Share:


Co-recycling of sewage sludge and garden waste biochar: as a growing medium for landscape plant

    Han Sheng Affiliation
    ; Jiayi Feng Affiliation
    ; Yuantong Yang Affiliation
    ; Haider Fasih Ullah Affiliation
    ; Weixin Peng Affiliation
    ; Xu Li Affiliation
    ; Fengling Long Affiliation
    ; Daoming Wu Affiliation
    ; Shucai Zeng Affiliation

Abstract

Urban greening produces a large amount of garden waste, and the pyrolysis of garden waste into biochar is an effective waste management technology. Biochar has a large specific surface area and soil remediation ability. However, the knowledge about the co-recycling of sewage sludge and garden waste biochar to improve the growth of Monstera deliciosa needs to be highlighted. Therefore, we conducted a pot experiment by applying Ficus altissima litter-derived biochar (FB) at rates of 0, 1.5, and 3.0% (w/w, CK, FB1.5, and FB3) in soil amended with sewage sludge at 50% (w/w), to improve the soil properties, and further analyzed the effects of FB on growth and heavy metals (HMs) uptake of landscape plant M. deliciosa. Results showed in comparison with control setups, the addition of 3% FB treatment in sewage sludge amended soil improved the soil properties and significantly increased M. deliciosa dry weight (86.75%), root: shoot ratio (73.23%), N (99.44%), P (116.13%), K (124.40%), Pb (78.81%), and Cu (159.01%) accumulation respectively. In summary, FB3 treatment achieved the best effects in promoting plant growth and soil remediation. These findings revealed that sewage sludge and garden waste biochar could be recycled as amendments for poor acid soils under restoration, a sustainable development path for urban waste disposal.

Keyword : garden waste biochar, sewage sludge recycling, heavy metal, landscape plant, soil amelioration

How to Cite
Sheng, H., Feng, J., Yang, Y., Fasih Ullah, H., Peng, W., Li, X., Long, F., Wu, D., & Zeng, S. (2023). Co-recycling of sewage sludge and garden waste biochar: as a growing medium for landscape plant. Journal of Environmental Engineering and Landscape Management, 31(4), 266–274. https://doi.org/10.3846/jeelm.2023.20042
Published in Issue
Nov 7, 2023
Abstract Views
367
PDF Downloads
327
SM Downloads
131
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Ahmad, A., Chowdhary, P., Khan, N., Chaurasia, D., Varjani, S., Pandey, A., & Chaturvedi, P. (2022). Effect of sewage sludge biochar on the soil nutrient, microbial abundance, and plant biomass: A sustainable approach towards mitigation of solid waste. Chemosphere, 287(Part 1), 132112. https://doi.org/10.1016/j.chemosphere.2021.132112

Alhar, M. A. M., Thompson, D. F., & Oliver, I. W. (2021). Mine spoil remediation via biochar addition to immobilise potentially toxic elements and promote plant growth for phytostabilisation. Journal of Environmental Management, 277, 111500. https://doi.org/10.1016/j.jenvman.2020.111500

Álvarez, J. M., Pasian, C., Lal, R., López, R., Díaz, M. J., & Fernández, M. (2018). Morpho-physiological plant quality when biochar and vermicompost are used as growing media replacement in urban horticulture. Urban Forestry & Urban Greening, 34, 175–180. https://doi.org/10.1016/j.ufug.2018.06.021

Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen–total. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis II. American Society of Agronomy, Soil Science Society of America.

Chu, S., Jacobs, D. F., Liao, D., Liang, L. L., Wu, D., Chen, P., Lai, C., Zhong, F., & Zeng, S. (2018). Effects of landscape plant species and concentration of sewage sludge compost on plant growth, nutrient uptake, and heavy metal removal. Environmental Science and Pollution Research, 25(35), 35184–35199. https://doi.org/10.1007/s11356-018-3416-x

Erdem, H. (2021). The effects of biochars produced in different pyrolsis temperatures from agricultural wastes on cadmium uptake of tobacco plant. Saudi Journal of Biological Sciences, 28(7), 3965–3971. https://doi.org/10.1016/j.sjbs.2021.04.016

Farid, I. M., Siam, H. S., Abbas, M. H. H., Mohamed, I., Mahmoud, S. A., Tolba, M., Abbas, H. H., Yang, X., Antoniadis, V., Rinklebe, J., & Shaheen, S. M. (2022). Co-composted biochar derived from rice straw and sugarcane bagasse improved soil properties, carbon balance, and zucchini growth in a sandy soil: A trial for enhancing the health of low fertile arid soils. Chemosphere, 292, 133389. https://doi.org/10.1016/j.chemosphere.2021.133389

Gong, X., Cai, L., Li, S., Chang, S. X., Sun, X., & An, Z. (2018). Bamboo biochar amendment improves the growth and reproduction of Eisenia fetida and the quality of green waste vermicompost. Ecotoxicology and Environmental Safety, 156, 197–204. https://doi.org/10.1016/j.ecoenv.2018.03.023

Hagenbo, A., Anton-Fernandez, C., Bright, R. M., Rasse, D., & Astrup, R. (2022). Climate change mitigation potential of biochar from forestry residues under boreal condition. Science of the Total Environment, 807(Part 3), 151044. https://doi.org/10.1016/j.scitotenv.2021.151044

Haider, F. U., Coulter, J. A., Cheema, S. A., Farooq, M., Wu, J., Zhang, R., Shuaijie, G., & Liqun, C. (2021). Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. Ecotoxicology and Environmental Safety, 214, 112112. https://doi.org/10.1016/j.ecoenv.2021.112112

Haider, F. U., Farooq, M., Naveed, M., Cheema, S. A., Salim, M. A., Liqun, C., & Mustafa, A. (2022a). Influence of biochar and microorganism co-application on stabilization of cadmium (Cd) and improved maize growth in Cd-contaminated soil. Frontiers in Plant Science, 13, 983830. https://doi.org/10.3389/fpls.2022.983830

Haider, F. U., Wang, X., Farooq, M., Hussain, S., Cheema, S. A., Ul Ain, N., Virk, A. L., Ejaz, M., Janyshova, U., & Liqun, C. (2022b). Biochar application for the remediation of trace metals in contaminated soils: Implications for stress tolerance and crop production. Ecotoxicology and Environmental Safety, 230, 113165. https://doi.org/10.1016/j.ecoenv.2022.113165

Houssou, A. A., Jeyakumar, P., Niazi, N. K., Van Zwieten, L., Li, X., Huang, L., Wei, L., Zheng, X., Huang, Q., Huang, Y., Huang, X., Wang, H., Liu, Z., & Huang, Z. (2022). Biochar and soil properties limit the phytoavailability of lead and cadmium by Brassica chinensis L. in contaminated soils. Biochar, 4(1), 5. https://doi.org/10.1007/s42773-021-00126-x

Ibrahim, E. A., El-Sherbini, M. A. A., & Selim, E.-M. M. (2022). Effects of biochar on soil properties, heavy metal availability and uptake, and growth of summer squash grown in metal-contaminated soil. Scientia Horticulturae, 30, 111097. https://doi.org/10.1016/j.scienta.2022.111097

Irshad, M. K., Noman, A., Alhaithloul, H. A. S., Adeel, M., Rui, Y., Shah, T., Zhu, S., & Shang, J. (2020). Goethite-modified biochar ameliorates the growth of rice (Oryza sativa L.) plants by suppressing Cd and As-induced oxidative stress in Cd and As co-contaminated paddy soil. Science of the Total Environment, 717, 137086. https://doi.org/10.1016/j.scitotenv.2020.137086

Jun, L., Wei, H., Aili, M., Juan, N., Hongyan, X., Jingsong, H., Yunhua, Z., & Cuiying, P. (2020). Effect of lychee biochar on the remediation of heavy metal-contaminated soil using sunflower: A field experiment. Environmental Research, 188, 109886. https://doi.org/10.1016/j.envres.2020.109886

Kasak, K., Truu, J., Ostonen, I., Sarjas, J., Oopkaup, K., Paiste, P., Koiv-Vainik, M., Mander, U., & Truu, M. (2018). Biochar enhances plant growth and nutrient removal in horizontal subsurface flow constructed wetlands. Science of the Total Environment, 639, 67–74. https://doi.org/10.1016/j.scitotenv.2018.05.146

Kononchuk, O., Pidlisnyuk, V., Mamirova, A., Khomenchuk, V., Herts, A., Grycová, B., Klemencová, K., Leštinský, P., & Shapoval, P. (2022). Evaluation of the impact of varied biochars produced from M. × giganteus waste and application rate on the soil properties and physiological parameters of Spinacia oleracea L. Environmental Technology & Innovation, 28, 102898. https://doi.org/10.1016/j.eti.2022.102898

Lehmann, J., Cowie, A., Masiello, C. A., Kammann, C., Woolf, D., Amonette, J. E., Cayuela, M. L., Camps-Arbestain, M., & Whitman, T. (2021). Biochar in climate change mitigation. Nature Geoscience, 14(12), 883–892. https://doi.org/10.1038/s41561-021-00852-8

Liu, J., Jiang, L., Zhang, X., Fu, B., He, Z., Chen, M., Zeng, S., & Zhao, Q. (2023). Sewage sludge application stimulated soil N2O emissions with a low heavy metal pollution risk in Eucalyptus plantations. Journal of Environmental Management, 339, 117933. https://doi.org/10.1016/j.jenvman.2023.117933

Liu, K., Ran, Q., Li, F., Shaheen, S. M., Wang, H., Rinklebe, J., Liu, C., & Fang, L. (2022a). Carbon-based strategy enables sustainable remediation of paddy soils in harmony with carbon neutrality. Carbon Research, 1(1), 12. https://doi.org/10.1007/s44246-022-00012-6

Liu, M., Ke, X., Liu, X., Fan, X., Xu, Y., Li, L., Solaiman, Z. M., & Pan, G. (2022b). The effects of biochar soil amendment on rice growth may vary greatly with rice genotypes. Science of the Total Environment, 810, 152223. https://doi.org/10.1016/j.scitotenv.2021.152223

Liu, X., Ma, Y., Manevski, K., Andersen, M. N., Li, Y., Wei, Z., & Liu, F. (2022c). Biochar and alternate wetting-drying cycles improving rhizosphere soil nutrients availability and tobacco growth by altering root growth strategy in Ferralsol and Anthrosol. Science of the Total Environment, 806(Part 1), 150513. https://doi.org/10.1016/j.scitotenv.2021.150513

Mohamed, B. A., Ellis, N., Kim, C. S., Bi, X., & Chen, W. H. (2021). Engineered biochars from catalytic microwave pyrolysis for reducing heavy metals phytotoxicity and increasing plant growth. Chemosphere, 271, 129808. https://doi.org/10.1016/j.chemosphere.2021.129808

Pandey, B., Suthar, S., & Chand, N. (2022). Effect of biochar amendment on metal mobility, phytotoxicity, soil enzymes, and metal-uptakes by wheat (Triticum aestivum) in contaminated soils. Chemosphere, 307, 135889. https://doi.org/10.1016/j.chemosphere.2022.135889

Pescatore, A., Grassi, C., Rizzo, A. M., Orlandini, S., & Napoli, M. (2022). Effects of biochar on berseem clover (Trifolium alexandrinum, L.) growth and heavy metal (Cd, Cr, Cu, Ni, Pb, and Zn) accumulation. Chemosphere, 287(Part 1), 131986. https://doi.org/10.1016/j.chemosphere.2021.131986

Pueyo, M., Mateu, J., Rigol, A., Vidal, M., López-Sánchez, J. F., & Rauret, G. (2008). Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environmental Pollution, 152(2), 330–341. https://doi.org/10.1016/j.envpol.2007.06.020

R Core Team. (2022). R: A language and environment for statistical computing (Version 4.2.1) [Computer software]. R Foundation for Statistical Computing.

Saluz, A. G., Bleuler, M., Krahenbuhl, N., & Schonborn, A. (2022). Quality and suitability of fecal biochar in structurally stable urban tree substrates. Science of the Total Environment, 838(Part 3), 156236. https://doi.org/10.1016/j.scitotenv.2022.156236

Sarmah, M., Borgohain, A., Gogoi, B. B., Yeasin, M., Paul, R. K., Malakar, H., Handique, J. G., Saikia, J., Deka, D., Khare, P., & Karak, T. (2023). Insights into the effects of tea pruning litter biochar on major micronutrients (Cu, Mn, and Zn) pathway from soil to tea plant: An environmental armour. Journal of Hazardous Materials, 442, 129970. https://doi.org/10.1016/j.jhazmat.2022.129970

Shaaban, M., Van Zwieten, L., Bashir, S., Younas, A., Núñez-Delgado, A., Chhajro, M. A., Kubar, K. A., Ali, U., Rana, M. S., Mehmood, M. A., & Hu, R. (2018). A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. Journal of Environmental Management, 228, 429–440. https://doi.org/10.1016/j.jenvman.2018.09.006

Sifton, M. A., Lim, P., Smith, S. M., & Thomas, S. C. (2022). Interactive effects of biochar and N-fixing companion plants on growth and physiology of Acer saccharinum. Urban Forestry & Urban Greening, 74, 127652. https://doi.org/10.1016/j.ufug.2022.127652

Teodoro, M., Trakal, L., Gallagher, B. N., Simek, P., Soudek, P., Pohorely, M., Beesley, L., Jacka, L., Kovar, M., Seyedsadr, S., & Mohan, D. (2020). Application of co-composted biochar significantly improved plant-growth relevant physical/chemical properties of a metal contaminated soil. Chemosphere, 242, 125255. https://doi.org/10.1016/j.chemosphere.2019.125255

Tombarkiewicz, B., Antonkiewicz, J., Lis, M. W., Pawlak, K., Trela, M., Witkowicz, R., & Gorczyca, O. (2022). Chemical properties of the coffee grounds and poultry eggshells mixture in terms of soil improver. Scientific Reports, 12, 2592. https://doi.org/10.1038/s41598-022-06569-x

Wu, D., Peng, W., Bao, L., Yu, X., Dong, X., Lai, M., Liang, Z., Xie, S., Jacobs, D. F., & Zeng, S. (2022). Biochar alleviating heavy metals phytotoxicity in sludge-amended soil varies with plant adaptability. Environmental Research, 215, 114248. https://doi.org/10.1016/j.envres.2022.114248

Wu, D., Yu, X., Lai, M., Feng, J., Dong, X., Peng, W., Su, S., Zhang, X., Wan, L., Jacobs, D. F., & Zeng, S. (2021). Diversified effects of co-planting landscape plants on heavy metals pollution remediation in urban soil amended with sewage sludge. Journal of Hazardous Materials, 403, 123855. https://doi.org/10.1016/j.jhazmat.2020.123855

Xu, Q., Song, X., Xu, M., Xu, Q., Liu, Q., Tang, C., Wang, X., Yin, W., & Wang, X. (2022). Elevated CO2 and biochar differentially affect plant C:N:P stoichiometry and soil microbiota in the rhizosphere of white lupin (Lupinus albus L.). Chemosphere, 308(Part 2), 136347. https://doi.org/10.1016/j.chemosphere.2022.136347

Yin, S., Zhang, X., Suo, F., You, X., Yuan, Y., Cheng, Y., Zhang, C., & Li, Y. (2022). Effect of biochar and hydrochar from cow manure and reed straw on lettuce growth in an acidified soil. Chemosphere, 298, 134191. https://doi.org/10.1016/j.chemosphere.2022.134191

Yu, M., Liang, S., Dai, Z., Li, Y., Luo, Y., Tang, C., & Xu, J. (2021). Plant material and its biochar differ in their effects on nitrogen mineralization and nitrification in a subtropical forest soil. Science of the Total Environment, 763, 143048. https://doi.org/10.1016/j.scitotenv.2020.143048

Zhang, X., Xie, H., Liu, X., Kong, D., Zhang, S., & Wang, C. (2021). A novel green substrate made by sludge digestate and its biochar: Plant growth and greenhouse emission. Science of the Total Environment, 797, 149194. https://doi.org/10.1016/j.scitotenv.2021.149194