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ABSTRACT

The analysis of the discrete Mellin convolution is given. A generalization of rezults from
[4,5] is presented. Some applications illustrate the efficiency of proposed methods.

1. MAIN RESULTS

Let denote by 1, , — the Banach space of sequences a(n), such that
a(n)n’="? € 1,, v € R,1 < p < 0o, with norm

la()ll,, = lla(m)n*="2]), ;

l,p(z) — the Banach space of functional sequences a(n,z),z € (0,00), such
that a,, € l,,,, where a,, = esssup |a(n, z)|, with norm
T

la(n, 2)l;, 2y = lanll;,

L, , — the Banach space of functions f(z),z € (0, c0), such that f(z)z"~'/P €
L,,veR,1 < p< oo, with norm

IF @)y, , = If@)a" =7, .
DEFINITION 1. Let

he(n,z) = Y a(k,2)b(m,k"x) = a(n/k,2)b(k, (n/k)"z),n >1, (1)

km=n kln
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here T # 0, k|n means that k is divisor of n. Sequence h.(n,z) = (a*b)-(n,x)
is said to be discrete Mellin convolution of functional sequences a(n,z) and
b(n,z) with 7-degree dilation (DM C7).

Under the fixed a(n,z) and 7 the DMC, is a linear operator mapping
sequence b(n,x) into h,(n,x).

LeEMMA 1. Let a(n,x) € l,11/4,1(x). Then the DMC; is a bounded operator
inlyp(z),r € R,1<p<oo, and

@ *b)e (), oy < Nt . o 16,2, -

Proof. It is evident that

he(n,x) =Y a(n/k,z)b(k, (n/k) z) = b(n/k,k"z)a(k,z).

The convolution turns into

x) = Z bk (z, T)a(k, x),
k=1

where B(z,T) = {bpk(z,7)} is a DM C, - matrix. For p = oo

ank x, 7)a(k,x)

T k=1

)

||hr("a33)||z,, (z) = Supn Y|hn| = sup (n ess sup

<sup ((§) b)) Sk a = a2l o0, o

When 1 < p < oo the result follows from the generalised Minkovsky inequality

(see [1]):
)p) 1/p

0 [/ oo 1/p
<y (Z azbzknw—1> = lla(n )l @60 D), -

> bui(z, T)alk, z)

k=1

e, 2)l;, () = (Z (n"l/pesssup

n=1 z

LEMMA 2. Discrete Mellin convolution (1) is associative.
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Proof. We have the following equalities

((axb)xc) (n,z) = Z (axb):(k,z)e(m, k™x)

km=n

= Z (Z a(s,w)b(t,sT:v)> c(m,k"x) = Z a(s,z)b(t,s"x)c(m,s"t"x)

km=n \st=k stm=n

= Z a(s, ) ( Z b(t,sT:U)c(m,sTtT:n)) = Z a(s,z)(bxc) (w,s"x)

sw=n tm=w sw=n

=(ax(bxc);)r(n,x).

O

DEFINITION 2. A sequence a !(n,z) is said to be reciprocal to a(n,z) with

respectthe to the DM C., , if almost everywhere on (0, c0)

1,n=1,

(a ES ail)‘r(nvm) = (ail * a)T(n,l’) - 6n - {O,H > 1.

LEMMA 3. If ainr = essinf |a(1,z)| > 0, then the reciprocal sequence may be
T

expressed by the recursion relation

a'(1,2) =

at(n,x) = - Z a”(k,z)a(m, k" x)

a(l,n"x
( ) km=n
k<n
-1 Z a(k,z)a™ (m,k"x),n > 1
a(l,x) ) ) ) )
km=n
m<n
or in the explicit form
1
-1 _
™ (n,7) a(l,n"x)

;T

EEHLEDY a(il,ﬂf)) aliz,ifw)  olijg) i3 iy _12)
i(9)

i a(l,z

a(1,i7x) a(1,ifif - ify @)

(2)
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whereAn:<ﬁ:(ﬁg,ﬁ3, wBn), B =0,1,2,.. |Hk5’“—nn>1> i(B3) is

a set of permutatzons of naturals corresponding to B, # 0 (number k is taken

B times), |B] = E Br- As soon as a(n,x) = a(n) the last formula becomes
k=1

0= gy T o (40 (0" ()

BEAR

Proof. Formulae (2) and (3) directly follow from the Definition 1. Formula
(4) will be proved by induction. For n =1 (4) gives (2). Suppose (4) be true
when n < k. Then from the formula (3) and from the induction hypothesis
for n = k we obtain

—1 _ 1 —1 T
(k,z) = ) > al(s,@)alt,s"w)
st=k

s<k

_ Z Z (=17 a(iy,z) i, 1715 -~ ifp 12) | a(t,s™x)
£~ (1, ) a(l,37i% - - 'i\Tmflm) a(l,s7z)

1 Z 1)l Z (1, ®) a(jo, jTx)  Allal,JTJ2 ** Jja|—1%)

~a(l, k) a(l,z) a(l,jiz) a(lajfjg"'jfa\—ﬁ) ,

a€Ayg

since Ay, = {a = (Ba2, ..., 5t + 1,...,0k), B € A, st = k}. Thus statement is
proved for arbitrary n. O

THEOREM 4. The existence of m sequences a,(n,x) froml,1(z),n =1,...,m,
such that
1) (ay *az*..%ap), (n,)=a(n,z);
2) llau (2l ) < essinf a,(1,2)] + esssup la,(1,2)]
’ T
= Quinf +au1, p=1,...,m

is sufficient for a=t(n,z) belongs to l,1(z).

Proof. Tt follows from 2) that the reciprocal sequence b=!(n,z) belongs to
l,.1(x) for any sequence b(n,z). In fact

. : L]
bl =esssup|bt(n,z)| < pP2pfs . pBn
n zp| ( )| = Z blﬁH—l B2185! -+ B! 2 Y3 n

BeA, Yinf
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where b,y = essinf |b(1,z)|. Then

v—13—1 |' B26(r—1)B21839(r—1)4 Br (Vl)
Zn b, <Zzb|m+1g2 ot 2 s by

n=1p3€A, Yinf

Z Z bs+1 ﬁ2'ﬂ3 ! ﬂk!bébQ(u—l)ﬁz . bfkk‘(u_l)ﬁk

5=0 |§|=s ~inf

1 oo N1 1
3 (e D) =
1n s=0 1nn2 1n 1_ Enyilbn

bint n=2

1 B 1
b E oty bt + b= [(n )]

u1(z

Thus each sequence a;;'(n,z) € l,1(x). We deduce from Lemmas 1, 2 that
a ' (n,z) € l,1(x). O

The conditions of theorem 4 are best possible, because there are sequences
for which these conditions are necessary and sufficient. For example, a(n, z) =
(1,a,0,...,0,...).

Examine the operator

(Mg - f) (z) = Z a(n,z)f(n"z), ™ # 0,z € (0,00). (5)

n=1

LEMMA 5. If a(n,z) € li—;p1(x), then My, (5) is bounded operator in
Lyp,veR,1<p< 0.

Proof of the lemma follows from the generalised Minkovsky inequality.

THEOREM 6. Suppose a(n,x),b(n,x) € li_;y1(x). For arbitrary function
f(x) € Ly,p,v € R,1 < p< oo itis true that

(Ma,TMb,T) f = Mh,‘l'f)
where My, » is the operator (5) corresponding to h-(n,z) = (a *b)-(n,x)

Proof.
For any function f(z) € L,

)

(Mar (Mo f)) () =Y aln,z) (My,r f) (")
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= Z a(n, ) Z b(k,n"z)f(n"k™x) = Ink = m|
n=1 k=1
= Z ( Z a(n)x)b(kﬂf—m)) f(me) = (Mh:"'f) (1‘)
m=1 \nk=m

Rearrangement of summands is possible due to Lemmas 1, 5. O

COROLLARY 1. Under conditions of the Theorem 4 the following formula
is true for arbitrary function f(z) € L, p,v € R,1 <p < o0

Maiql—f = Ma_l,rf' (6)

Here a=Y(n, ) is reciprocal sequence to a(n,z) with respect to the DMC,.
Proof of this corollary follows from Theorems 4, 6.
Let us consider the following integral equations of the Mellin convolution
type on (0, 00):

71«( DY 1% = o) @
70 E(L D) 1% = gto), Q
7 Ko, o) (1t = g(a), ©)
7 k() (0t = g(a), (10)

Such equations are well-known when k(u,w) = m(w) is a hypergeometric
type function, see [1], [2]. We solve (7)-(10) with the kernels of another
special type:

k(u,w) = Z a(n,u)m(n"w), # 0,u,w € (0, 0). (11)

Here we suppose that solutions of (7)—(10) with k(u,w) = m(w) are known.

LEMMA 7. Let k(w) = esssup |k(u,w)| € L,1. The operators from the left

parts of (7),(8) [(9),(10)] are bounded ones from L, p [L1_pp/, vER, 1 <
p < ooinlL,y.
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LEMMA 8. Ifa(n,z) € li_rp1(x),m(x) € L, 1, then (11) is satisfied assump-
tion of Lemma 7.

Proof of the Lemmas 7, 8, immediately follows from the generalised Minkov-
sky inequality. In this case rearrangement of summing and integrating is
possible due to the analogue of the Fubini theorem [3].

Using the obtained results we can express equations (7)—(10) with kernel
(11)in the form

(M. Q) @) = 3 aln )fm("?)f(w—:g(x), (12)
0

n=1

@M1 @) = [ (5) (Z b(m)f(nft)) Lo, 1)

(Mo Kf)( Za /m (n"xt) f(t)dt = g(z), (14)

(KM._.f)(z /m (Zc (n™Tt) ) dt = g(x), (15)

n=1

where

b(n,z) =a(n,n"x), c(n,z)=aln,n "z)n ",

:/m(xt)f(t)dt, (@Qf)(z) z/m(f)f(t)%‘
0 0

All series in (12)—(15) converge in mean under the Lemmas’ 7, 8 conditions.
With Theorems 4, 6 and formula (6) we obtain the solutions of equations in
the following form:

f@) = (Q7 My-1,,9) (), (16)
f@) = (My-1,Q7"g) (2), (17)
fla) = (K7 My-1,,9) (2), (18)
fl@) = (M., K g) (). (19)

This paper generalize the results of [4], [5].
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