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1. INTRODUCTION

Let for every function f(z) belonging to some class V' one can separate a
family of functions f(z,€) uniformly differentiable with respect to € at € =0
inside the domain D of the class, then the expansion of the form

f(z,8) = f(2) + £Q(2) + o([e], D)

is called to be a variational formula in class V, written for f(z).

Constructing of the variational formula is usually a complicated separate
problem.

Variational method belongs to a group of main methods of geometrical the-
ory of functions of complex variable. By this method one can solve a whole
set, of extremal problems, especially in a theory of univalent functions. Apply-
ing variational-geometrical M.A. Lavrentjev had obtained outstanding results
in applicatory problems. The method proposed by American mathematician
Schiffer for extremal problems in the class of univalent functions leads to dif-
ferential equations for extremal function. G.M. Goluzin proposed method of
variations of his own, due to which he obtained the same differential equa-
tions Schiffer had obtained. The shortcoming of this method is the fact that
solving of the arising differential equation with respect to extremal function
not always comes to an end.

At the same time the class of univalent functions was either shrinked to
some subclasses (the class of convex functions) or, in contrary, extended and
submerged into wider classes (class of many-sheeted functions).

Such an extension was proposed by German mathematician Ch. Pom-
merenke [4], which was familiar to the author of this paper, as well (see
[2]). Let A;(E) be a class of analytical functions f(z) in a unit circle E,
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i.e. in the circle |z| < 1, and let functions f(z) be normalized by conditions
f(0)=0,f(0) =1, and f'(2) # 0in E. Let also A be a set of all analytical
automorphisms of unit circle (Omega-transformations) having the shape

= w(z) = ez + ¢

= E, ©€ (- .
e {€E, ©¢€(-00,)

We introduce an operator Pommerenke on the class A, (E)

w flw(z) = (&)
Q z)| = 3 .
[£(2)] 5 (1~ [EF)©

This operator transforms any function from the class A; (E) into a function be-
longing to the same class. We denote as f(E) the class of analytical functions
f(2) from Ay (E), having the following property: If function f(z) € I,(E),
then the function f(z;w) = Q¥ [f(2)] € Ti(E) for any w € A. as well. The
class 1, (E) was named by Pommerenke as linearly-invariant. For example,
the class A, (E) as well as the class K (E) of univalent and normalized func-
tions in E can be concidered as linearly-invariant classes.

We note, that the idea to use intensely the analytical automorphism of unit
circle in combination of the operator of Pommerenke to analyse the properties
of functions from the class K (E) belongs also to French mathematician Marti
[3], who obtained a lot of outstanding results in this class.

The told above yields that in order to build any linearly-invariant class of
analytical functions in the unit circle, one need to introduce a particular oper-
ator defined on that class which depends both on the analytical automorphism
and a corresponding normalization of functions belonging to that class. For
the examples which clearly show the way how combining of introduced set, of
normalized functions, automorphism of the circle, and operator can lead to
interesting ideas in the analysis of properties of analytical functions, see the
book of the author of this paper [1].

The study of the properties of functions belonging to some class is build
according to classical scheme usually used in theory of analytical functions.
We establish the various criteria of dependency to a given class, state the
problem of compactness of some families of functions from this class, find
the range of functionals, give various estimates of modulus of functions and
derivatives, analyse the behaviour of the coefficients of an expansion, search
for the fized points of operators, solve the extremal problems, and introduce
variational formulae.

Here we study the linearly-invariant classes of analytical functions in E
introduced by the author of this paper. Considering the lack of space, the
possible reader is introduced to some variational formulae, as well as to ap-
plication for solving of extremal problems.
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2. VARIATIONAL FORMULAE

We denote as Ag(E) a class of functions f(z) analytical in E normalized by
the condition f(0) = 1 having the property f(z) # 0 in E. We introduce an
operator Q¥ on the class Ag(E) as follows:

This operator transforms the function of the class Ag(E) into a function of
the same class Ag(E). We will call the set Z(E) of functions f(z) of Ay(E)
as linearly-invariant class, if f(z) € T(E) implies f(z;w) = Q“[f(2)] € Z(E)
for any € A. Obviously, the class Ay (E) is the widest linearly-invariant class.

We get one more example of a linearly-invariant class, if we fix in an arbi-
trary way the function f(z) € Ag(E) and then adjoin to it all of the functions
f(z;w), where w takes all the values from the set of omega-transformations of
A. We note, that a single function f(z) = 1 makes the linearly-invariant class.

We denote as A* the set of omega-transformations of the shape

w=w(z) = 2t &

=215 ¢eE.
14+¢&2 ¢

Obviously, A* C A. Let f(E) any linearly-independent class. The definitions
of such a class implies that operator ¥, where w € A* transforms the function

fl) =1+ az" (1)
k=1
of the class Z(E) to the function
F6) =1+ a(6)z". (2)
k=1

belonging to the class f(E) too. It is not difficult to prove the following
lemma.

LEMMA 1. For the k-th coefficient ax(€) of the function f(z;€) the following
formula holds:

k—

k—1)(—1)™ oyvzm S
(@ = 3 EDED (gpen S

Obviously,
f(2:0) = f(2), axr(0) = ax. (4)
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THEOREM 1. If function

flz) =1+ apz* € I(B),

k=1
then the function
o0
fz8) =1+ ar(§)* € I(B),
k=1
for any & € E and the representation

F(z:6) = f(2) + (f'(2) — a1 f(2))€ = 2 F'(2)€ + o([€]), (5)

holds for any sufficiently small values of the modulus of the parameter .

P r oo f. Dependency of the function f(z;€) to the class Z(E) for any £ € E
follows from the definition of the linearly-invariant class. Next, according to
the lemma 1, the formula (3) for the k-th coefficient of the function f(z;¢&)
holds. Let ¢ = ze!?, —1 < x < 1, 0 < v < 2. The function f(z;ze?)for
fixed values of z and + is analytical on z = 0. Consequently, considering (4),
we may write

f(zze™) = f(2) + G(2)z + o(|z)), (6)
where '
Of (z; ze™

6 =) g

Next, the k-th coefficient a (ze!) for fixed v € [0, 2] is an analytical function
at the point z = 0. Applying (3) it is not difficult to get the formula

Oay(we')

5% = (k4 Dapy1€” —arare” — (k —1)ag_1e” 7. (8)

z=0

Let us evaluate G(z). Basing upon (2),(7), and (8), we get

Of (z; zel™) B > Oay,(ze')
e

Glz) = ox

=0 =0

k=1
[ee] .
= Z [(k+1) Jaks1e” — agare” — (k — l)ak—leiw]zk
k=1
o0
_ ewz (k4 1)ag12 —ale”Zakz —e ”Z — Daj_2*
k=
_ ew( (2 —G1) —aleﬁy(f(z) _ 1) _e ”ZQf (Z)
= (f'(2) —arf(2))e" — 22 f'(z)e .
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Multiplying G(z) by x and substituting into (6) one can see, that the function
f(z;€) has the representation (5) for sufficiently small values of the modulus
of €.

Formula (5) is called a variational formula for the function f(z) in the class
Z(E). Altogether with this formula we introduce a variational formula for the
k-th coefficient of the function f(z).

THEOREM 2. Let function

f2)=1+) az* € I(E).
k=1

Then for the k-th coefficient ay(§) of the function
fz =1+ a(§)* e I(B)
k=1

the representation

ar (&) = ar + ((k + Vappr — arar)€ = (k= Dag—1€ + o([€]) 9)

holds for any sufficiently small values of the modulus of the parameter &.
Proof Let { =ze",—1< 2 < 1,0 <~ <27 According to (5) for fixed
v € [0,27) the function ay(ze?) is analytical in the point # = 0. Therefore

Oay(xe?)

ap(ze?) = ay, + + o(|z])

z=0

for any |z| < p, where p is sufficiently small. Basing upon (5) we get (9).
The following theorem produces one more variational formula gor the func-
tion f(z) in the class Z(E). The proof is of no difficulty.
THEOREM 3. If function f(z) € Z(E), then the function f(e) e I(E) for
any real y. Moreover, for any real v the following representation holds:

F(e7z) = f(z) +if' ()27 + o(|7]). (10)

3. EXTREMAL PROBLEMS

Using the variational formulae (5),(9), and (10) we will solve a few extremal
problems.

THEOREM 4. Let in a linearly-invariant class Z(E) there exists function
fi(z2) = 14+ a1z + azz® + -+, having the following property: for the k-th
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coefficient of it the equality

1
ol = max = |79(0) (11)
1(z)e2(B) k!

holds for fixed value of k > 1. Then
ar((k + 1)agyr — arar) — (k — 1)arar— = 0. (12)
P roof Since fi(z) € Z(E), the according to Theorem 2, the function

fi(z;€) for any & € E, and there exists a positive number p such that for the
k-th coefficient ay(§) of the function fi(z;&) the representation

a(€) = ax + ((k + Darr1 — axar)€ — (k — Dar—1& + o([¢])

holds if |£] < p. The assumption (11) of Theorem 4 implies

|an ()] < laxl, V¢ <p- (13)

Next, for any |[¢| < p one can get the following:

k(17 = lar + ((k + Dagsr — agar)€ = (k= Dag—1€ + o(|€])]?
= |ak|2 + 2R€{ [dk((k + l)ak_H — akal) — (k‘ — l)akdk_l]ﬁ}
+Ref{o(|¢))}

This and (13) implies
Re{ [C_lk + ((k+ ].)(1k+1 - akal) - (k? — l)ak&kfl]f} +R€{O(|f|)} S 0, V|f| <Dp.

Taking into account the arbitrarity of the value of the argument of the complex
number ¢, we conclude that (12) is valid.

THEOREM 5. Let in a linearly-invariant class T(E) there exists the function
fo(2) = 14+a1z+azz?+- - -, the k-th coefficient of which has either the property

Re{ar} = max Re{ fk) 0)} (14)
f(2)EL(E)
or
Re{ar} = min Re{ fk) 0)} (15)
f(2)EL(E)

which holds for fized k > 1. Then the equality

(k + l)ak+1 — apa; — (k? - 1)&,6,1 =0. (16)
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holds.

P roof. Let for the function f»(2) € Z(E) condition (14) holds. According
to Theorem 2, the function fo(z;¢) € Z(E) for any ¢ € E and there exists
positive number p such that for the k-th coefficient ay(€) of this function the
representation

ap(€) = ag + ((k + Dagsr — agar)€ — (k = Dag—1& + o([€]),
is valid if |€] < p. Taking into account condition (14) in Theorem 5 it implies
Ref{a(€)} < Re{ay}, VYI¢| <p.
Consequently,
Re{((k + a1 — agar)§ — (k — Dag—1& +o(|]) } <0, V[¢] < p.

Hence

Re{((k + 1)agt1 — agar — (k = 1)ag—1£} + Re{o(I€))} <0, V[¢| <p.
Since the argument of the complex number £ one can take in an arbitrary
way, then it is easy to see the validity of (16). In case of condition (15) the
theorem is proved analogously. y

COROLLARY 1. Let in a linearly-invariant class Z(E) there exists a function
f3(2) =14+ a1z+az2?+ - - -, the k-th coefficient of which a; has the following

property:
jar] = max _|£(0)].

F(x)€L(EB)
Then
1
as = ia%. (17)

To prove (17) it is enough to take k = 1 in Theorem 4.

COROLLARY 2. Let in a linearly-invariant class Z(E) there exists a function
©(2) = 14+ a1z + azz? + -+ - all the coefficients of an expansion of which are
real numbers and the k-th coefficient a; has the following property:

= max |00
f(2)EL(E)

Then the equality
(k+ Dags1 — agar — (k — 1)ag—1 = 0.

holds.
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THEOREM 6. Let in a linearly-invariant class T(E) there exists a function
fo(2) = 1+a1z2+az2%+-- -, having the following property: at the point zo € E
either the equality

|fo(z0)| = max |f(z0)]- (18)
f(2)€Z(E)
or
|fo(20)| = min |f(z0)]- (19)
f(z)EL(E)
holds. Then
_ fo(20)
a = (1 _ |Z0|2) f§<20>' (20)

P roof Let the condition (18) for the function fo(z) € Z(E) holds.
According to Theorem 1 the function fo(z;&) € Z(E)) for any ¢ € E and
there exists a positive number p such that

fo(z:€) = fo(2) + (fo(2) — a1 fo(2)) € — 2% fo(2)€ + o([€]).
holds. Taking into account
| fo(205 )| < |fo(20)],VIE] <p

this implies the inequality

|f0(zo) + (f§(20) — a1fo(20))€ — 25 fo(20)€ + 0(|f|)| < |f0(20)|; V¢l < p,

which can be easily substituted by the inequality

Re{ [ fo(z0) (f3 (20) —avf (20)) fol20) 5 i (20) | € +Refo(lg)} <0, Vié] <p.

According to arbitrarity of the values of the argument of the complex number
&, we get either

fo(20) (£5(20) — a1 fo(20)) — fo(20)Z5 fo(20) =0

or
fo(20) f3(20) — fo(20)25 f3(20) — a1 fo(20) fo(z0) = 0. (21)

Next, the function ¢, (z) = fo(e?'z) € Z(E) for any real y therefore according
to (18) we get

|0+ (20)] = |fo(e720) | < |fo(z0)], Vv € (—00,00).
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Hence applying the variational formulae (10) we come to an inequality

YRe{izofo(20)f(20)} + Re{o(]7])} <0, Vv € (—o00,00).

But it is not difficult to notice, that

Re{izofo(20)fo(20)} = 0.

The latter equality can be substituted by the equality

Im{z0fo(20) fo(20) } = 0.

therefore
z5 fo(20) fo(20) = |20]” fo(z0) 5 (20)- (22)

Taking into account both (22) and fy(20) # 0, the equality (21) we substitute
by the equality

fo(20) — a1 fo(20) — |20|* f5(20) = 0,

which yields (20). Theorem 6 in case the function mentioned in the assumption
satisfies the condition (19) is proved analogously.

THEOREM 7. Let in a linearly-invariant class T(E) there exists a function
f1(2) = 1+a12+az2%+- - -, having the following property: at the point zo € E
either the equality

Re{fi(z0)} = e Re{f(z0)} (23)
Re{f4(z0)} = f(zr)réijn(E) Re{f(zo)} (24)
holds. Then o)
2\ fi(z
a; = (1 — |2’0| )fi(zz) (25)

P roof Let for the function f4(2) € Z(E) (23) holds. According to
Theorem 1, the function f4(z;&) € Z(E) for any £ € E and there exists a
positive number p such that

F1(20:€) = fa(20) + (fi(20) — a1 fa(20))€ — 25 fi(20)€ +o(I€]),  VIE| < p.
Taking into account (23) this implies

Re{(fi(20) — a1 fa(20))€ — 23 fi(20)€} + Re{o(|¢])}
= Re{(fi(20) — a1 fa(z0) — 2 fi(20)) €} + Re{o(|¢])} <0, Vg <p.
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Taking into account the arbitrarity of the argument of the complex number
&, we easily come to an equality

fi(z0) = av fa(z0) — 25 fi(z0) = 0. (26)

Next, the function ¥ (z) = f4(e”z) € Z(E) for any real v hence according
to condition (23), we get

Re{¥.,(20)} = Re{fi(e"20)} < Re{fs(20)}, Vv € (—00,00).

Applying the variational formula (10) we come to an inequality

vRe{izofi(20)} + Re{o(]7])} <0, Vv € (—o00,00).

But there is of no difficulty to notice, that
Re{izofy(z0)} = 0.
Therefore,
Im{zofi(20)} = 0.
Consequently,
% f1(z0) = |20 fi(20)-

Substituting it into (26) yields (25). Theorem 7 in case of the function men-
tioned in the assumption satisfies the condition (24) is proved analogously.
REMARK. Let us consider the following analytical functions in E :

tz
1—az

1—az.7 _
(I)t,a,b(z) = ( ?’Z) b— G/, (I)t,a,b(z) — exp{

-

where |a|] < 1,|b| < 1, and ¢ is complex number. Moreover, let ®; ,;(0) = 1,
if a # b, and @, 4(0) = 1. We will call those functions as the basic functions
in linearly-invariant classes. There are few of the basic functions:

@t’,lyg(Z) = (]. + Z)t, <I>t,g,1(z) = (]. — Z)t, @tyg’o(z) = etz.

Let us expand the function ®; ,;(z) into the series

Brap(z) =1+ ) gran(t)e".
k=1
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Then for the k-th coefficient of the expansion the recursion formula

Ir,ap(t) = 7 (tgk—1,0,() + (k—1)(@+b)gr—1,0,6(t) — (k—2)abgr_2,a,5(1)), (27)

T =

holds, where the assumption of g_1 4(t) =0 and go q,5(t) = 1 is taken. As a
separate case,

gl,a,b(t) =t.

We notice, that ®¢ .5 = 1 and, consequently, gx 4,5(0) =0,Vk > 1. If a = —1
and b = 1, then we assume for the sake of brevity,

Dy 1,1(2) = 4(2),  gr,—1,1(t) = gr(?).

In this case
o0

®(2) =14 gi(t)2,

k=1
where

gu(8) = 3 (t911(0) + (5 = g4 2(0).

We notice, that ®9(z) = 1 and, consequently, g;(0) = 0,Vk > 1. It is not
difficult to prove, that the basic function ®, 4 ;(2) is the single solution of the
1st order linear homogeneous differential equation

(1 —az)(1 =b2)Z'(2) —tZ(z) =0
subject to initial condition Z(0) = 1.
The basic functions are widely used in the analysis of the properties of
the linearly-invariant classes, i.e. when solving the various extremal problems

they frequently appear to be extremal ones.
Let zg € E and z9 # 0. Let us consider the basic function

o0
(I>t7a7b(z) =1+ ngﬂ,b(t)zk) a= _ei’YO’ b= eiwa Yo = argzop-
k=1

It is easy to prove that
(1= [20]%) @} 4.5(20) — t®¢.0,6(20) =0

holds for any ¢. Since g;,4,5(t) = ¢, then for any ¢

q%a 20
(1 - :4)) et

— |2 = gi,a,b(t).
0 Qt,a,b(zo) dl,a ()
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holds. Next, for any ¢ according to (27) for the coefficients of the function
By 00(2),a = —e0, b = €0, vy = arg 29, the equality

(k + 1) gk+1,0,6(t) = Gap () G1,a,6(t) + (k — 1)a@bgr—1,4,5(t) = 0

holds. Moreover, for any integer m the coefficient g, q5(t) is an analytical
function on ¢t and gi,q,» = 0. Therefore, there exists such a to, that bgg—1,q,5(to)
is a real number. In this case abgr—1,q,6(t0) = —Gk—1,4,6(to) and we can write

(k 4+ 1)gkt1,0,6(t0) — gk,a,6(t0)g1,a,6(to) — (K — 1)gr—1,a,6(to) =0

It is clear, that there exists such a function @, 4 (z), for which the equalities
mentioned in the theorems 5 and 6 hold.
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