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ABSTRACT

This paper deals with a model for an age-sex structured population consisting of male,
single and fertilized female subclasses taking into account a random coupling of sexes (for
a period of mating only) and females’ pregnancy. For certain forms of the demographic
rates there are presented separable solutions, and the asymptotic behaviour of the general
solution is demonstrated.

1. INTRODUCTION

In the recent papers [2], [3] we introduced a model for an age-sex-stuctured
population consisting of male, single and fertilized female subclasses taking
into account a random coupling of sexes (for a period of mating only), and
pregnancy of females.

Let us first recall the following notions in [3]:

71, T2 and 73 denote the ages of males, females and embryos, respectively, ¢
is time,

w1 (t, 1), ua(t, 72) and ug(t, 71,72, 73) are age densities of numbers of males,
single and fertilized females, respectively;

p(t, 71, 72) is the females’ fertilization rate;

vi(t,m1), v2(t, =) and v3(t, 71,72, 73) are death rates of males, single and
fertilized females, respectively;

Xo(us)(t, m2) gives the females’ supply rate due to conceiving and deliveries;

o1 = (111,712], 0 < 711 < T2 < oo is the males’ sexual activity interval,
o1 = [111, T12;

o3 = (0,T],0 < T < oo is the females’ gestation interval, 73 = [0, T;
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02(13) = (21473, Toa+T73], 0 < To1 < Top < 00, T2(T3) = [To1+73, To2+73],;

02(0) and o2(T') are the females’ fertilization and reproductivity intervals,
respectively;

n1(t) is the size of males’ subclass with ages from o7

by (t,71,72) and ba(t, 71, 72) represent the expectied numbers of offspring
produced at time ¢ by a fertilized female of characteristics (71,72,T) and
having the sex of males and females, respectively;

ud(11), ud(m2), ud(r1, 72, 73) are the initial distributions;

o =01 X 02(T), do = dry dr;

0 _ 1 _ 2 _ 3 _ 4 _
Ty = 0,7y = To1, 79 = min(mey + T, 722), 75 = max(ra + T, T22), 5 =
oo + T, 735 = 00;

I = (0’ m)’ T = [07 m]) I4 = (T247m)7 IS = (T§7T;+1]7 s = 073;

4
Qi=1Ix1I,Qx=1x(I\ 91725),@3=I><01><02(T3)><03;

[U2]ry=r;] is @ jump of uy at the plane 7 = 73;
Lj =0/0t+0/07j, j = 1,2, Ly = Ly + 9/073, X1(uz) = X3(u3) =0,

Dy = 212D, 212D, D3 = 3'/2Ds, where D;, i = 1,2, 3 is the directional
derivative along the positive direction of characteristics of the operator L;;

C(2), C*(Q2) and L () denote spaces of continuous, continuously differen-
tiable and absolutely integrable functions on (2, respectively.

Note that, if the partial derivatives with respect to ¢ and 7; exist, then
Diui = Liuia Z:.] = 17273'

The system
Du; + viu; — Xl(U3) =0in Q;,71=1,2,3,

0, 72 & 02(0) 0, 72 & 02(T)
Xz(Ug) =" f U3|T3:0 dTl, Ty € 0'2(0) + f U,3|.,—3:Td7'1, Ty € O'Q(T) (1)

supplemented by the conditions

Ujlrj=0 = /bju3|7-3:T do, j =1,2, [us|r,=rg] = 0, s = 1,4,

U3|ry=0 = pustia /N1, Ny = /Ul dry, (2)

o1
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ui|t=0 = U?, 1= 172>37 (3)

governs the evolution of the population (see[2]). Here the mating function
puius/ny represents the age density of females conceiving on the period of
random mating. Non-negative functions v;, b;, p, u? are assumed to be pre-
scribed. In addition we assume that initial functions u9, u3, uJ must satisfy
the following compatibility conditions

’U/? = /bj|t:0Ug|73:0dU, .] = 1727 [ug|7’2:‘r23] = 07 s = m:

Wm0 = ple-onfud/ [ uldn. )
o1
As it follows from the biological meaning the unknown functions wu,us, us
also must be non-negative. The unique solution of (1)-(4) problem has been
constructed by Skakauskas [2].

In the present work we limit our attention to the case where p, by, by, v3
do not depend of 71 and ¢. This paper consists of two sections. In the first of
them we obtain the product solutions of (1), (2), while in the other one the
asymptotic behaviour of the general solution of (1)-(4) is demonstrated. We
consider the case of multiple deliveries, i.e. 7oo — 791 > T (72 =101 + T, 735 =
To2). All results obtained in this paper can be applied for the opposite case.

2. PRODUCT SOLUTIONS OF (1)-(2)
In this section a particular solution of (1)-(2) will be considered. Assume

D = 212D, where D is the directional derivative along the characteristics of
the operator /07, + 0/013, and let

y _Jom & a2(0)
V2( 2) B {p, Ty € 0'2(0).

Substituting
ur = c1(Neafi(m) exp{A(t — )}, f1(0) =1,

U = CQfQ(TQ) exp{)\(t — TQ)}, f2(0) = 1, (5)

uz = ¢y f3(12,73) fa(A, 71) exp{A(t — 12)},

FiO0 1) = fu(m1) exp{—Ari}/ / £1(6) exp{—A} e,
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where A, ¢1(A), ¢a are some constants, into (1), (2) we arrive at the system
dfi/dr = - fi, f1(0) =1,
Dfs = —vsfs, f3(12,0) = p(12) f2(72),

0, 2 & 02(T), f2(0) =1,

f3(12,T), 7 € 02(T), [f2(18)] =0, i =

dfs /drs = —inn fo +
2/ 2 2 /2 { 1,

c = / Fi(m2)exp{—-Ar}dm, 1 = / Fy(m2) exp{—Ar}dre;  (6)
0'2(T) 0'2(T)

here Fj(m2) = bi(12) f3(72,T), i = 1,2. Thus

T1 T3

fi= eXp{_/Vl(g)df}a f3= (pf2)|'r2—'r3 eXp{—/V3(§+7'2 - T3’€)d§}’ (7)

0
and

0, 72 & 02(T), f2(0) =1,

: : (8)
q(T2)f2(T2 - T): T2 € UQ(T)v [f2(7-2l)] =0,i=1,

df2/d7‘2 = —ﬁQfQ + { 1

T
qg=p(r-T) eXP{—{%(f + 1 —T,&)dE}.

Due to the delay argument the unique solution of (8) can be easily cons-
tructed. Then, from characteristic equation (6), we define A, and then from
(6),; one can obtain c¢;(A),c2 > 0 is arbitrary. It is well known [1] that
roots Ay = oy £ if, i = /-1 of (6), are such that By = 0, signoy =
sign{ [ ba(m)fs(r, T)dm — 1}, ax < g for k = 1,2,... provided by f3 €

o2(T)
L'(0>(T)).
We call the solution of type (5) the product (or separable) solution of (1)-

2).

THEOREM 1. Given c2 > 0 and the non-negative functions p € C(2(0)), v1,
vy € C(I), vs € C(v2(3) x T3), bj € L1(02(T)). Then (1)-(2) admits the
non-negative product solution (5).

3. ASYMPTOTIC BEHAVIOUR OF GENERAL SOLUTION OF
(1)-(4)

In this section we will obtain the asymptotic formula of the general solution
for (1)-(4) problem. Let us denote
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2(t,19,m3) = [usdr, 2%(r2, 1) = [uddry, Ua(m2) =12 +p
o1 o1
and formulate the following hypotheses:
(H1) p, v1, v, v3 satisfy the conditions of Th.1, and b; € C(72(T)), u?,

Ug € C(T) ﬁLl(I), usz € C(El X EQ(T;;) X 53),
(Hy)u* =supug, 2% = sup 2° v. =infwe, p* = sup p,
I o2(13) X 03 1 o2(0)

b= [ badr, a =max(bp*,1,p*/v.), ¢ = max(bz"* /u*,1,2°* /u*v,)
a2(T)
are finite positive constants.

Denoting J = [0, min (t, T)] and solving (1) along the respective characteris-
tics we obtain

T3

uw)(ri, 72— t, 13 —t)exp{— [ w3(€+ 1 —T13,8)dE}, t € [0, 73],
Tgft

uz = . (9)
{pUIUQ/nl}|(t7T3,T1,T27T3) eXp{_ f V3(€ + T2 — T3, g)d€}7 T3 € J7
0

T3

D —t,ms —t)exp{— [ v3(E+ 1 —713,8)dE}, 0 <t <73,
Tgft

z= . (10)
(pu2)|(t773,‘r27‘r3) exp{— f V3(€ + T — T37£)d€}77-3 € J:
0

T1

wd(r —t)exp{— [ n(£d}, 0<t <,
u = nt (11)

T1

ul(t - 7_170) exp{— (J; Vl(g)df}aTl € [O)t];

T2

ud(re —t)exp{— [ 1(§)de}, 0<t <7, € I,
To—t
Uy = (12)

T2

us(t — 72,0) exp{— [v2(§)dE}, m € [0,t], 7 € I,
0

T2

Ug(’l'z - t) exp{— f ﬂ2(£)d£}7 0 S t S T2 — 217 y T2 € Il:
To—t

U2 = o (13)
us(my +t — 1o, my) exp{— [ n(§)dé},t > — 13,1 € L1,
1

Ta
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T2
ud(r2 — t)exp{— [ 7 (£)d} + f exp{— f’/2 )d€}z(n+
Tz*t
t_T27n7T)d777 te [0 T2 — Ty ] T2 € IQ,
Uz = s (73 +t — 12, 77) exp{— fl/2 (6)deY+
Tz
anﬂ fw (&)deYz(n+t —1o,n, T)dn, t > 12 — 73,75 € Iy,
\TZ
r o
ud(r2 — t)exp{— [ n(£)d} + f exp{— f’/2 )d€}z(n+
To—t
t—Tg,’l’],T)dn, 0 < t < T2 —7'2,7'2 € I3,
uz = ua (75 +t — 12, 75) exp{— fl/g YdEY+
T2
fexp{ f’/2 )dEyz(n 4+t —12,n, T)dn, t > 172 — 735,72 € I3,
K
T2
up(re —t)exp{— [ »n(&)d¢},0<t <m —13,,7 € I,
Tzft
Ug =

T2
uy(1y +t — 79, 75) exp{— [ v2(6)dE},t > T2 — 75,1 € I,

4
Ta

uj(t7 0) = / bj(T2)Z(t7T27T)dT27 .7 = ]-7 2.
a2(T)

(16)

(17)

Then using (Hz) from (10)-(17) we obtain the estimate 0 < us < u*ga* for
€ (kT,(k + )T], k = 0,1,... or 0 < uy < u*qa’/T for t > 0. The last

estimate ensures the existence of the Laplace transform of u.

Let @2(A, 72) and Z(A, 72, 73) be the Laplace transform of us and z. Then

from (10), (12)-(16) we obtain:
Z=p(r2 — 13)u2(A, 72 — 73) exp{— /(/\ + v3(n + 172 — 73,m)dn}+

T3

/20(6 + 1 — 713,§) exp{— /(A + v3(n + 72 — 73,1))dn}dE,
¢

0

(18)
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s = Gis(), 0) exp{— /(A T vo)dn)+
0

T2

/ u(€) expf~ / (A + vo)dn}de, 5 € I, (19)
13

0

T2

~

Uy = Uz(\, 75) exp{— /(/\ + v)dn}+

1
T2

T2

/ ud(€) exp{— / (A + 2)dn} de, = € I, (20)
13

1
T2

@y = @\, 72) exp{— / (A + 5(n))dn}+

T2

/ (u3(6) + 2 £, T)} expf— / A+ o(n)dn}de,m € o, (21)
w2 ¢

iy = s\ 1) exp{— / A+ v ()} +

T

/ (u3(6) + 2\ £, T)} expf — / A+ va()dn}de,ms € I, (22)
3 3

2

(A, 0) = / ba(72)2(A, 72, T)dro. (23)
U2(T)

Denoting
T
uz(A, 12) = U2(A, 0001 (A, 72) +v2(N, ), 1(A, 2 —=T) =p(r2—T) exp{—f(/\+
0

V3(77 + 12— T: n))dn}a g2(>‘7T2 - T) =

72 — T, n))dn}d§
from (18)-(23) we obtain

oty

T
€+ 1T, exp{— [(A+v3(n+
13

uz(A,0) = p(A)/(1 = 5(N), (24)
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b)) = / b(E+T) (g (A Oua (M, ) + g2(, ),

2(0)

50\ = / ba(E + T)ga (M s (A, £) e,

2(0)

where

v1(\, 72) = exp{— f()\ +v2)dn} = v1(0,72) exp{—Ar2}, 2 € Iy,

vi(A\, 72) = vi(\, 73) exp{— f (A + 2)dn} = v1(0,72) exp{ A2}, ™2 € I,

5

vi(\, 12) = vi(\,75)exp{— f (A + )dn} + f exp{— f (A + 2)dn}tgi(\, € —

3

T)vi(A,§ = T)dE = v (0, T2)eXp{ Ao}, T2 € I,

vi(\, 12) = vi(\,75)exp{— f (A + va)dn} + f exp{— f A + v)dntgi(\, € —

3

T)vi (A, € —T)dE = v1 (0, T2)exp{ A2}, 72 € I3,

A T2 f U2 GXp{— I(A + V2)d77}df> T2 € I[):

0200 7) = v ) exp{— [+l + [ ud(©) exp{— [Ov+o)dn}de, . €
Tz T2 3

Il:

v2(A,72) = v2(A, 73) exp{— f A+ pp)dn} + fexp{ f A+ pa)dn}{us(§) +

3

g2\ €= T) +v2(A € — T)g1(>\ §—T)}ds, 72 € I,

va(A, 72) = va(\,75) exp{— f (A + v)dn} + fexp{ f (A + v2)dn}{ul (&) +

3

G2 (M E=T) + vz (N, € — T)gl(/\ §—T)}d¢, m € I3,

are known functions. Therefore

0(A) = [ 2§+ T)g1(0,€)v1(0, &) exp{—A¢}dE.

0’2(0)

Using the inverse Laplace transform we obtain uz(t,0) ~ c2(Ao) exp{Aot},
c2(Ao) = —1(Xo)/dd/dN|a=x, > 0. Then from (9)-(17) we get the following
asymptotic behaviour

uy ~ ca(Ao)er(Xo) fi(mi) exp{Ao(t — 71)},
uz ~ c2(Ao) f2(T2) exp{Ao(t — T2)}, (25)
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ug ~ c2(Xo) fa(Xo, 71) f3(72, 73) exp{Ao(t — 72)}
as max (ry,72) < t,t — 00, where Ao, ¢1(No), f1, f2, f3, f1 are defined by

(6)5, (6)y, (7), (8)-

Thus we can formulate the following

THEOREM 2. Assume the hypotheses (Hy), (Hz) hold. Then (25) is asymp-
totics of the general solutuion for (1)-(4) as maz (11.172) < t, t — o0.
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