Analysis of the structural parameters of engineered wood

DOI: https://doi.org/10.3846/mla.2025.24064

Abstract

This study hypothesises that the tensile strength of wood-duroplastic composites (WDPC) is influenced by wood waste particle size and shape. The research investigated whether variations in the structural composition of wood waste particles have a significant impact on the properties of composite materials. The analysis of the three types of wood waste—door production, packaging, and demolition waste—was conducted following mechanical and chemical treatment. The characterisation of particles was conducted through granulometric analysis and morphological evaluation using ImageJ software. Composite samples were then developed using biopolyurethane binders. Tensile strength tests were conducted after 30 days of curing. The findings of the present study indicated that the morphology of the particles, especially their aspect ratio and circularity, had a significant impact on the strength of the composite materials. Despite their comparatively greater density, attributable to their aluminium content, samples of door waste did not demonstrate superior tensile strength. The present study makes a contribution to the field of sustainable waste reuse strategies and presents practical insights into the development of engineered wood products.

Article in English.

Dirbtinės medienos struktūrinių parametrų analizė

Santrauka

Šio tyrimo hipotezė teigia, kad medienos duroplastiko (WDPC) kompozitų tempiamasis stipris priklauso nuo medienos atliekų dalelių dydžio ir formos. Tyrime buvo nagrinėjama, ar skirtinga medienos atliekų dalelių struktūrinė sudėtis veikia kompozitinių medžiagų savybes. Buvo tiriamos trijų tipų medienos atliekos – durų gamybos, pakavimo pramonės bei baldų ir statybos pramonės atliekos – analizę atliekant po mechaninio ir termocheminio atliekų apdorojimo. Dalelėms charakterizuoti buvo nustatinėjama granuliometrinė sudėtis bei kiekvienos rūšies ir frakcijos medienos atliekų dalelių forma, vertinimui naudojant ImageJ programinę įrangą. Atlikus medienos atliekų dalelių analizę, naudojant biopoliuretaninį rišiklį, suformuoti kompozitinės medžiagos bandiniai. Bandiniai 30 dienų buvo kietinami ir vėliau atlikti bandymai nustatant tempiamąjį stiprį. Nustatytas reikšmingas ryšys tarp kompozitą sudarančių dalelių morfologinių parametrų, ypač AR (aspect ratio), apskritumo ir stipruminių savybių. Nepaisant to, kad bandiniai iš durų gamybos atliekų turėjo didesnį tankį dėl sudėtyje buvusių aliuminio dalelių, tempiamojo stiprio rezultatai reikšmingai nesiskyrė. Šis tyrimas prisideda prie tvaraus atliekų naudojimo strategijų kūrimo, taip pat jame pateikiamos praktinės įžvalgos, susijusios su dirbtinės medienos gaminių kūrimu.

Reikšminiai žodžiai: medienos atliekos, medienos duroplastiko kompozitas, tempiamasis stipris, dalelių morfologija, cheminis apdorojimas, biopoliuretanas, tvarumas, granuliometrija, atliekų perdirbimas, žiedinė ekonomika.

Keywords:

wood waste, wood-duroplastic composites, tensile strength, particle morphology, chemical treatment, biopolyurethane, sustainability, granulometry, recycling, circularity

How to Cite

Rimkienė, A., & Vėjelis, S. (2025). Analysis of the structural parameters of engineered wood. Mokslas – Lietuvos ateitis / Science – Future of Lithuania, 17. https://doi.org/10.3846/mla.2025.24064

Share

Published in Issue
October 15, 2025
Abstract Views
30

References

Chen, H. C., Chen, T. Y., & Hsu, C. H. (2006). Effects of wood particle size and mixing ratios of HDPE on the properties of the composites. Holz als Roh- und Werkstoff, 64(3), 172–177. https://doi.org/10.1007/s00107-005-0072-x

European Chemicals Agency. (2024). Wood packaging materials and biocides – environmental and health risk review. https://echa.europa.eu/hot-topics/biocides

European Committee for Standardization. (1993). Wood-based panels – determination of density (EN 323:1993). CEN. https://pdfcoffee.com/en-323-1993-en-pdf-free.html

Frihart, C. R., Pizzi, A., Xi, X., & Lorenz, L. F. (2019). Reactions of soy flour and soy protein by non-volatile aldehydes generation by specific oxidation. Polymers, 11(9), Article 1478. https://doi.org/10.3390/polym11091478

Gutowski, J. M., Bobiec, A., Ciach, M., Kujawa, A., Zub, K., & Pawlaczyk, P. (2023). The afterlife of a tree. WWF Polska. https://www.researchgate.net/profile/Pawel-Pawlaczyk-2/publication/380403006_The_Afterlife_of_Tree/links/663b437535243041536b03c8/The-Afterlife-of-Tree.pdf

International Organization for Standardization. (2022). Thermal insulating products for building applications – determination of compression Behaviour (ISO Standard No. 29469). https://www.iso.org/standard/78393.html

Kociszewski, M., Gozdecki, C., Wilczyński, A., Zajchowski, S., & Mirowski, J. (2012). Effect of industrial wood particle size on mechanical properties of wood-polyvinyl chloride composites. European Journal of Wood and Wood Products, 70(1–3), 113–118. https://doi.org/10.1007/s00107-011-0531-5

Merganiov, K., Mergani, J., Svoboda, M., Bae, R., & Ebe, V. (2012). Deadwood in forest ecosystems. In J. A. Blanco (Ed.), Forest ecosystems – more than just trees. InTech. https://doi.org/10.5772/31003

Michalak, R., & Ministerial Conference on the Protection of Forests in Europe. (Eds.). (2011). State of Europe’s forests 2011: Status & trends in sustainable forest management in Europe. Ministerial Conference on the Protection of Forests in Europe.

Mwanzia, M. N., Mugo, W., & Soitah, T. N. (2024). Effects of wood particle sizes on bonding and mechanical strength of wood plastic composites. Journal of Materials Physics and Chemistry, 12(1), 11–16. https://doi.org/10.12691/jmpc-12-1-2

Pandey, S. (2022). Wood waste utilization and associated product development from under-utilized low-quality wood and its prospects in Nepal. SN Applied Sciences, 4(6), Article 168. https://doi.org/10.1007/s42452-022-05061-5

Raši, R., & Ministerial Conference on the Protection of Forests in Europe. (Eds.). (2020). State of Europe’s forests 2020: Status & trends in sustainable forest management in Europe. Ministerial Conference on the Protection of Forests in Europe. https://foresteurope.org/wp-content/uploads/2016/08/SoEF_2020.pdf

Rimkienė, A., Kairytė, A., Vėjelis, S., Kremensas, A., Vaitkus, S., & Šeputytė-Jucikė, J. (2024). Structure formation in engineered wood using wood waste and biopolyurethane. Materials, 17(16), Article 4087. https://doi.org/10.3390/ma17164087

Rimkienė, A., Vėjelis, S., & Vaitkus, S. (2025). Analysis and use of wood waste in lithuania for the development of engineered wood composite. Forests, 16(4), Article 577. https://doi.org/10.3390/f16040577

SGS Group. (2024). VOC emissions from coated wood products: Risk assessment and compliance under REACH 2024. https://eecloud.sgs.com/UploadCenter/Publication/20230822171151.pdf

Statnik, E. S., Dragu, C., Besnard, C., Lunt, A. J. G., Salimon, A. I., Maksimkin, A., & Korsunsky, A. M. (2020). Multi-scale digital image correlation analysis of in situ deformation of open-cell porous ultra-high molecular weight polyethylene foam. Polymers, 12(11), Article 2607. https://doi.org/10.3390/polym12112607

Vasiliev, S., Panov Gennadievich, N., Dospekhova Anatolyevna, N., Rakovskaya, M., Pronin, I., & Kolesnikov Nikolaevich, G. (2021). The effect of the size and shape of wood particles on the tensile strength perpendicular to the plane of the particleboard: Experiments and modeling. Journal of Applied Engineering Science, 19(2), 383–389. https://doi.org/10.5937/jaes0-29059

Xiong, J., Zhang, G., Qiu, Z., & Li, Y. (2013). Vision-sensing and bead width control of a single-bead multi-layer part: Material and energy savings in GMAW-based rapid manufacturing. Journal of Cleaner Production, 41, 82–88. https://doi.org/10.1016/j.jclepro.2012.10.009

View article in other formats

CrossMark check

CrossMark logo

Published

2025-10-15

Issue

Section

Civil Engineering / Statybos inžinerija

How to Cite

Rimkienė, A., & Vėjelis, S. (2025). Analysis of the structural parameters of engineered wood. Mokslas – Lietuvos ateitis / Science – Future of Lithuania, 17. https://doi.org/10.3846/mla.2025.24064

Share