu, H. (2021). A blockchain-based preserving and sharing system for medical data privacy. Future Generation Computer Systems, 124, 338–350. https://doi.org/10.1016/j.future.2021.05.023
Christodoulou, K., Christodoulou, P., Zinonos, Z., Carayannis, E. G., & Chatzichristofis, S. A. (2020). Health information exchange with blockchain amid COVID-19-like pandemics. In 6th International Conference on Distributed Computing in Sensor Systems (DCOSS 2020), Marina del Rey, CA, USA. https://doi.org/10.1109/DCOSS49796.2020.00071
Darabseh, M., & Martins, J. P. (2021). The expected outcomes of implementing a distributed file system in the construction industry. In H. Rodrigues, F. Gaspar, P. Fernandes, & A. Mateus (Eds.), Sustainability and automation in smart constructions. Advances in science, technology & innovation (pp. 237–242). Springer. https://doi.org/10.1007/978-3-030-35533-3_27
Das, M., Luo, H., & Cheng, J. C. (2020). Securing interim payments in construction projects through a blockchain-based framework. Automation in Construction, 118, 103284. https://doi.org/10.1016/j.autcon.2020.103284
Das, M., Tao, X., Liu, Y., & Cheng, J. C. P. (2022). A blockchain-based integrated document management framework for construction applications. Automation in Construction, 133, 104001. https://doi.org/10.1016/j.autcon.2021.104001
Dounas, T., Lombardi, D., & Jabi, W. (2021). Framework for decentralised architectural design BIM and Blockchain integration. International Journal of Architectural Computing, 19(2), 157–173. https://doi.org/10.1177/1478077120963376
Elghaish, F., Abrishami, S., & Hosseini, M. R. (2020). Integrated project delivery with blockchain: An automated financial system. Automation in Construction, 114, 103182. https://doi.org/10.1016/j.autcon.2020.103182
Elghaish, F., Pour Rahimian, F., Hosseini, M. R., Edwards, D., & Shelbourn, M. (2022). Financial management of construction projects: Hyperledger fabric and chaincode solutions. Automation in Construction, 137, 104185. https://doi.org/10.1016/j.autcon.2022.104185
Fernando, Y., Rozuar, N. H. M., & Mergeresa, F. (2021). The blockchain-enabled technology and carbon performance: Insights from early adopters. Technology in Society, 64, 101507. https://doi.org/10.1016/j.techsoc.2020.101507
Garcia, J. C. G., Arditi, D., & Le, K. T. (2014). Construction progress control (CPC) application for smartphone. Journal of Information Technology in Construction (ITcon), 19, 92–103.
Gökalp, E., Gökalp, M. O., & Çoban, S. (2022). Blockchain-based supply chain management: Understanding the determinants of adoption in the context of organizations. Information Systems Management, 39(2), 100–121. https://doi.org/10.1080/10580530.2020.1812014
Gunasekara, H. G., Sridarran, P., & Rajaratnam, D. (2021). Effective use of blockchain technology for facilities management procurement process. Journal of Facilities Management, 20(3), 452–468. https://doi.org/10.1108/JFM-10-2020-0077
Huang, H.-S., Chang, T.-S., & Wu, J.-Y. (2020). A secure file sharing system based on IPFS and blockchain. In Proceedings of the 2020 2nd International Electronics Communication Conference (pp. 96–100), Singapore, Singapore. https://doi.org/10.1145/3409934.3409948
IPFS-Docs. (2020). What is IPFS?. https://docs.ipfs.io/concepts/what-is-ipfs/
Kamble, S. S., Gunasekaran, A., Kumar, V., Belhadi, A., & Foropon, C. (2021). A machine learning based approach for predicting blockchain adoption in supply Chain. Technological Forecasting and Social Change, 163, 120465. https://doi.org/10.1016/j.techfore.2020.120465
Kumar Bhardwaj, A., Garg, A., & Gajpal, Y. (2021). Determinants of blockchain technology adoption in supply chains by small and medium enterprises (SMEs) in India. Mathematical Problems in Engineering, 2021, 5537395. https://doi.org/10.1155/2021/5537395
Le, H. T. (2021). Blockchain for building information modeling in construction industry. AIP Conference Proceedings, 2406(1), 020033. https://doi.org/10.1063/5.0067158
Li, J., Kassem, M., & Watson, R. (2020). A blockchain and smart contract-based framework to increase traceability of built assets. In CIB W78 Information Technology for Construction Conference, São Paulo, Brazil. https://doi.org/10.46421/2706-6568.37.2020.paper025
Li, X., Wu, L., Zhao, R., Lu, W., & Xue, F. (2021). Two-layer adaptive blockchain-based supervision model for off-site modular housing production. Computers in Industry, 128, 103437. https://doi.org/10.1016/j.compind.2021.103437
Li, X., Lu, W., Xue, F., Wu, L., Zhao, R., Lou, J., & Xu, J. (2022). Blockchain-enabled IoT-BIM platform for supply chain management in modular construction. Journal of Construction Engineering and Management, 148(2), 0002229. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002229
Lin, J. J., & Golparvar-Fard, M. (2020a). Construction progress monitoring using cyber-physical systems. In C. Anumba, & N. Roofigari-Esfahan (Eds.), Cyber-physical systems in the built environment (pp. 63–87). Springer. https://doi.org/10.1007/978-3-030-41560-0_5
Lin, J. J., & Golparvar-Fard, M. (2020b). Visual and virtual progress monitoring in Construction 4.0. In Construction 4.0 (pp. 240–263). Routledge. https://doi.org/10.1201/9780429398100-13
Lu, W., Li, X., Xue, F., Zhao, R., Wu, L., & Yeh, A. G. O. (2021a). Exploring smart construction objects as blockchain oracles in construction supply chain management. Automation in Construction, 129, 103816. https://doi.org/10.1016/j.autcon.2021.103816
Lu, W., Wu, L., Zhao, R., Li, X., & Xue, F. (2021b). Blockchain technology for governmental supervision of construction work: Learning from digital currency electronic payment systems. Journal of Construction Engineering and Management, 147(10), 02148. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002148
Lu, W. W., Liupengfei, Xu, J., & Lou, J. (2022). Construction e-Inspection 2.0 in the COVID-19 pandemic era: A blockchain-based technical solution. Journal of Management in Engineering, 38(4), 04022032. https://doi.org/10.1061/(ASCE)ME.1943-5479.0001063
Lustenberger, M., Malešević , S., & Spychiger, F. (2021). Ecosystem readiness: Blockchain adoption is driven externally. Frontiers in Blockchain, 4. https://doi.org/10.3389/fbloc.2021.720454
Mahami, H., Nasirzadeh, F., Hosseininaveh Ahmadabadian, A., & Nahavandi, S. (2019). Automated progress controlling and monitoring using daily site images and building information modelling. Buildings, 9(3), 70. https://doi.org/10.3390/buildings9030070
Malik, S., Chadhar, M., Vatanasakdakul, S., & Chetty, M. (2021). Factors affecting the organizational adoption of blockchain technology: Extending the technology–organization–environment (TOE) framework in the Australian context. Sustainability, 13(16), 9404. https://doi.org/10.3390/su13169404
McNamara, A. J., & Sepasgozar, S. M. (2020). Developing a theoretical framework for intelligent contract acceptance. Construction Innovation, 20(3), 421–445. https://doi.org/10.1108/CI-07-2019-0061
McNamara, A. J., & Sepasgozar, S. M. E. (2021). Intelligent contract adoption in the construction industry: Concept development. Automation in Construction, 122, 103452. https://doi.org/10.1016/j.autcon.2020.103452
Mubarak, S. A. (2015). Construction project scheduling and control (3rd ed.). John Wiley & Sons.
Naz, M., Al-zahrani, F. A., Khalid, R., Javaid, N., Qamar, A. M., Afzal, M. K., & Shafiq, M. (2019). A secure data sharing platform using blockchain and interplanetary file system. Sustainability, 11(24), 7054. https://doi.org/10.3390/su11247054
Nyaletey, E., Parizi, R. M., Zhang, Q., & Choo, K.-K. R. (2019). BlockIPFS-blockchain-enabled interplanetary file system for forensic and trusted data traceability. In 2nd IEEE International Conference on Blockchain (Blockchain 2019), Atlanta, GA, USA. https://doi.org/10.1109/Blockchain.2019.00012
Omar, T., & Nehdi, M. L. (2016). Data acquisition technologies for construction progress tracking. Automation in Construction, 70, 143–155. https://doi.org/10.1016/j.autcon.2016.06.016
Omar, I. A., Debe, M., Jayaraman, R., Salah, K., Omar, M., & Arshad, J. (2022). Blockchain-based supply chain traceability for COVID-19 personal protective equipment. Computers & Industrial Engineering, 167, 107995. https://doi.org/10.1016/j.cie.2022.107995
Onik, M. M. H., & Miraz, M. H. (2019). Performance analytical comparison of Blockchain-as-a-Service (BaaS) platforms. In M. Miraz, P. Excell, A. Ware, S. Soomro, & M. Ali (Eds.), Lecture notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering: Vol 285. Emerging technologies in computing (iCETiC 2019) (pp. 3–18). Springer, Cham. https://doi.org/10.1007/978-3-030-23943-5_1
Orji, I. J., Kusi-Sarpong, S., Huang, S., & Vazquez-Brust, D. (2020). Evaluating the factors that influence blockchain adoption in the freight logistics industry. Transportation Research Part E: Logistics and Transportation Review, 141, 102025. https://doi.org/10.1016/j.tre.2020.102025
Perera, S., Nanayakkara, S., Rodrigo, M., Senaratne, S., & Weinand, R. (2020). Blockchain technology: Is it hype or real in the construction industry?. Journal of Industrial Information Integration, 17, 100125. https://doi.org/10.1016/j.jii.2020.100125
Raslan, A., Kapogiannis, G., Cheshmehzangi, A., Tizani, W., & Towey, D. (2020). A framework for assembling Asset Information Models (AIMs) through permissioned blockchain. In 44th IEEE Annual Computers, Software, and Applications Conference (COMPSAC 2020), Madrid, Spain. https://doi.org/10.1109/COMPSAC48688.2020.0-198
Ren, W., Wan, X., & Gan, P. (2021). A double-blockchain solution for agricultural sampled data security in Internet of Things network. Future Generation Computer Systems, 117, 453–461. https://doi.org/10.1016/j.future.2020.12.007
Sheng, D., Ding, L., Zhong, B., Love, P. E., Luo, H., & Chen, J. (2020). Construction quality information management with blockchains. Automation in Construction, 120, 103373. https://doi.org/10.1016/j.autcon.2020.103373
Shi, F., Wang, Q., & Wang, Y. (2019). Research on top-level redesign of smart construction system based on case study. In ICCREM 2019: Innovative Construction Project Management and Construction Industrialization (pp. 117–124). American Society of Civil Engineers Reston, VA. https://doi.org/10.1061/9780784482308.013
Shojaei, A., Flood, I., Moud, H. I., Hatami, M., & Zhang, X. (2020). An implementation of smart contracts by Integrating BIM and blockchain. In Advances in intelligent systems and computing: Vol. 1070. Proceedings of the Future Technologies Conference (FTC 2019) (pp. 519–527). Springer, Cham. https://doi.org/10.1007/978-3-030-32523-7_36
Shrestha, K. J., & Jeong, H. D. (2017). Computational algorithm to automate as-built schedule development using digital daily work reports. Automation in Construction, 84, 315–322. https://doi.org/10.1016/j.autcon.2017.09.008
Sigalov, K., Ye, X., König, M., Hagedorn, P., Blum, F., Severin, B., Hettmer, M., Hückinghaus, P., Wölkerling, J., & Groß, D. (2021). Automated payment and contract management in the construction industry by integrating building information modeling and blockchain-based smart contracts. Applied Sciences, 11(16), 7653. https://doi.org/10.3390/app11167653
Sjekavica Klepo, M., & Radujković, M. (2019). Early warning system in managing water infrastructre projects. Journal of Civil Engineering and Management, 25(6), 531–550. https://doi.org/10.3846/jcem.2019.10404
Sonmez, R., Ahmadisheykhsarmast, S., & Güngör, A. A. (2022). BIM integrated smart contract for construction project progress payment administration. Automation in Construction, 139, 104294. https://doi.org/10.1016/j.autcon.2022.104294
Sonmez, R., Sönmez, F. Ö., & Ahmadisheykhsarmast, S. (2021). Blockchain in project management: a systematic review of use cases and a design decision framework. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-021-03610-1
Sreckovic, M., & Windsperger, J. (2019). Decentralized autonomous organizations and network design in AEC: A conceptual framework. https://doi.org/10.2139/ssrn.3576474
Suliyanti, W. N., & Sari, R. F. (2021). Blockchain-based implementation of building information modeling information using hyperledger composer. Sustainability, 13(1), 321. https://doi.org/10.3390/su13010321
Tao, X., Das, M., Liu, Y., & Cheng, J. C. P. (2021). Distributed common data environment using blockchain and Interplanetary File System for secure BIM-based collaborative design. Automation in Construction, 130, 103851. https://doi.org/10.1016/j.autcon.2021.103851
Tserng, H. P., Ho, S. P., & Jan, S. H. (2014). Developing BIM-assisted as-built schedule management system for general contractors. Journal of Civil Engineering and Management, 20(1), 47–58. https://doi.org/10.3846/13923730.2013.851112
Wang, Z., Wang, T., Hu, H., Gong, J., Ren, X., & Xiao, Q. (2020). Blockchain-based framework for improving supply chain traceability and information sharing in precast construction. Automation in Construction, 111, 103063. https://doi.org/10.1016/j.autcon.2019.103063
Wong, L. W., Leong, L. Y., Hew, J. J., Tan, G. W. H., & Ooi, K. B. (2020). Time to seize the digital evolution: Adoption of blockchain in operations and supply chain management among Malaysian SMEs. International Journal of Information Management, 52, 101997. https://doi.org/10.1016/j.ijinfomgt.2019.08.005
Wu, H., Zhong, B., Li, H., Guo, J., & Wang, Y. (2021). On-site construction quality inspection using blockchain and smart contracts. Journal of Management in Engineering, 37(6), 04021065. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000967
Xiong, F., Xu, C., Ren, W., Zheng, R., Gong, P., & Ren, Y. (2022). A blockchain-based edge collaborative detection scheme for construction internet of things. Automation in Construction, 134, 104066. https://doi.org/10.1016/j.autcon.2021.104066
Xu, X., Lu, Q., Liu, Y., Zhu, L., Yao, H., & Vasilakos, A. V. (2019). Designing blockchain-based applications a case study for imported product traceability. Future Generation Computer Systems, 92, 399–406. https://doi.org/10.1016/j.future.2018.10.010
Yang, R., Wakefield, R., Lyu, S., Jayasuriya, S., Han, F., Yi, X., Yang, X., Amarasinghe, G., & Chen, S. (2020). Public and private blockchain in construction business process and information integration. Automation in Construction, 118, 103276. https://doi.org/10.1016/j.autcon.2020.103276
Zheng, Q., Li, Y., Chen, P., & Dong, X. (2018). An innovative IPFS-based storage model for blockchain. In 18th IEEE/WIC/ACM International Conference on Web Intelligence (WI 2018). IEEE. https://doi.org/10.1109/WI.2018.000-8