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1. INTRODUCTION

One general methodology for investigation of difference schemes, which ap-
proximate nonstationary nonlinear differential equations, is given in [1,2].
That methodology is based on the nonlinear stability definition and enables
us to use the investigation formula ”aproximation + stability= convergence”
in the nonlinear cases.

In this note we modify this scheme of investigation by using the definition
of asymptotical stability of nonlinear difference schemes. It enables us to
prove uniform in time error estimates. The efficiency of such methodology
is demonstrated for implicit and explicit finite - difference schemes which
approximate the semilinear diffusion-reaction problems

ou 0 ou .
E—;a—%(%(w)a—%) +fltu) o Qx(0,00), (L)
u=0 on 00N x[0,00) (1.2)
u(-,0) = ug in Q.

Here Q is a rectangular domain in R?,d > 1,a;(z) are given functions satis-
fying conditions

0< AL < aj(a:) <Agr in Q. (14)

In this paper we use the following norm convention

lv(, )L = sup [v(z, ).
z€Q
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Then we define the neighbourhood of the solution
B(u, R) = {v:|lu(-,t) —v(-,)||lo.. < R}
We assume that the differential equation has some structure which forces a
solution to approach an equilibrium. More precisely, we assume the following;:
(H1) f(z,t,v) = F(z,v).
— 00

(H2) The problem (1.1) — (1.3) defines asymptotically stable nonlinear oper-
ator in B(u, R), i.e.:

d
J =2 (@)%, + fi.(t,U)®]dz
Amax () = max &=
PeH] [ ®%dx
Q

<0

for any U € B(u, R), here H} is the subspace of the standard Sobolev space
H'(Q) satisfying the homogeneous Dirichlet boundary conditions.

Then ||u(-,t) — Ul|L., = 0, where U satisfies the stationary problem

Following [2] (see, also [3]) in the difference scheme to be described below
we replace function f by a smooth function fg, which coincides with f in
B(u, R). Outside of B(u,R) fr is bounded and Lipschitz continuous, where
all bounds depend only on u and R. This replacement does not affect the
exact solution u(z,t).

Finally we mention some related work. Larsson [3] analyses the long-time
behavior of the dissipative backward Euler method. He proves error esti-
mates in the Ly norm. The approximation of ”contracting” trajectories near
asymptotically stable equilibra by an explicit Euler finite-difference scheme is
considered by Sanz-Serna and Stuart [4]. The qualitative behaviour of spa-
tially semidiscrete finite element solutions of a semilinear parabolic problem
near an unstable hyperbolic equilibrium is studied by Larsson and Sanz-Serna
[5]. We mention the important work of Heywood and Rannacher [6].

2. FINITE-DIFFERENCE SCHEME

In this section we describe the finite-difference approximation of (1.1) — (1.3).
Let Q, be the uniform time mesh with the time step 7. Let Q5 = Qqp X
Qop X -+ - X Qgp be a discretization of 2, where ;;, are space meshes obtained
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by dividing space intervals ]0, 1] into mesh intervals by a sequence of points
x5 = jh,j =1,2,...,N — 1, where Nh = 1 and h denotes the space step.
Then for any vector j = (j1,j2,...,J4) with 0 < jr < N we get a discrete
point Xj = (.’I,'ljl, AN 737de) € Qh-

Let UJ' denotes the discrete approximation of u(Xj,t,). We also use the
notation

Vie+ak)=V(xy,...,o +a,...,zq).

The inner product between mesh functions U and V' and the discrete Lo
and L., norms are defined by

(0V) =0t Y V), Wil= VT,
XeQy
IVlloo = mas [V(X)].

The finite-difference scheme is defined as follows

Un+1 Un d .
}: DU’ + fr(X,thio,U%) in Qp, (2.1)

Urtt =0 on 0y, (2.2)
U(X, 0) = U,O(X) in QpU0Qy, (23)

where Dy, is an approximation of the differential operator by central differences

[%w+hkﬂwx+mm—wxn

LR (0 ~U(x - miw)],

DU = 53

—ay, (X _
and we use the following notations
U° =oU™ + (1-0)U", tpto=tn+or, 0<0o<1.

It is well-known that Dy, satisfies the estimates (see, e.g. [6])

445, . 5 (Th 2 4 2
- _ < — . .
—3 sin ( 5 )||U|| < ( DkU,U) < hQAR”D” (2.4)

3. THE METHOD FOR INVESTIGATION OF NONLINEAR
DIFFERENCE SCHEMES

In this section we consider a modification of a general investigation method
which was proposed in [1,2].
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First the existence of the unique solution of finite-difference scheme (2.1) —
(2.3) is proved. We find a solution by using the iterative method

s+1 d
U -Uun s+1g s .
- = ZDk U +fR(X7tn+o'7U0—) mn Qha (31)
T k=1
s+1
U=0 on 9Qp, (3.2)
U="U",

where {7 denotes the s-th iterative approximation and U'=01 +(1—0)U™.
As it follows from [2] the convergence of the iterative method (3.1) — (3.2)
and the uniqueness of the solution depends on the following stability property.

Let us consider the auxiliary discrete problem for the difference V"+! —
Wn+1

n+1 _ n+1 4
VoW o3 (vt - (3.3)
T k=1
+fr (X, tnie, o P 4 (1 — U)U")
—fR(X, tnto, UQnJrl + (]. — U)Un) in Qh,
yrtt ettt = on 0y, (3.4)

where U™ € B (u(tn), R) and P! Q"' are any functions satisfying bound-
ary conditions (3.4).

DEFINITION 1. The finite-difference scheme is said to be stable, if for
sufficiently small 7 < 19, h < hg the following estimate

[V — W) < 7Cp [P — Q™| ) (3.5)

holds for problem (3.3) — (3.4), where Cp may depend on constants which are
used for the definition of fgr.

Then the following theorem is proved in [2].

THEOREM 3.1.  If the difference scheme (2.1) — (2.3) is stable then for
sufficiently small T < 71 the iterative sequence defined by problem (3.1) — (3.2)
converges to the solution of the difference scheme (2.1) — (2.3), the following
estimate

s qs 1
U = U o) < 1——q” U-U"a), a<1

holds and this solution is unique.
Now we will give one important remark about the realization details of the
iterative method (3.1) - (3.2).
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REMARK 1. The main norm || - [|(1) can be weaker than the maxi-
mum norm || - ||ec. We will prove below that for sufficiently small 7 < 7

the solution U"*! € B(u(tn+1), R). Hence we have that fr (X, tntos U") =

f (X, thto, U"). In the formulation of the iterative method we can use a ball
B(U™,2R). If after convergence of the iterative sequence U"! ¢ B(U™,2R),
we decrease the time step 7. It is important to note that some [j' may not
belong to B(U™,2R) (nor to B(u(tnﬂ), R))

Now we will investigate the convergence of the discrete solution. The global
error Z' = Ul* — u(Xj, t,) satisfies the problem

Zn+1 _gn d
> DuZ° + fr (X, tnio, U) (3.6)

—=
k=1
—frR(X, tpgo,u”) + 9" in
Z"=0 on 0Ny, (3.7)
Z(X,0)=0 in Qp,U0Q,

where the function

unJrl _ un d

is called the truncation error.
DEFINITION 2.  Finite-difference scheme (2.1) —(2.3) is said to be asymp-
totically stable, if for sufficiently small T < 19, h < hg the following estimate

1270y < e TNZ™ ) + 70718 | ), (3.8)

holds for problem (3.6) — (3.7), where Cs,Cr are nonnegative constants that
may depend on constants used in the definition of function fg.
Let assume that the following estimate

1T"|2) < Ca(r® +17), @, B>0,n>0 (3.9)

is valid for the truncation error.

THEOREM 3.2.  Let finite-difference scheme (2.1)—(2.3) be asymptotically
stable. Then for sufficiently small T < 13 the global error of the solution of
difference scheme (2.1) — (2.3) satisfies the uniform in time estimate

U™ = u(ta)lloy < Cr* + ). (3.10)
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P r o o f. By iterating the stability estimate (3.8) we have

12"y < e Ostntmd)znmmy|

+7Cr  max  |[W| ) (L+e T 4o e CstmmlT),
n—m<j<n—1

With 7 < 79 we thus get

C .
n —Cs(tn—tm n—m T Csr
1270y < e Cx |z gy + TEe e [y (31)

Taking t,,, = to and using (3.8) we prove the required uniform in time global
error estimate (3.10). This completes the proof. O

There we will make one important remark (see also [2,3]). Although the
replacement of f(xz,t,u) by fr(z,t,u) does not affect the exact solution of
the differential problem, it may change the solution of the difference scheme.
Hence it is necessary additionally to prove the convergence estimate in the
maximum norm L.,. Examples of such analysis will be given below.

Next we consider the corresponding discrete stationary problem

d
—> DV =Fg(z,V) in Q, (3.12)
k=1
V=0 on O9.

The existence of the solution V' is guaranted for small h if Fg satisfies the
assumption (H2) and since V is a finite-dimensional vector.

Then finite-difference scheme (2.1)—(2.3) can be used as an iterative method
for finding the solution of stationary problem (3.12).

THEOREM 3.3.  Let finite-difference scheme (2.1) — (2.3) is asymptotically
stable. Then U™ converges to the stationary solution V of (3.12) and the
following error estimate is valid

(U™ = V|a) < e 955U = V| ). (3.13)

Moreover, V converges to a stationary solution U of (1.5) and V — U satisfies
the estimates

IV~ Tl < OB, (3.14)
Proof. The difference Z" = U™ — V satisfies the problem

Zn+1 _gn d
Z D.Z°.

- =
k=1
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Then it follows from (3.11) that
12" < e 12°)).
Hence an initial error ||Z°|| is reduced 1/e times if n > In(1/€)/(CsT).

We now turn to the proof of (3.14). Substituting U into (2.1) we get that
the truncation error satisfies

||\I’||(2) < CAhﬁ, 8> 0.
Then by (3.11) we obtain the uniform in time error estimate

Cr

Z KB
Csh.

jU" =T < e=“s(JU° — U] +

Using this inequality and the established fact that U™ — V as n — oo we
prove (3.14). The theorem is proved . O

4. THE IMPLICIT FINITE-DIFFERENCE SCHEME

In this section we apply general results of Section 3 to the implicit scheme
(2.1) - (2.3) witho =1

Un+1 _yn d
f = ZD]CU”+1 + fR(X, tn+1,Un+1) in Qh, (41)

k=1
untt =0 on ON,. (4.2)

We assume the following hypotheses.

(H3) The function fg is globally Lipschitz function, i.e.
|fr(z,t,U1) = fr(z,t,Us)| < LUy — Us|.

(H4) The smooth function fg satisfies the estimate

%(m,t,v) <-Sp, Sg>0.

It is well-known that for a sufficiently smooth solution u(z,t) of (1.1) —
(1.3) the truncation error satisfies

|¥| < Ca(r+h%) in Q. (4.3)
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It is sufficient to prove that finite-difference scheme (4.1)—(4.2) is stable and
asymptotically stable.

LEMMA 4.1.  Let assume that (H3) and (H{) are satisfied. Then finite-
difference scheme (4.1) is stable and asymptotically stable in Lo, i.e. ||-||;) =
I lloorj = 1,2.

Proof. In order to prove that scheme (4.1) is stable we consider the
auxiliary discrete problem (see (3.5))

Vn+1 _ Wn+1

T

o
= ZDk(Vn+1 — WTH_I) + fR(Xa tn+17Pn+1)
k=1

—fr(X, thi1, Q™)

It follows from the maximum principle that

||Vn+1 - Wn+1||oo S T||fR(',tn+1,Pn+1) - fR(':tn+laQn+1)| 00

By the estimate (H3) we now have that for n >0
VP = W < TLIP = Q7

We conclude that finite-difference scheme (4.1) — (4.2) is stable.
We now turn to the proof of asymptotical stability. The global error Z =
U — u satisfies the discrete problem

Zn+1 _gn

d
- = Y DpZ" + fr(X, tng, U™

k=1
_fR(X; tn+1; u(tn+1)) + on,

Then it follows from (H4) and from the maximum principle that

1
72" o < ——— (11200 U] ).
12" oo < g (127110 + 7127 )
We note that
1 —rCr
— =7 fi C 0.
1+7Sg € or P>

This completes the proof of the lemma. O

Hence the conclusions of Theorem 3.1 and Theorem 3.2 hold for the implicit
difference scheme (4.1) — (4.2) if the function fg satisfies assumptions (H3)
and (H4).

We also remark that, since the asymptotical stability is proved in the max-
imum norm L., we have

U™ —u(tn)]|loo <R, 0<t, <o
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for 7 and A sufficiently small, so that, in fact,
fR(X; tn, Un) = f(X; tn, Un)

Now we replace the assumptions (H3), (H4) with the following more general
assumption:

(H5) The smooth function fr satisfies globally the estimates

Ofr(z,t,v)

— <
St < ou

<Sgp for Sp,Sg>0.

In order to use the results of Section 3 we will prove the stability estimates
in Lemma 4.2 and Lemma 4.3.

LEMMA 4.2.  Let fr be a smooth function satisfying (H5). Then finite-
difference scheme (4.1) is stable in L

P roof. It is sufficient to note that the assumption (H3) follows from the
assumption (H5) with L = max(Sr,Sg). Then the stability inequality (3.5)
follows from Lemma 4.1. This completes the proof of Lemma 4.2. O

LeEMMA 4.3.  Let fr be a smooth function satisfying (H5) and the follow-
ing inequality

4
dApA — Sr > Cf, A= — sin2 (%h), Cf >0 (4.4)

h2

is valid. Then finite-difference scheme (4.1) is asymptotically stable in Lo,
i-e. the stability inequality

17 < e (1270 + 7l1en))) - for  Cr >0 (4.5)

holds for the global error.
P roof. Wefirst split fg as fr = f}.{ — fr, where

Of Ofg
0< = <8 0<=28<S 4.6
i -~ Ou — (46)
Then we have the discrete problem for the global error
Zn+1 —_gn +
6fR Zn+1 ZD Zn+1 afR Zn+1 + ", (47)
T ou

Taking the inner product of (4.7) with Z"*! and using (4.6), we get

d
IZmE <z 2 e S (D2, 2
i=1
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+7SRIIZMHP + 1127
Using (2.4) and (4.6), we have
(1+7(dArh = Sr) )27 < 1127+ 7ll e (48)
We note that (4.4) implies
1+ 7(dAgh — Sg) =e™" for  Cp >0,

hence (4.5) follows from (4.8). This completes the proof of Lemma 4.3. O
Since the asymptotical stability is proved only in the L; norm, we must
prove that U™ € B(u(ty), R). It follows from (4.3) and the well-known inverse
inequality
12" |00 < h 2127

that the global error satisfies the estimate
127l < CH=9/2(r + B2).
Hence, for d < 3 and 7 = Coh?/?* with £ > 0, we have
127l < C(h° +1*~%%) < R

for sufficiently small i and 7.

In the one dimensional case d = 1 we can prove that U" € B(u(t,), R)
without imposing the restrictive relation between sizes of parameters T and
h.

LEmMMA 4.4.  Letd=1 and fr be a smooth function satisfying (H5) and
the following inequalities

8
||£||m < Sp, AL\ —Sr=Cp>0. (4.9)

Then for sufficiently small T and h we have that U™ € B(u(t,), R).
P roof We will use the well-known multiplicative inequality (see, e.g.

[71)
12"l < CllZZ]*211 27,

where we denote

N
Zi —Zj_
1Z517 = 3 ha(Xj0.5) (F2)"

j=1
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It is easy to see that
1ZZ]] < 1UZ]] + [lug]]-

Since u(z,t) is a smooth function, we have [|u}]| < C. It remains to prove
that ||UZ]| is also globally bounded.

Taking the inner product of (4.1) with D;U™"! and using the Green’s first
formula we get

Uz + 7D U < (1U7]] IIU”“]I
r(An) B e+ smlv ) g
Using the inequality (see, e.g. [6])
DU > M AL|TZ
and the assumption (4.9), we get
(14 7(\AL = Sw) )[U21]] < [U2]] + 7 ARSp-

By iterating this inequality, we have the uniform estimate

1011 < 11UZN + (1 + 7CF) ARSF/Ch.
Hence the global error Z™ can be estimated in the Lo, norm by

12" |loo < C(r + 1?)*?

and U™ € B(u(tn), R) for sufficiently small 7 and h. This completes the proof
of Lemma 4.4. O

5. THE EXPLICIT FINITE-DIFFERENCE SCHEME

In this section we apply general results of Section 3 to the explicit scheme
(2.1) - (2.3) with o0 =0

d
ZDkU”JrfRth,U") in Qp, (5.1)
=1

Urtt =0 on 0Qy. (5.2)

Un+1 Un

Since we are using an explicit scheme, only asymptotical stability must be
investigated. We again note that for a sufficiently smooth solution u(x,t) of
(1.1) — (1.3) the truncation error satisfies (4.3).
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LEmMMA 5.1.  Let fr be a smooth function satisfying (H5) and the in-
equality (4.4) is valid. Then for sufficiently small T < 19, where

2
= 5.3
= Apad/n2 + S, + Cy (5:3)
the finite-difference scheme (5.1) — (5.2) is asymptotically stable.
P r o o f. The global error Z = U — u satisfies the discrete problem

Zn+1 _gn d

— = > DyZ" + fr(X,tn, U™) (5.4)
k=1

—frR(X, tn,u/(tn)) + 2.

In our stability analysis we will use the method similar to one presented in
[4]. Let define the following matrices

d 8fi
AZ =N "Dnz, T*7=2lR7
I; ke Ou

Taking L, norms of (5.4), we obtain
12 < T+ 7 (A+ T =T 127 + e (5.5)

Since A is symmetric and T* are diagonal the norm ||I + 7(A+ T+ =T )|
coincides with the spectral radius p of I + 7(A+ T+ —T~). Using (H5) and
standard results on eigenvalues of the matrix A, we get

4d

p = max (|1 - T(ARE

+Sp)] 1= 7 (AL — SR)|).

Taking 7 < 79, where 7y is given by (5.3), we get that p = 1 — 70y <
exp(—7Cy). Hence it follows from (5.5) that

127 < e 20|+ 7w

This completes the proof of Lemma 5.1. O

Again we must prove that U™ € B(u(t,), R). Since 7 < Ch? by (5.3), the
required global error estimate follows for d < 3 and small h from the inverse
inequality

127l < B2 127 < OO,
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