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1. INTRODUCTION

We consider the first boundary value problem for a nonlinear Schriodinger
type equation. There are a lot of studies on the numerical solution of initial
and initial-boundary problems for such equations [1-4]. We are interested in
finite difference methods, that have some grid analogues of conservation laws.
A three-layered explicit difference scheme of DuFort—Frankel-type is explicit,
conditionally stable and have some grid conservation properties. This scheme
was introduced for the Schrédinger equation in [3,4]. The consistency of this
scheme requires the condition 7/h — 0, where 7 and h are time and space grid
steps. In [4] the linear Schrédinger equations were investigated and stability
of the schemes was proved. In [3] nonlinear equations were also discussed
and the grid analogue of the conservative law in the space Ly was obtained.
But there were no proof of the convergence and stability of the difference
scheme. Thus, our paper is developing the results of [3,4]. In the case of
cubic nonlinearity we have obtained the analogues of conservation laws in the
spaces Lo and W. In the more general case we have got a new type of a
priori estimates, which where also derived for two — layered schemes in [1,2].
Under the condition 7/h? < v < 1/2|a|, where a is the constant from the
equation and v is some arbitrary constant, the convergence and stability of
the difference scheme in the norms of spaces C' and W were proved.

2. STATEMENT OF THE PROBLEM. AUXILIARY STATE-
MENTS

We consider the first initial-boundary value problem for the cubic Schrodinger
equation

— = iaT — iMul*u, (z,t) € Q, (2.1)
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with initial and boundary conditions
uw(0,t) = u(1,t) =0, te][0;T], u(z,0) =uo(z), =z€l0;1]. (2.2)

Here i = /-1, Q@ = (0;1) x (0;T), a, A are real constants, a # 0; u(z,t) is a
complex—valued function.
Note, that in d-dimensional case we can consider the equation

du . 0% Aluf?
= =ia ) —— —iAu|*u
ot = Ox;

instead of the equation (2.1).
We use usual definitions of the inner product in the space L, and the norms
of the complex-valued functions in the Sobolev spaces L, and W3 as

)= [ o @i, o, = [ i ol = i, + |22

Here w*(z) is the complex conjugate of w(z). Also we define Rev and Imv as
real and imaginary parts of the complex expression v. Let C'(Q) also be the
space of continuous functions with the norm ||v||¢(q) = max(, ;)cq [v(z,1)]-

It is well-known, that the solution of the problem (2.1), (2.2) satisfies the
following conservation laws for all ¢ € [0,T:

lu(®lL, = I(t) = 1,(0), (2.3)

|52l + 02y, = 1) = 2.0). 2.4

Note, that these laws are also satisfied in d-dimensional case, where d > 1.

We introduce a uniform grid with steps 7 and A in the domain Q: Qp = @y, x
wr and Qp = wi, Xw,. We consider that 7 =T /M, t; = j7, h =1/N, z; = lh,
Wr :{t]‘;j =0,...,M}, w, :{t]';j: 1,...,M -1}, &, ={z;;1=0,...,N},
Wwh = {:L’l;l = ].,...,N— ].}

We shall use grid the analogues of the Sobolev spaces L, and W21h. Ch
denotes the analogue of the space C(Q). Let us define inner products at the
grid @p, (u,v) = Eg}l wvfh, (u,v] = leil wv;h. The norms in this grid
are defined as follows:

lullz,,, = lelph lull* = (u,ul, flull® = (u,w), llullfy = llull® + [luz]]*.

In d-dimensional cases we can use analogous notations. For example, 2-
dimensional norms and inner products can be written in a followmg way:

N—-1 N
(u,v) = El,k:l ulvkvl*,kha (u,v] = El,k:l ul’kvikh2, ||'u,||’iph Zl i 1 g, k|l’h .
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We d'eHOte b= p{ = p(l'l,tj), ﬁ = p.ZJFl, ﬁ = pll?ila p = (ﬁ+ﬁ)/2) P+ = p{+17
P—=pi_1, P=p—+pt,p = (P—D)/27, pz = (p—p-)/h, pax. = B—p-) /D,
Pz, = (p—p-)/h

In d-dimensional cases we can use analogous notations. For example, 2-
dimensional notations can be written as follows: p = pik = p(xr, Yr, tj),

Pt = Pliirs Pom = Pl 1o Pt = Plyaps P— = Pl 1o P = Pom T 01
Pt Prs Do~ = (B —p- )/ poy = (p— D)/ Py = (B—p.-)/D,
Py = (0= P.+)/h.

We can prove the following grid analogues of one imbedding theorem and
a multiplicative inequality:

Let vg = U9 = vy = 0n = 0. Then

max{|[8]|c,, [[vlle, } < 0.5([[0an]] + ll62,1]), (2.5)

max{||9[[Z,, 101, } < 05([2ll + [[vll) (1o ]| + 82, 11)- (2.6).

In the following we shall also use a grid analogue of the Gronwall inequality
and some well-known imbedding theorems for the grid functions v, vg = vy =
0:

[0llz,. < llvllen < 0.5]vz]] < 0.5[[vl[wy, - (2.7)

3. THE DIFFERENCE SCHEME. GRID CONSERVATION
LAWS

We relate the problem (2.1), (2.2) with the following DuFort—Frankel type
difference scheme:

pP—2p
72

bt = ia - ZA|p|2p: (l’,t) € Qh: (31)

p(zo,t) =plan,t) =0, t€w,,  p(@0)=u(z), zewr (32

The solution on the first layer ¢; can be found using some two—layered scheme.
Note, that in d-dimensional case instead of (3.1) scheme we shall have

P-4
bt =1a 72

— iA|p|*p-

In [3] one case of a grid analogue of (2.3) for the difference scheme (3.1),
(3.2) was investigated. We can prove the following grid analogues of (2.3) and
(2.4):

LeMMA 3.1. [Grid analogue of (2.3)] The equality

2at

Ip(ti 0N + lIp@)I” + 55 Tm(p(t;), p(ti41)) = Tia(ty) = Lialto) — (3.3)
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is valid for the solution of difference scheme (3.1), (3.2) forallj =0,..., M —
1. Let the condition on the ratio of time and space grid steps

2|a|T
n2

<v<l, (3.4)

where v is arbitrary constant, be satisfied. Then the following estimate is
valid:

Ip(t 40117 + lpE)IP < p (IpEOIP + [Ip(t) ) - (3.5)

Here and later = ii‘—z

LeEMMA 3.2. [Grid analogue of (2.4)] The equality

e (4 D1 + IPey (0] + 2||p(tj+1)10(75j)||2 = L (tj) = Ian(to) (3.6)

is valid for the solution of the scheme (3.1), (3.2) for all j=0,...,M — 1.

REMARK. Note, that in d-dimensional case we can derive analogous grid
conservative laws. For example, in 2-dimensional case the first law reads in
the same way as (3.3), and the second law is

Ipax (i DI + [pe (4017 + Ipy< (4017 + Py ()]

F2 ()PP = Bnt) = (o).

4. CONVERGENCE AND STABILITY OF THE DIFFERENCE
SCHEME

Suppose that the solution of the problem (2.1), (2.2) is smooth enough to
satisfy the approximation of the difference scheme. Let ®(¢;) be a truncation
error. It is easy to find that this error is of order O(72? + h% + (7/h)?). Thus,
the consistency of the scheme requires the condition 7/h — 0 to be fulfilled.

Suppose that the solution of the problem (2.1), (2.2) is also smooth enough
to satisfy the following conditions:

max {[18()2,,} >0, 7h-0 (4.1)

and

ou
M= s Ol <. 3 = e |00,
) 2

te[0,T]
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(From here and from the imbedding theorem T/IO/% — (' it follows that

s Ju(t)l, < gy < 0524 (4.3)

Let € = u — p be an error of the solution. Then we have the following
difference scheme for this error:

ia .
e = §(€—25)+\IJ+<I>, (z,t) € Qn, (4.4)
e(x,0) =0 =z € w, e(zo,t) =e(zn,t) =0 t€ ;. (4.5)

Here
W = —i) (juli ~ |pp)

Suppose that the function ¢ on the first layer satisfies the condition
2
ety = 0. rh 0. (46)

Noting, that the equality

(ﬁ—p ﬁ——p—)
T ’ T

. . R 272
1Bex I + 1Pz 1P = 15211 + lIpz]|” + =5 Re (4.7)

B2
is valid, we can prove one more auxiliary lemma.

LeMMA 4.1.  Suppose that the conditions (3.4) and (4.6) are satisfied.
Then there exist constants 1o > 0 and hg > 0 such that for all positive T < 19
and h < hg the following estimates for the solution of the problem (3.1), (3.2)
are valid:

max lpex ()11 + s, (4)]) < M, (48)
5.y = max xr,ti)| < 0.5Ms3. 4.9
Ipllcn =, max, Ip(ar,1;)] < 050, (49)

Here M3 = Ms(a, A\, M;,v).

Now, using Lemmas and other properties mentioned above, we can prove
the convergence of the difference scheme in Ly and C' norm.

THEOREM 4.1.  Let the conditions (3.4), (4.1), (4.2), (4.6) be satisfied.
Then the solution of the problem (3.1), (3.2) converges to the solution of the
problem (2.1), (2.2) in the spaces Ly and C(Qy). There exist constants 9 > 0
and hg > 0 such that for all positive 7 < 19 and h < hg the following estimates
are valid:

Jell < eallstll + 2| _max {1@(t))]}- (4.10)
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el guy < callsen)ll + o _max {18(t5)I}- (411)

Here ¢; = ¢ (a, \, v, M1, T), 1 =1,...,4.

We can also prove the stability of the difference scheme on initial data in
the same norms.

Let uy (x,t), us(z,t) and p;, po be the solutions of the problems (2.1), (2.2)
and (3.1), (3.2) with the initial data ujo(z) and wag(x) respectively.

THEOREM 4.2. Let the conditions of Theorem 4.1 be satisfied. Then there
exist constants 7o > 0 and hg > 0 such that for all positive 7 < 19 and h < hg
the following estimates hold:

llp1 — p2ll < eslluto — uol|- (4.12)

llp1 _P2||?;(Qh) < cg||u10 — ugol|- (4.13)

Here ¢, = ¢ (a,)\,u, T, macxse o)l (8) vy ||u2(t)||W21}), [ =5,6.

5. A GENERAL CASE OF THE PROBLEM
We consider the nonlinear Schrodinger equation

ou . d%u .
ik + f(u,u*)u. (5.1)

Here f(u,u*) is a polynomial with arguments v and v*, f(u,u*) = f(—u, —u*).

We can find a continuous nondecreasing function ¢(y) that satisfies the con-
ditions

[f(u,u)| < @(ul),  [DVf(u,uu] < o(lul), 5l =1,2; (5.2)

here j is a two—dimensional vector, [j| = j1 + jo, DI = OBl /Ou/1 Qu*7z.
We relate the equation (5.1) with the following difference scheme:

_ . P=2p
bt =1a 72

+ f(p,p")p, (z,t) € Qn. (5.3)

It can be proved that the following estimates for the nonlinear grid function
f(v,v*)v are satisfied:

|(f(v,07)0,9)] < 0.50(llvllc,) (1017 + [I9]%), (5.4)

|(f(v,0")0 = fw,w*)w, 0 — )| < p(max{]|i]|c,. [[v]le,, 10l [wlle, })
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x (llo = ®]* + [lv — wl|* + ||o — @]]*) - (5.5)

From (5.5) we can obtain

[((f (v, 0")0)z, 02]| < p(max{[|dllc,,, [[vllens 18]lcn }) (10a]” + [loz]|* + [182]]%) -
(5.6)
Also we have

|((f (v, 0*) 0 ()= (w, w* )b (Er)) 2, 22 (k)] < (lzn_l%J{la vz (tx1)]l, ||wf(tk+z)]|})

x ep(,max {llo(tren)llcy wttesle,}) ( max (les(tes)lP}). (5.7

=
where ¢ is some constant and z = v — w.

One can prove the estimates (5.4)—(5.7) in an analogous manner as the
similar estimates in [2].

Proving the convergence and stability of scheme we obtain and use a new
type of a priori estimates [1,2], instead of equalities of the type (3.3) or (3.6).

Let p be the solution of the difference scheme (5.3), (3.2). We denote the
fictitious nodes of the grid (—h,7j) and (1 + h,7j), where j =0,..., M. Let
v_1 and vy be the values of grid function on these nodes. We define the
solution of the difference scheme on these nodes as follows: p_; = —p; and
PN+1 = —pNn—1. This corresponds to the boundary conditions (2.2) and to
the equality % o 52 (0,t) = gm’é(l t) = 0. Here u is the solution of the extended
differential problem (5.1), (2.2) on the frontier of the domain. The extension
is valid due to the zero boundary conditions and since the nonlinear function
is odd.

Assume also that the truncation error satisfies the condition

mas {||<1>( )||W21h} -0, mh— 0. (5.8)

An error of the solution of the problem (5.1), (2.2) satisfies the equalities
(4.4), (4.5) where

U = (f(u,u)i = f(p,p")p) -
We can prove now the convergence of the difference scheme (5.3), (3.2).

THEOREM 5.1.  Let the conditions (3.4), (4.2), (4.3), (4.6), (5.8) be satis-
fied. Then the solution of the difference scheme (5.3), (3.2) converges to the
solution of the problem (5.1), (2.2) in spaces W, and C(Qp). There exist
constants 19 > 0 and hg > 0 such that for all positive T < 19 and h < hg the
following estimates hold:

max {[le(t)llw, ; < erlle(tllwy, + cs max {12 (E;)llwy, }; (5.9)
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lellerauy < 0:5erlle(tn)llwy, +0-5es max {1 (t5)llws, b (5.10)

here ¢, = ¢ (a,p,v, M1,T), 1l =17,8.

Similarly as in [1,2], we prove the stability of the difference scheme on initial
data. Let u(z,t), ua(z,t) and p;, pa be the solutions of the problems (5.1),
(2.2) and (5.3), (3.2) with the initial data u10(z) and usg(x) respectively.

THEOREM 5.2. Let the conditions of Theorem 5.1 be satisfied. Then there
exist constants 7o > 0 and hy > 0 such that for all positive 7 < 19 and h < hg
the following estimates hold:

trjne%f{llm(tj) = p2(t)llwy, } < eolluso — uzollwy, , (5.11)

llp1 = p2llo(g,) < 0-5colluro — uaollwy, - (5.12)

Here cy = co(a,p,v, T, max;epo,r{l|ur (0)|lwz, luz(t)llw; })-

6. THE RESULTS OF COMPUTATIONAL EXPERIMENT

We compared some different numerical methods for the solution of the first
boundary value problem for Cubic Schrédinger equation. These methods are
DuFort-Frankel finite difference scheme; the method of discretization of the
equation in all space variables and solving the system of ordinary differential
equations using fourth order Runge-Kutta method; the split-step pseudospec-
tral method, where the nonlinear equation in each time step is splitted into
two equations, one of them is nonlinear and has obvious analytical solution,
the other is linear Schrédinger equation and is solved using Fast Fourier Trans-
form.

We have made computational experiments for both one and two-dimensional
cases. But, since we do not know any analytical solution of the first boundary
value problem in two-dimensional case, here we present only the results for
one-dimensional case. The programs were written in programming language
FORTRAN 77, the calculations were made on workstation of UNIX type.

Here we consider the equation in the domain (z,t) € [-10,10] x [0, 1]

ou  0°
T il 2iufu

ot Oz
with initial conditions
u(z,0) = sech(z) = 2(exp(x) + exp(—z)) .

The solution of this problem is the following function:

u(z,t) = sech(z) exp it.
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Here we suppose, that this function on the bounds of the domain is rather close
to zero (it is of order 2 exp(—10) ~ 0.9 x 10~%), and during the computational
experiment we considered zero boundary conditions.

As the example of these calculations, here are presented some results for
the solution at the time moment ¢ = 1:

Method Maximal absolute error | Computational time (seconds)
DuFort-Frankel | 0.000223 21 101
0.000055 70 198
Runge-Kutta 0.000 268 26 89
0.000 066 88 175
Pseudo-spectral || 0.00018200 12
0.000046 64 22

These experiments have shown, that the fastest is pseudospectral method.
The other two methods have shown similar results.
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