Dependence of cadmium, lead, and copper speciation on soil pH and temperature using VISUAL MINTEQ
DOI: https://doi.org/10.3846/mla.2025.23951Abstract
Soil contamination by heavy metals poses a significant threat to the environment and human health, primarily due to the toxicity of these metals and their ability to accumulate in organisms. To determine how soil pH and temperature affect the chemical speciation, mobility, and immobilization potential of cadmium (Cd²⁺), lead (Pb²⁺), and copper (Cu²⁺). The main hypothesis posits that as pH increases, the concentration of free heavy metals decreases due to the formation of complexes and precipitation, whereas an increase in temperature accelerates the kinetics of chemical reactions, thereby altering metal activity. Using the Visual MINTEQ modeling tool, simulations were carried out under various pH (4–8) and temperature (15–40 °C) conditions. The results showed that at lower pH, metal activity significantly increases; however, the influence of temperature is more complex–both positive and negative trends were observed depending on the metal. These findings provide a foundation for further research, particularly for optimizing strategies to immobilize contaminated soils. Nonetheless, certain observed trends diverged from initial assumptions and called for additional investigation.
Article in Lithuanian.
Kadmio, švino ir vario specifikacijos priklausomybė nuo dirvožemio pH ir temperatūros naudojant VISUAL MINTEQ
Santrauka
Dirvožemio užterštumas sunkiaisiais metalais kelia reikšmingą grėsmę aplinkai ir žmonių sveikatai, ypač dėl metalų toksiškumo bei jų gebėjimo kauptis organizmuose. Šio tyrimo tikslas – nustatyti, kaip dirvožemio pH ir temperatūra veikia kadmio (Cd²⁺), švino (Pb²⁺) ir vario (Cu²⁺) cheminę specifikaciją, mobilumą bei imobilizacijos potencialą. Didėjant pH laisvųjų sunkiųjų metalų koncentracija mažėja dėl kompleksų susidarymo ir nusėdimo, o temperatūros padidėjimas paspartina cheminių reakcijų kinetiką, keisdamas metalų aktyvumą. Naudojant VISUAL MINTEQ modeliavimą, atlikta simuliacija esant skirtingoms pH (4–8) ir temperatūros (15–40 °C) sąlygoms. Rezultatai parodė, kad esant žemesniam pH metalų aktyvumas reikšmingai padidėja, tačiau temperatūros poveikis yra sudėtingas – priklausomai nuo metalo, pastebimos tiek teigiamos, tiek neigiamos tendencijos. Gauti duomenys suteikia pagrindą tolesniems tyrimams, ypač siekiant optimizuoti užterštų dirvožemių imobilizacijos strategijas, nors kai kurios stebimos tendencijos neatitinka prielaidų ir reikalauja papildomos analizės.
Reikšminiai žodžiai: cheminė specifikacija, metalų mobilumas, sunkieji metalai, užterštas dirvožemis, VISUAL MINTEQ.
Keywords:
chemical speciation, metal mobility, heavy metals, contaminated soil, Visual MINTEQHow to Cite
Share
License
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Al-Jbury, M. M. S., & Al-Kasser, M. K. (2023). Evaluation heavy metals pollution in the soil from some regions of Al-Diwaniyah City / Iraq. Earth and Environmental Science, 1259, Article 012013. https://doi.org/10.1088/1755-1315/1259/1/012013
Basita, A., Andleeb, S., Liaqat, I., Ashraf, N., Ali, S., Naseer, A., Nazir, A., & Kiyani, F. (2024). Characterization of heavy metal-associated bacteria from petroleum-contaminated soil and their resistogram and antibiogram analysis. Folia Microbiologica, 69, 975–991. https://doi.org/10.1007/s12223-024-01135-6
Benzoni, Y. (2021). Heavy metals mobility in soils: Comparison of soil samples before and after an oxidation treatment. https://www.politesi.polimi.it/handle/10589/195962
Cuske, M., Karczewska, A., & Gałka, B. (2017). Speciation of Cu, Zn, and Pb in soil solutions extracted from strongly polluted soils treated with organic materials. Polish Journal of Environmental Studies, 26(2), 567–575. https://doi.org/10.15244/pjoes/66710
Hu, X., Yu, C., Shi, J., He, B., Wang, X., & Ma, Z. (2024). Biomineralization mechanism and remediation of Cu, Pb and Zn by indigenous ureolytic bacteria B. intermedia TSBOI. Journal of Cleaner Production, 436, Article 140508. https://doi.org/10.1016/j.jclepro.2023.140508
Iqbal, M. M., Murtaza, G., Naz, T., Akhtar, J., Afzal, M., Meers, E., & Laing, G. D. (2017). Amendments affect lead mobility and modulated chemo-speciation under different moisture regimes in normal and salt-affected lead-contaminated soils. International Journal of Environmental Science and Technology, 14, 113–122. https://doi.org/10.1007/s13762-016-1126-9
Karmakar, D., Magotra, S., Negi, R., Kumar, S., Rustagi, S., Singh, S., Rai, A. H., Kour, D., & Yadav, A. N. (2024). Bacillus species for sustainable management of heavy metals in soil: Current research and future challenges. Journal of Applied Biology & Biotechnology, 12(2), 22–35. https://doi.org/10.7324/JABB.2024.157765
Khalid, S., Sahid, M., Alothman, Z. A., Al-Kahtani, A., Muztaza, B., & Dumat, C. (2023). Predicting chemical speciation of metals in soil using Visual Minteq. Soil Ecology Letters, 5(3), Article 220162. https://doi.org/10.1007/s42832-022-0162-2
Kim, J. J., Kim, Y. S., & Kumar, V. (2019). Heavy metal toxicity: An update of chelating therapeutic strategies. Journal of Trace Elements in Medicine and Biology, 54, 226–231. https://doi.org/10.1016/j.jtemb.2019.05.003
Kennedy, K. K., & Zawadi, K. M. (2018). Towards the use of software modelling for determination of heavy metal speciation in soils in Zambia. Open Access Library Journal, 5(7). https://doi.org/10.4236/oalib.1104706
Liu, T., Li, F., Jin, Z., & Yang, Y. (2018). Acidic leaching of potentially toxic metals cadmium, cobalt, chromium, copper, nickel, lead, and zinc from two Zn smelting slag materials incubated in an acidic soil. Environmental Pollution, 238, 359–368. https://doi.org/10.1016/j.envpol.2018.03.022
Natasha, S., Shahid, M., Khalid, S., & Saleem, M. (2022). Unrevealing arsenic and lead toxicity and antioxidant response in spinach: A human health perspective. Environmental Geochemistry and Health, 44, 487–496. https://doi.org/10.1007/s10653-021-00818-0
Radziemska, M., Gusiatin, M. Z., Cydizk-Kwiatokowska, A., Majewski, G., Blazejczyk, A., & Britnicky, M. (2022). New approach strategy for heavy metals immobilization and microbiome structure long-term industrially contaminated soils. Chemosphere, 308, Article 136332. https://doi.org/10.1016/j.chemosphere.2022.136332
Shi, Z., Peng, S., Lin, X., Liang, Y., Lee, S. Z., & Allen H. E. (2020). Predicting Cr(VI) adsorption on soils: The role of the competition of soil organic matter. Environmental Science: Processes & Impacts, 22, 95–104. https://doi.org/10.1039/C9EM00477G
Zhang, X., Li, J., Wei, D., Li, B., & Ma, Y. (2018). The solid-solution distribution of copper added to soils: Influencing factors and models. Journal of Soils and Sediments, 18, 2960–2969. https://doi.org/10.1007/s11368-018-1962-y
Zhu, Z., Liu, H., Yang, Y., Zhou, X., Tang, S., Zhang, S., Zhang, L., Zhu, Y., & Fan, Y. (2024). Remediation characteristics and effects of electrokinetic-citric acid system on karst soil contaminated by arsenic and cadmium. Environmental Technology & Innovation, 33, Article 103483. https://doi.org/10.1016/j.eti.2023.103483
Wang, Y., Li, Y., Geng, H., Zuo, Q., Thunders, M., & Qiu, J. (2022). Effect of arsenite on the proteome of earthworms Eisenia fetida. Soil Ecology Letters, 5, 181–194. https://doi.org/10.1007/s42832-021-0126-y
Wu, Y., Wang, S., Xu, J., Zang, F., Ilga, D., Wu, Y., Wangas, Y., & Nan, Z. (2025). Simultaneous immobilization of multiple heavy metal(loid)s in contami-nated water and alkaline soil inoculated Fe/Mn oxidizing bacterium. Journal of Environmental Sciences, 147, 370–381. https://doi.org/10.1016/j.jes.2023.11.010
Qu, C., Qian, S., Chen, L., Guan, Y., Zheng, L., Liu, S., Chen, W., Cai, P., & Huang, Q. (2019). Size-dependent bacterial toxicity of hematite particles. Environmental Science & Technology, 53, 8147–8156. https://doi.org/10.1021/acs.est.9b00856
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.