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1. INTRODUCTION

Impulsive differential equations provide an adequate mathematical model of
evolutionary processes that suddenly change their state at certain moments.
V. Lakshmikantham, D. D. Bainov and P. S. Simeonov [5] as well as A. M.
Samoilenko and N. A. Perestyuk [12] had published monographs dedicated to
this subject.

The equivalence problem in the theory of ordinary differential equations
were explored by D. M. Grobman [2], P. Hartman [3] and other mathemati-
cians [4,15]. A. Reinfelds [6-11] and L. Sermone [6-7,13-14] and D. D. Bainov,
S. I. Kostadinov and Nguyen Van Minh [1] began to discuss the equivalence
problem of impulsive differential equations. In the present paper a reduc-
tion theorem for systems of impulsive differential equations in a Banach space
is proven assuming that the system splits into two parts and has invariant
manifold.

2. STATEMENT OF THE THEOREMS

Let U be a Banach space. Consider two systems of impulsive differential
equations

du/dt = P(t,u), Au|t:n: Si(u(r; —0)) (1)

and
du/dt = Q(t,u), Au|t:ﬂ_: T;(u(r; — 0)) (2)

that satisfy the conditions of the existence and uniquenesses theorem. We
assume that maximum interval of the existence of the solutions is R. Let
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o(-,to,u0): R — U and ¢(-,tp,up): R — U be the solutions of the above
systems, respectively. Suppose that there is a function e: U — R such that

max {|P(t,u) — Q(t,u)|,sgp |Si(u) — T3 (u)|} < e(uw).

DEFINITION. Two systems of impulsive differential equations (1) and (2)
are dynamically equivalent in the large if there exists a map H: R x U —» U
and a positive constant ¢ such that:

(i) H(t,-): U — U is a homeomorphism;
(ll) H(t, ¢(t, to, U[))) = I/J(t, t[), H(t[), U[))) for all ¢ € R,
(i) max {|H (t,u) — ul, | H L (t,0) — ul} < ce(u);

We remark that in the case of classical global Grobman—-Hartman theorem
[2,3] for autonomous differential equations the corresponding function e(x) =
a > 0 and appropriate constant ¢ depend on linear truncation only.

Let U=X x7Y, £(X) and £(Y) be the Banach spaces of linear bounded
operators. Consider the following system of impulsive differential equations

dz/dt = Atz + f(t,z,y),

Am|t:n = z(r+0)—z(r, —0) 3)
= Ciz(r; — 0) + pi(z(; — 0),y(m — 0)),

Ayl = y(m+0)—y(r—0)

Diy(ri = 0) + qi(x(m — 0),y(ri — 0)),

where:

(i) the maps A:R — £(X) and B:R — L(Y) are locally integrable in the
Bochner sense;

(ii) the maps f: Rx X xY — X and : Rx X xY — Y are locally integrable
in the Bochner sense with respect to ¢ for fixed  and y, and, in addition,
they satisfy the estimates

|f(t, 2, y) — f(t2',y)
lg(t,z,y) — g(t,z',y")]
Sup; Y |f(t

<el(lz =2+ [y —y']),
<e(lz =2l + |y -9,
0,y)| < +o0;

(iiiyi € Z, C; € L(X), D; € L(Y), themaps p;: X xY - X, ¢:XxY —>Y
satisfy the estimates

Ipi(z,y) — pi(2',y")| < e(lz —2'|+ |y —¥']),
lgi(x,y) — qi(=',y")] <e(lz —2'|+ |y —¥']),
sup; ,, [pi(0,y)] < 4005
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(iv) the maps (z,) = (& + Ciz + pi(2,9),y + Diy + a:(x,9)), 7 = & + Cia
are homeomorphisms;

(v) the moments 7; of impulse effect form a strictly increasing sequence
o< T o< T <T<nn<n<...

where the limit points may be only +oo.

Let U(t,7) and V (¢,7) be the Cauchy evolutionary operators of the linear
impulsive systems

dx/dt = A(t)x,
Az|,_ = Cix(ri—0),
and
{dy/dt = B(t)y,
Ay|t:n = Diy(r —0)

respectively. Let the operators satisfy the estimates

t
v = max { sup / V(t,7)IU(r, 1) dr +sup S [V (E, 1)U (73 = 0,8)],
t t

> <t

+oo
sup/ |V (7, 0)||U(t, 7)| dr + sup Z |V (1 — 0,t)||U(t,Ti)|} < 400,
t t t

t<T;

+o0
H:SUP{/ |U(t,7‘)|dT+Z|U(t,Ti)|} < +00.
t t t<t;

Let (I)(a th Zo, yO) = (m(7 t07 Zo, y0)7 y(7 th Zo, yo)): R — X xY be the so-
lution of system (3), where ®(to + 0, to, Zo, y¥o) = (o, yo). At the break points
7; the values for all solutions are taken at 7; + 0 unless otherwise specified.
For short, we will use the notation ®(t) = (z(t), y(¢)).

THEOREM 1. Let 4ev <1 and 2epp < 1+ /1 —4ev. Then there exists a
piecewise continuous map h: R XY — X with the following properties:
(1) h(t) y(tv tO; h(t07 y[))) yO)) = Z’(t, t0> h(t[)a y[)): y[)) fOT‘ all't € R)
(if) [2(t,90) — h(t, y0)l < Alyo — yol;

to
(iii) / [V (to, t)||2(t, to, o, o) — h(t, y(t, to, To, yo))| dt
+ D [V (to, 7i)lla(ri = 0, 0,20, 30) = h(ri = 0,3(ri = 0, b0, 20, 0))]
T <t
<v(l—e(l+ M)tz — h(to,yo)l,
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where A = (2ev) (1 — 2ev — /1 — 4ev).

Suppose there exists maps fo: RxX — X and p;p: X — X locally integrable
in the Bochner sense with respect to t for fixed x and, in addition, they satisfy
the estimates:

|fo(t,z) — folt,2")| < elz — '],
|pio (%) — pio ()] < elr — 2|,
supy ., [f(t,2,y) — fo(t, )| < 400,
sup; ,,, [Pi(%,y) — pio(z)| < +o0,

and besides the maps ¢ — z + C;x + p;jo(z) are homeomorphisms. Next,
consider a reduced system of impulsive differential equations

de/dt = Alt)r + fo(t, x),

dy/dt = B(t)y +g(t,h(t,y),y), A
Az|,_. = Ciz(ri—0)+pio(a(ri —0)), (4)
Ayl,_.. = Diy(ri = 0)+qi(h(ri = 0,y(ri = 0)),y(7; — 0)).

Let \I’(',to,mo,yo) = (CE()(',t(),wo),yo(',to,yo))lR — X x Y be a solution of
system (4), where ¥(tg + 0,t0,x0,Y0) = (Zo,y0). For short, we will use the
notation ¥(t) = (z(t), yo(t)).

THEOREM 2. Letdev < 1 and 2ep < 1++/1 — 4ev. Then systems (3) and
(4) are dynamically equivalent in the large.

The system (4) splits into two parts. The first part of them does not contain
the variable y, while the second part is independent of x. This result allows
one to replace the given system by a much simpler one.

3. PROOF OF THEOREM 2

Step by step we shall prove the theorem. Let PC(R x X x Y,X) be a
set of maps that are continuous for (¢,z,y) € [1,7i+1) X X x Y and have
discontinuities of the first kind for ¢t = 7;.

Step 1. The spaces

ICz(kePC(RxXxY,X)

sup (.2, < +50)
tz,y

and
i(t,z,y)]

Ez(lEPCRXXXY,Y sup ——————
1 | D e Ry

< +oo>
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equipped with the norms

|, 2, y)|
k|| = sup |k(t,z,y)| and |[l|| = sup ———F———
1%l twl (t,z,y)| and ||I]| SO )]

are Banach spaces, respectively. There exists a unique solution (ki,l;) €
K x Ly of the functional equations

+oo
k1 (to, 0, yo) =/ U (to, 7)(f (7, (7)) = fo(r,z(T) + ki (7, B(7)))) dT

+ D Ulto, ) (pi(2 (13 — 0)) = pio(@(ri — 0) + ki (s — 0, &(r; — 0)))),

I1(to, o, Yo)

- / " V(to, ) (g(r, h(r,y(r) +1 (7, 8(7))), 4 (7) + 1 (r, B(7))) — g (7, B(r))) dr

— 00

+ > V(to, 7:)(gi(h(ri = 0,y(r; — 0) + i (; — 0, @(7; — 0))),y(i — 0)

+l (7 — 0,@(7; = 0))) — qi(®(7; — 0))).

Let H(to,xo,y0) = (w0 + k1(to,0,%0),y0 + l1(to, %0, y0)). We get for all
t € R that

H(t7 (I)(tat[):xO:yO)) = ‘Il(tath H(t07x07y0))'

Step 2. The set
LiAN) = (e Ly |lit,z,y) =1t 2, y)| <Az —2|)

is a closed subset of the Banach space £;. There exists a unique solution
(k2,12) € K x L1(X) of the functional equations

+oo
ks (to, zo, yo) = / Ulto, 7)(fo(r,20(7)) — f(7,20(T) + k2(7, ¥ (7)), yo(T)

+lo (7, 20 (7) + ko (7, (7)), 50(7)))) dr

+ Y Ulto, 7:) (pio (o (7: = 0)) — piwo (i — 0) + ka(7i — 0, ¥ (73— 0)), yo(7; — 0)

to<T;

+la(mi — 0,20(1;i — 0) + k2(7i — 0, ¥(7; — 0)),y0(ri —0))))
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to

l2(to, To, wo) = V(to, 7)(g(T,n(7), yo () + l2(7,n(7),40(7)))

—00

—g(7, M7, y0(7)), 40 (7))) dr

+ > Vit 7:)(gi(n(r; = 0),y0(7i — 0) + la(7i — 0,n(ri = 0), y0(7; — 0)))

7 <to

—q;(h(1; = 0,y0(1; = 0)),y0(7: — 0))),

n(t) =Ul(t,to)wo + [ U(t,7)f(1,0(7),y0(7) + l2(7,0(7),y0(7))) dT

to

+ Y Ut m)pi(n(ri = 0),y0(ri — 0) + Iz — 0,n(7i = 0), yo(7; — 0))).
to<7:i<t

Let G(to, 0,%0) = (zo + k2 (to, o, Y0), Yo + l2(to, zo + k2 (to, To,Y0), yo)). We
get for all ¢ € R that

G(tv ‘I](tatOwTanO)) = (I)(tath G(to,l’o,yo))-

Step 3. The space

it 2,9)|
L= [le PCRxXxY,Y) | su
: ( ( )| S e Tt ay) — R )]

< +oo>
equipped with the norm

L(t,z,y)]
Il = su
W= $9p T ) — 9]

is a Banach space. There exists a unique solution (ks3,l3) € K x Ly of the
functional equations

+oo
ks (to; 20, Yo) :/t U(to, 7)(fo(7,20(7)) = fo(T, 20 (T) + ks(7, ¥(7)))) dr

+ Y Ulto, 7:)(pio (o (7 — 0)) — pio(z0(7i — 0) + k3(7: — 0,¥(7; —0)))),

to<T;

to

Mm%wwz/ V (to, ) (g(r, h(r, yo(7) + I3(r, (1)), yo(7)

— 00

+i3(7, ¥(7))) = 9(7, h(7,90(7)), Yo (7)) dr
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+ > V(to, 7:)(qi(h(r = 0,y0(7s = 0) + Is(7; — 0, ¥(r; — 0))), yo(7i — 0)

7 <to

+l3(1; = 0,¥(1; — 0))) — qi(h(1; = 0,y0(7: — 0)),yo(7; — 0))).
Step 4. The identity

H(to,G(to, T0,0)) = (T0,%0)

holds true.
Step 5. The space

It
Eg:(lEPC(RXXXYXX,Y) sup |(;m;y7’lU)|

< 400
t,z,y,w maX(|x_h(tvy)|v|m_w|) >

equipped with the norm

l(t,z,y,w
Il = sup i€ )
S max (12 — h(t y)], 17— w])

is a Banach space. The set
LsN) =€ Ls]||lt,z,y,w) =1t z,y,w)| < ANw—w'])

is a closed subset of L£3. There exists a unique solution (k4,ls) € K x L3(A)
of the functional equations

+oo
m%ﬁwmz/ U (to, 7)(f(r, (r)

—f(r,2(7) + ka(7,@(7)), y(7) + la(7, ®(7), 2(7) + ka(7, ®(7))))) dT
+ Z (to, ) (pi(®(7; — 0)) — pi(x(i — 0)

to<T;

+ky(m:—0, ®(7;—0)), y(7:—0)+l4(7:—0, ®(7;—0), 2 (7, —0)+ k4 (7:—0, ®(73:—0))))),

77('5) = U(tyt())w() + U(t,T)g(T,U(T),y(T) + 14(7-) Q(T))U(T))) dr

to
+ Z t Tl q: _0) ( '_0)+l4(7—i_an)(Ti_O)an(Ti_O)))a
to<Ti <t

to

l4(to, o, Yo, wo) =/ V(to, ) (g (7, (1), y(7)+1a(7, (1), 1(7))) =g (7, 8(7))) dr

— 00
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+ > V(to, 7:)(@i(n(:=0), y(ri=0)+1a(7i=0, ®(r;=0), 7(7:—0))) =i (®(7;-0))).

7 <to

Step 6. The following identity

G(t07 H(t07 Zo, Z/O)) = (370, yO)

holds true.

We get that H(tg, ) is homeomorphism establishing dynamical equivalence
of systems (3) and (4) in the large. It is easy to verify that if the system (3)
of differential equations is autonomous and without impulse effect, then the
maps h, H and G are independent of 5 € R. Let us note that in our case
e(z,y) = a + €|z|, where a is some positive constant. Thus the proof of the
theorem is complete.
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