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Abstract. We firstly employ a proper orthogonal decomposition (POD) method,
Crank–Nicolson (CN) technique, and two local Gaussian integrals to establish a POD-
based reduced-order stabilized CN mixed finite element (SCNMFE) formulation with
very few degrees of freedom for non-stationary parabolized Navier–Stokes equations.
Then, the error estimates of the reduced-order SCNMFE solutions, which are acted
as a suggestion for choosing number of POD basis and a criterion for updating POD
basis, and the algorithm implementation for the POD-based reduced-order SCN-
MFE formulation are provided, respectively. Finally, some numerical experiments
are presented to illustrate that the numerical results are consistent with theoretical
conclusions. Moreover, it is shown that the reduced-order SCNMFE formulation is
feasible and efficient for finding numerical solutions of the non-stationary parabolized
Navier–Stokes equations.
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1 Introduction

For the high Reynolds number fluid flow along the x-axis direction, we may omit
the second order viscous terms on the x-axis direction, but retain other second
order terms and no viscous nonlinear terms. Thus, we obtain the following
non-stationary parabolized Navier–Stokes equations (see [20]).
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Problem I. Seek u = (u1, u2)T and p satisfying for T∞ > 0,
∂tu+ (u · ∇)u+∇p = ν∂2yyu, (x, y, t) ∈ Ω × (0, T∞),

divu = 0, (x, y, t) ∈ Ω × (0, T∞),

u(x, y, t) = ϕ(x, y, t), (x, y, t) ∈ ∂Ω × (0, T∞],

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

(1.1)

where Ω ⊂ R2 is a bounded and connected domain, ∂t = ∂/∂t represents the
first order partial derivative with respect to time t, ∂2yy = ∂2/∂y2 the second

order partial derivative with respect to y, u = (u1, u2)T the velocity vector, p
the pressure, T∞ the total time, ν = (RePr)−1, Re the Reynolds number, Pr
the Prandtl number, and ϕ(x, y, t) and u0(x, y) are given vector functions. As
a matter of convenience and without loss of generality, we might assume that
ϕ(x, y, t) = 0 in the following theoretical analysis.

A lot of numerical examples have shown that, if the fluid mainstream di-
rection does not appear on a wide range of separation zone, the numerical
results for the simplified parabolized Navier–Stokes equations are very close to
those for the full Navier–Stokes equations. Especially, for fluid flow with high
Reynolds number, the numerical viscosity for the full Navier–Stokes equations
tends to hide some of the real physical viscosity. In other word, for fluid flow
problems with high Reynolds number, the numerical solutions obtained from
the parabolized Navier–Stokes equations are closer to real physical solutions
than those obtained from the full Navier–Stokes equations (see [2]). Although,
it seems, in principle, unreasonable that the fluid flow of the computational
domain appearing separation zone is described by the simplified parabolized
Navier–Stokes equations, a lot of computational examples show that, for high
Reynolds number fluid flows, which feature a local small separation zone along
the main stream direction (for example, the front or backward facing step flow,
the separation bubble flow, the compression corner flow, the air intake chan-
nel flow field), the numerical solutions obtained by the simplified parabolized
Navier–Stokes equations are very close to those obtained from the full Navier–
Stokes equations (see [26]). Thus, to study the numerical methods for the
non-stationary parabolized Navier–Stokes equations holds important theoreti-
cal value and real-life applied meanings.

However, most of existing numerical methods employ finite difference (FD)
schemes as discrete means for the non-stationary parabolized Navier–Stokes
equations (for example, see [6,26]). Unfortunately, such discretizations may re-
sult in pressure instabilities as mentioned in [4]. Thus, the finite element (FE)
method for the linearized stationary parabolized equations was presented in [4].
Recently, a fully discrete stabilized Crank–Nicolson (CN) mixed FE (SCNMFE)
formulation with second-order time accuracy for the non-stationary parabo-
lized Navier–Stokes equations has been established via CN time discretization
technique and two local Gaussian integrals (see [27]). It has more advanta-
geous than the classical FE formulations in [4], for example, it can circumvent
the constraint of Brezzi–Babuška (B–B) inequality in FE methods, has the
second-order time accuracy, and its numerical solutions are more stable than
those in [4]. And it is also different from the stabilized FE method with the
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first time accuracy for the full non-stationary Navier–Stokes equations in [13].
However, it also includes a lot of degrees of freedom (i.e., unknown quanti-
ties) like other classical numerical methods if it is applied to real-life numerical
simulations. Therefore, an important problem is how to reduce the degrees
of freedom for the classical fully discrete SCNMFE formulation in order to al-
leviate the computational load, save the consuming time of calculations, and
lessen the accumulation of truncation error in the computational process in a
way that guarantees sufficiently accurate numerical solutions.

The proper orthogonal decomposition (POD) method (see [11]) is an ef-
fective tool for reducing the degrees of freedom in numerical models for time-
dependent partial differential equations (PDEs) and to alleviate calculation
load and the accumulation of truncation errors in the computational pro-
cess. This method has been used to establish some POD-based reduced-order
Galerkin, FE, and FD numerical models for PDEs (see [7, 9, 12, 15, 16, 17, 18]).
Moreover, it has played an important role in the reduced-basis of numerical
models for PDEs (see [10,19,21,24,25]).

However, to the best of our knowledge, no previous studies have used the
POD method to establish POD-based reduced-order SCNMFE formulation for
the non-stationary parabolized Navier–Stokes equations. Especially, most ex-
isting POD-based reduced-order models (see, e.g., [7, 9, 12, 15, 16, 18]) employ
numerical solutions obtained from classical numerical models on the global time
span [0, T∞] to construct POD bases and to establish POD-based reduced-order
models, before recomputing the solutions on the same time span [0, T∞]. In
fact, they include repeated computations on the same time span [0, T∞]. In
this study, we thoroughly improve the existing POD-based reduced-order meth-
ods, where we do only extract snapshots from the first few numerical solutions
on the very short time span [0, T0] (T0 � T∞) for the classical SCNMFE
formulation of the non-stationary parabolized Navier–Stokes equations to for-
mulate POD basis and establish the POD-based reduced-order SCNMFE for-
mulation, before seeking the reduced-order SCNMFE solutions on global time
span [0, T∞]. Thus, the POD-based reduced-order fully discrete SCNMFE for-
mulation for the non-stationary parabolized Navier–Stokes equations can not
only overcome those disadvantages in the existing POD-based reduced-order
models (see, e.g., [7, 9, 12,15,16,18]), but is also different from them.

The remainder of this paper is organized as follows. In Section 2, we recall
the classical fully discrete SCNMFE formulation based on two local Gaus-
sian integrals for the non-stationary parabolized Navier–Stokes equations. In
Section 3, we employ the POD method to established the POD-based reduced-
order SCNMFE formulation with very few degrees of freedom for non-stationary
parabolized Navier–Stokes equations. In Section 4, we provide the error esti-
mates of the reduced-order SCNMFE solutions, which are acted as a suggestion
for choosing number of POD basis and a criterion for updating POD basis, and
the algorithm implementation for the POD-based reduced-order SCNMFE for-
mulation, respectively. In Section 5, we provide some numerical experiments to
illustrate that the numerical results are consistent with theoretical conclusions.
Moreover, it is shown that the reduced-order SCNMFE formulation is feasible
and efficient for finding numerical solutions of the non-stationary parabolized
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Navier–Stokes equations. In Section 6, we provide some main conclusions.

2 Classical Fully Discrete SCNMFE Formulation

2.1 Existence of generalized solution for Problem I

The Sobolev spaces and norms used in this article are standard (see [1]). Let
U = H1

0 (Ω)2 and M = L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω
qdxdy = 0

}
. Then the

variational formulation for Problem I reads as follows.

Problem II. Seek (u(t), p(t)) : [0, T∞]→ U ×M satisfying
(ut,v) + a(u,v) + a1(u,u,v)− b(v, p) = 0, ∀v = (v1, v2)T ∈ U,
b(u, q) = 0, ∀q ∈M,

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,
(2.1)

where a(u,v) = ν(∂yu, ∂yv) = ν
∫
Ω

(∂u1

∂y
∂v1
∂y + ∂u2

∂y
∂v2
∂y )dxdy, b(v, q) = (div v, q),

a1(u, v,w) = [((u · ∇)v,w) − ((u · ∇)w,v)]/2, and (·,·) denotes the inner
product in L2(Ω) or L2(Ω)2.

The trilinear function a1(·, ·, ·) satisfies the following properties (see [8, 13,
14,23]):

a1(u,v,w) = −a1(u,w,v), a1(u,v,v) = 0, ∀u,v,w ∈ U,∣∣a1(v,u,w)
∣∣ 6 C‖∇u‖0‖∇v‖0‖∇w‖

1
2
0 ‖w‖

1
2
0 , ∀u,v,w ∈ U, (2.2)

where ‖w‖20 = (w,w) =
∫
Ω
|w|2dxdy and C used in context is a constant

which is possibly different at different occurrences.
The bilinear function a(·, ·) satisfies the following properties (see also [8,13,

14,23]):

a(v,v) = ν‖∂yv‖20, ∀v ∈ U ;
∣∣a(u,v)

∣∣ 6 ν|u|1|v|1, ∀u,v ∈ U. (2.3)

The bilinear function b(·, ·) satisfies the following B–B condition (see also
[8, 13,14,23]):

sup
v∈U

b(v, q)

|v|1
> β‖q‖0, ∀q ∈M, (2.4)

where β is a constant independent of v and q. Let

N0 = sup
u,v,w∈U

a1(u,v,w)

|u|1 · |v|1 · |w|1
. (2.5)

Noting that by Poincaré inequality, there exists a constant C̄0 satisfying

‖u‖0 6 C̄0‖∂yu‖0, ∀u ∈ U. (2.6)

The following statements of existence and stability for Problem II are pro-
vided in [27].
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Theorem 1. If u0 ∈ L2(Ω)2 and ‖ut(x, y, 0)‖0 is bounded, namely, there exists
a constant C0 satisfying ‖ut(x, y, 0)‖0 6 C0, Problem II has a unique solution
satisfying

‖u‖0 + ‖ut‖0 + ‖∂yu‖L2(L2) 6 C
(∥∥u0

∥∥
0

+
∥∥ut(x, y, 0)

∥∥
0

)
,

where ‖ · ‖L2(L2) is the norm of L2(0, T∞;L2(Ω)2)2. Further, if

‖∇u‖0 6 C(‖u0‖0 + ‖ut(x, y, 0)‖0),

then p is also bounded, namely

‖p‖0 6 C
(∥∥u0

∥∥
0

+
∥∥ut(x, y, 0)

∥∥
0

)
.

2.2 Time semi-discrete CN formulation for Problem I

For given positive integer N , let k = T∞/N denote time step, tn = nk, un

is the time semi-discrete CN approximation of u at tn (n = 0, 1, . . . , N). Let
∂̄tu

n = (un − un−1)/k denote the approximation of ut, ū
n = (un + un−1)/2,

then the time semi-discrete CN scheme with the second-order time accuracy
for Problem II is described in the following.

Problem III. Seek (un, pn) ∈ U ×M (1 6 n 6 N) satisfying
(
∂̄tu

n,v
)

+ a
(
ūn,v

)
+ a1

(
ūn, ūn,v

)
− b
(
v, pn

)
= 0, ∀v ∈ U,

b
(
un, q

)
= 0, ∀q ∈M,

u0 = u0(x, y), (x, y) ∈ Ω.

The following statements of existence, stability, and convergence of solution
for the time semi-discrete CN formulation, namely, Problem III are provided
in [27].

Theorem 2. If u0 ∈ H1(Ω)2, then Problem III has a unique sequence of solu-
tions (un, pn) ∈ U ×M (n = 1, 2, . . . , N) that satisfy the following stability∥∥un∥∥2

0
+
νk

2

n∑
i=1

∥∥∂yūi∥∥20 6
∥∥u0

∥∥2
0
, n = 1, 2, . . . , N,∥∥∂yun∥∥0 6 C̃0(1 + C̄0)

∥∥∂yu0
∥∥
0
, n = 1, 2, . . . , N,

where C̃0 = max{1,
√

2/(k
√
ν)}. If ‖∇un‖0 is bounded, namely there exists a

constant C̃1 satisfying ‖∇un‖0 6 C̃1‖∂yu0‖0, then pn is also bounded∥∥pn∥∥
0
6 β−1k−1

[
(C̄0 + νC̄0 + ν)

∥∥∂yu0
∥∥
0

+ 4−1N0C̃
2
1

∥∥∂yu0
∥∥2
0

]
.

Moreover, if u ∈ W 3,∞(0, T ;H2(Ω)2)2 and ν−1C̄0‖∇u(t)‖0,∞ 6 1/4, the fol-
lowing error estimates hold:∥∥u(tn)− un

∥∥
0

+
√
k
[∥∥∂y(u(tn)− un

)∥∥
0

+
∥∥p(tn)− pn

∥∥
0

]
6 Ck2, n = 1, 2, . . . , N,

where C used subsequently is a constant which is possibly different at different
occurrences, being independent of k and the spatial mesh size, but dependent
on u, p, and ν.
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2.3 Classical fully discrete SCNMFE formulation and the existence
and the error estimates of its solutions

In the following, we are going to establish the classical fully discrete SCNMFE
formulation based on two local Gaussian integrals with the second-order time
accuracy directly from the time semi-discrete CN formulation. Thus, we can
avoid the discussion for semi-discrete SCNFVE formulation with respect to
spatial variables such that the theoretical analysis becomes simpler than the
existing other methods (see, e.g., [13]).

Let =h = {K} be a quasi-uniform triangulation of Ω (see [5, 14]). FE
subspaces are defined as follows.

Uh =
{
vh ∈ U ∩ C(Ω)2 : vh|K ∈ P2

1 (K), ∀K ∈ =h
}
,

Mh =
{
qh ∈M ∩ C(Ω) : qh|K ∈ P1(K), ∀K ∈ =h

}
,

where P1 represents the linear function space on K. It is obvious that Uh ⊂
U = H1

0 (Ω)2.
The following lemma is known and useful (see [14]).

Lemma 1. Let Ph : U → Uh be a L2-projection, i.e., for any u ∈ U , there
exists a unique Phu ∈ Uh satisfying

(Phu− u,vh) = 0, ∀vh ∈ Uh.

There hold the following error estimates

|Phu− u|s 6 Ch2−s|u|2, s = −1, 0, 1, ∀u ∈ H2(Ω)2;

‖Phu− u‖s,∞ 6 Ch2−s|u|2,∞, s = 0, 1, ∀u ∈W 2,∞(Ω)2.

Then, the classical fully discrete SCNMFE formulation based on two local
Gaussian integrals with the second-order time accuracy is established as follows.

Problem IV. Seek (unh, p
n
h) ∈ Uh ×Mh (1 6 n 6 N) satisfying

(
∂̄tu

n
h,vh

)
+ a
(
ūnh,vh

)
+ a1

(
ūnh, ū

n
h,vh

)
− b
(
vh, p

n
h

)
= 0, ∀vh ∈ Uh,

b
(
unh, qh

)
+Dh

(
pnh, qh

)
= 0, ∀qh ∈Mh,

u0
h = Phu

0, (x, y) ∈ Ω,

where Dh(pnh, qh) is defined as follows:

Dh

(
pnh, qh

)
= ε

∑
K∈=h

{∫
K,2

pnhqhdxdy −
∫
K,1

pnhqhdxdy

}
, ph, qh ∈Mh,

here ε is a positive real number, freely choosing and being independent of k
and h, and

∫
K,i

g(x, y)dxdy (i = 1, 2) denote the suitable Gaussian integrals

on K that is accurate for polynomials of degree i (i = 1, 2) and g(x, y) = phqh
is a polynomial whose degree is not more than i (i = 1, 2, see [13]).

Thus, for all test functions qh ∈ Mh, the trial function ph ∈ Mh must
be piecewise constant when i = 1. Further, we introduce the L2−projection
%h : L2(Ω)→Wh such that ∀p ∈ L2(Ω) satisfying

(p, qh) = (%hp, qh), ∀qh ∈Wh,

Math. Model. Anal., 20(3):346–368, 2015.
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where Wh ⊂ L2(Ω) is the piecewise constant subspace based on =h. There
hold the error estimates for the L2-projection %h (see [3, 13,14]):

‖%hp‖0 6 C‖p‖0, ∀p ∈ L2(Ω),

‖p− %hp‖0 6 Ch‖p‖1, ∀p ∈ H1(Ω).

With L2-projection %h, the bilinear function Dh(·, ·) may be denoted by

Dh(ph, qh) = ε(ph − %hph, qh) = ε(ph − %hph, qh − %hqh).

The following statements of existence, stability, and convergence of solution
for Problem IV are provided in [27].

Theorem 3. Under the hypotheses of Theorems 2, there exists a unique se-
quence of solutions (unh, p

n
h) (n = 1, 2, . . . , N) to Problem IV satisfying∥∥unh∥∥0 +
√
k
∥∥∂yunh∥∥0 +

√
k
∥∥pnh∥∥0 6 C

∥∥u0
∥∥
0
, (2.7)

thereby demonstrating that the sequence of solutions of Problem IV is stable.
Let (u, p) be the solution for Problem II and (unh, p

n
h) the solution of fully dis-

crete SCNMFE formulation with the second-order time accuracy (that is, Prob-
lem IV). If h = O(k), ν−1C̄0‖∇ūnh‖0,∞ 6 1/4, and u0 ∈ H2(Ω)2, there hold
the following error estimates∥∥u(tn)− unh

∥∥
0

+
√
k
[∥∥p(tn)− pnh

∥∥
0

+
∥∥∂y(u(tn)− unh

)∥∥
0

]
6 C

(
h2 + k2

)
, n = 1, 2, . . . , N.

Remark 1. By introducing the additional bilinear form Dh(·, ·), we stabilize the
P1 − P1 FE couple such that the B–B condition is statisfied. Thus, as long as
the Reynolds number Re, the Prandtl number Pr , u0, time step k, the spatial
mesh size h, and finite element subspaces Uh and Mh are provided, a sequence
of solutions (unh, p

n
h) ∈ Uh ×Mh (1 6 n 6 N) is obtained by solving Problem

IV. In the following section, the first L solutions (unh, p
n
h) (1 6 n 6 L, in

general, L � N , for example, L = 20, but N = 2000, 3000, 4000, or 5000) are
taken from N solutions (unh, p

n
h) (1 6 n 6 N) as snapshots, and a POD-based

reduced-order SCNMFE model is introduced.

3 Form POD Basis and Establish POD-Based Reduced-
Order SCNMFE Formulation

In this section, we employ the idea mentioned in references [12,16] to formulate
a POD basis (for more details, see [12, 16]) and to establish the POD-based
reduced-order SCNMFE formulation for non-stationary parabolized Navier–
Stokes equations.

For (unh, p
n
h) (n = 1, 2, . . . , L) in Section 2, put W i = (uih, p

i
h) (1 6 i 6 L)

and V = span{W 1,W 2, . . . ,WL}, which is referred to as the subspace spanned
by the snapshots {W i}Li=1, at least one of which is expected to be a non-
zero vector function. Let {ψj}lj=1 represent an orthonormal basis of V with
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l = dimV. Then each vector of the set V can be denoted by

W i =

l∑
j=1

(W i,ψj)U×Mψj , i = 1, 2, . . . , L,

where (W i,ψj)U×M = (∇uih,∇ψuj) + (pih, ψpj), ψj = (ψuj , ψpj), and (·, ·) is
the L2-inner product.

Definition 1. The POD method consists in seeking the orthonormal bases ψj
(j = 1, 2, . . . , l) satisfying

min
{ψj}

d
j=1

1

L

L∑
i=1

∥∥∥∥∥W i −
d∑
j=1

(W i,ψj)U×Mψj

∥∥∥∥∥
2

U×M

(3.1)

subject to

(ψr,ψj)U×M = δrj , 1 6 r, j 6 d, (3.2)

where ‖W i‖2U×M = ‖∇uih‖20 + ‖pih‖20. A sequence of solutions {ψj}dj=1 of
(3.1)–(3.2) is referred to as a POD basis of rank d.

We formulate the correlation matrixA = (Aij)L×L ∈ RL×L associated with
the snapshots {W i}Li=1 by

Aij =
1

L

[(
∇uih,∇u

j
h

)
+
(
pih, p

j
h

)]
.

Because the matrix A with rank l is a positive semi-definite, the sequence of
solutions {ψj}dj=1 for (3.1)–(3.2) can be sought and there are the following
conclusions (see [12,16]).

Proposition 1. Let λ1 > λ2 > · · · > λl > 0 represent the positive eigenvalues
of A and v1,v2, . . . ,vl are the corresponding orthonormal eigenvectors. Then,
a sequence of POD bases is obtained by

ψi =
1√
Lλi

(W 1,W 2, . . . ,WL) · vi, 1 6 i 6 d 6 l.

Moreover, we have the following error estimate

1

L

L∑
i=1

∥∥∥∥∥W i −
d∑
j=1

(W i,ψj)U×Mψj

∥∥∥∥∥
2

U×M

=

l∑
j=d+1

λj .

Let Ud = span {ψu1,ψu2, . . . ,ψud} and Md = span {ψp1, ψp2, . . . , ψpd}.
For uh ∈ Uh and ph ∈ Mh, a ∂y-projection P d: Uh → Ud about y and an L2-
projection Qd: Mh →Md are defined by the following formulas, respectively,(

∂yP
duh, ∂ywd

)
= (∂yuh, ∂ywd), ∀wd ∈ Ud;(

Qdph, qd
)

= (ph, qd), ∀qd ∈Md.

Math. Model. Anal., 20(3):346–368, 2015.
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Thus, by functional analysis theories (see, e.g., [22]), there exist two extensions
Ph: U → Uh of P d and Qh: M →Mh of Qd that satisfy Ph|Uh

= P d : Uh → Ud

and Qh|Mh
= Qd : Mh →Md, respectively, which are defined by,(

∂yP
hu, ∂ywh

)
= (∂yu, ∂ywh), ∀wh ∈ Uh, (3.3)(

Qhp, qh
)

= (p, qh), ∀qh ∈Mh, (3.4)

where (u, p) ∈ U ×M . Due to (3.3) and (3.4), the projections Ph and Qh all
are bounded ∥∥∂y(Phu)∥∥0 6

∥∥∂yu∥∥0, ∀u ∈ U ; (3.5)∥∥Qhp∥∥
0
6 ‖p‖0, ∀p ∈M. (3.6)

And there is the following conclusions (see [14,16])∥∥u− Phu∥∥−1 6 Ch
∥∥u− Phu∥∥

0
6 Ch2

∥∥∂y(u− Phu)∥∥0, ∀u ∈ U.

Moreover, there are the following conclusions (see [14,16]).

Lemma 2. For every d (1 6 d 6 l), the ∂y-projection P d and L-projection Qd

satisfy, respectively,

1

L

L∑
i=1

[∥∥uih − P duih∥∥20 + h2
∥∥∂y(uih − P duih)∥∥20] 6 Ch2

l∑
j=d+1

λj ;

1

L

L∑
i=1

∥∥pih −Qdpih∥∥20 6
l∑

j=d+1

λj ,

where (uih, p
i
h) ∈ Uh × Mh (i = 1, 2, . . . , L) are the sequence of solutions to

Problem IV. Moreover, suppose that (u, p) ∈ H2(Ω)2 ×Hm(Ω) is the solution
to Problem II, the ∂y-projection Ph defined by (3.3). L2-projection Qh by (3.4)
satisfy the following error estimates, respectively,∥∥u(tn)− Phu(tn)

∥∥
−1 + h

∥∥u(tn)− Phu(tn)
∥∥
0

+ h2
∥∥∂y(u(tn)− Phu(tn))

∥∥
0
6 Ch3, n = 1, 2, . . . , N ;∥∥p(tn)−Qhp(tn)

∥∥
s
6 Chm−s, n = 1, 2, . . . , N, s = −1, 0, m = 1, 2.

Thus, with Ud ×Md, the POD-based reduced-order SCNMFE formulation
for the non-stationary parabolized Navier–Stokes equations is established as
follows.

Problem V. Seek (und , p
n
d ) ∈ Ud ×Md (n = 1, 2, . . . , N) that satisfy

(
und , p

n
d

)
=

d∑
j=1

((
∂yψuj , ∂yu

n
h

)
ψuj ,

(
ψpj , p

n
h

)
ψpj
)
, 0 6 n 6 L; (3.7)(

∂̄tu
n
d ,vd

)
+ a
(
ūnd ,vd

)
+ a1

(
ūnd , ū

n
d ,vd

)
− b
(
pnd ,vd

)
= 0,

∀vd ∈ Ud, L+ 1 6 n 6 N, (3.8)

b
(
und , qd

)
+D

(
pnd , qd

)
= 0, ∀qd ∈Md, L+ 1 6 n 6 N, (3.9)
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where (uih, p
i
h) ∈ Uh ×Mh (i = 1, 2, . . . , L) are the first L solutions to Prob-

lem IV.

Remark 2. It is easy to see that Problem IV on each time level contains 3Nh
degrees of freedom (where Nh is the number of vertices of triangles in =h, see
[5,14]), whereas Problem V on each time level only has 2d (d� l� N � Nh)
degrees of freedom. For real engineering problems, the number of vertices of
triangles Nh in =h can exceed hundreds of thousands or even one hundred
million, but d is only the number of most few main eigenvalues and it is very
small (for example, in Section 5, d = 6, while Nh = 136 × 104). Therefore,
Problem V is the POD-based reduced-order SCNMFE formulation for the non-
stationary parabolized Navier–Stokes equations. Especially, Problem V only
employs the first few known L solutions to Problem IV to search for other (N-L)
solutions, thus providing a time extrapolation. In other words, the first L POD-
based reduced-order SCNMFE solutions are obtained by projecting the first L
classical SCNMFE solutions onto POD basis, while other (N −L) POD-based
reduced-order SCNMFE solutions are obtained by extrapolating and iterating
equations (3.8) and (3.9). Therefore, it is completely different from the existing
POD-based reduced-order formulations (see, e.g., [7, 9, 12,15,16,18]).

4 Existence, Stability, and Convergence of Solutions and
Algorithm Implementation for Problem V

4.1 Existence, stability, and convergence of solutions for the POD-
based reduced-order SCNMFE formulation

In order to discuss the existence, uniqueness, stability, and convergence of the
solutions for the POD-based reduced-order SCNMFE formulation Problem V,
it is necessary to review the following discrete Gronwall Lemma (see [5, 16]).

Lemma 3. If {an} and {bn} are two positive sequences, {cn} is a nondecreas-
ing positive sequence, and they satisfy

an + bn 6 cn + λ̄

n−1∑
i=0

ai, λ̄ > 0, a0 + b0 6 c0,

then an + bn 6 cn exp(nλ̄), n > 0.

We have the following main conclusions for the POD-based reduced-order
SCNMFE solutions.

Theorem 4. Under the hypotheses of Theorems 2 and 3, a unique sequence of
solutions (und , p

n
d ) ∈ Ud ×Md to Problem V exist that satisfy∥∥und∥∥0+k

∥∥∂yund∥∥0+
√
k
∥∥pnd∥∥0 6 C

∥∥u0
∥∥
0
, n = 1, 2, . . . , L, L+1, . . . , N, (4.1)

thereby demonstrating that the sequence of solutions (und , p
n
d ) (n = 1, 2, . . . , N)

to Problem V is stable. If k = O(h), N = O(L2), and C̄0ν
−1‖∇ūnd‖0,∞ 6 1/4
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(n = L+ 1, L+ 2, . . . , N), we have the following error estimates

∥∥unh − und∥∥0 +
√
k
∥∥pnh − pnd∥∥0 6 C

(
k

l∑
j=d+1

λj

)1/2

, n = 1, 2, . . . , L; (4.2)

∥∥unh − und∥∥0 +
√
k
∥∥pnh − pnd∥∥0 (4.3)

6 C
(
k2 + h2

)√
n− L+ C

(
k

l∑
j=d+1

λj

)1/2

, n = L+ 1, L+ 2, . . . , N.

Proof. If 1 6 n 6 L, from (3.7), we obtain a unique sequence of solutions
(und , p

n
d ) ∈ Ud×Md (n = 1, 2, . . . , L) to Problem V. Because finite dimensional

subspaces Ud×Md are sequentially compact Hilbert spaces, if (4.1) holds when
L+1 6 n 6 N , applying fixed point theorem (see [22]) to (3.8)–(3.9), we obtain
a unique sequence of solutions (und , p

n
d ) ∈ Ud ×Md (n = L + 1, L + 2, . . . , N)

to Problem V. Thus, there exists a unique sequence of solutions (und , p
n
d ) ∈

Ud×Md (n = 1, 2, . . . , N) to Problem V. Therefore, we first devote to proving
that (4.1) holds.

If n = 1, 2, . . . , L, the inequality (4.1) in Theorem 4 are easily obtained by
Theorem 3, (3.5), and (3.6). If n = L+ 1, L+ 2, . . . , N , by taking vd = ūnd in
the second equation of Problem V and qd = pnd in the third equation of Problem
V and by using Lemma 2 and the Hölder and Cauchy inequalities, we obtain

1

2

(∥∥und∥∥20 − ∥∥un−1d

∥∥2
0

)
+ kν

∥∥∂yūnd∥∥20 + kε
∥∥pnd − %hpnd∥∥20

= kε
(
pn−1d − %hpn−1d , pnd − %hpnd

)
6
kε

2

∥∥pnd − %hpnd∥∥20 +
kε

2

∥∥pn−1d − %hpn−1d

∥∥2
0
. (4.4)

It follows from (4.4) that∥∥und∥∥20 − ∥∥un−1d

∥∥2
0

+ 2kν
∥∥∂yūnd∥∥20 + kε

∥∥pnd − %hpnd∥∥20
6 kε

∥∥pn−1d − %hpn−1d

∥∥2
0
. (4.5)

Summing (4.5) from L+1 to n and using the case of (4.1) when n = 1, 2, . . . , L
yield

∥∥und∥∥20 + kν
n∑

i=L+1

∥∥∂yūid∥∥20 + kε
∥∥pnd − %hpnd∥∥20

6
∥∥und∥∥20 + 2kν

n∑
i=L+1

∥∥∂yūid∥∥20 + kε
∥∥pnd − %hpnd∥∥20 6 C

∥∥u0
d

∥∥2
0
. (4.6)

Noting that
∑n
i=1 a

2
i > (

∑n
i=1 ai)

2
/n and ‖a + b‖0 > ‖a‖0 − ‖b‖0, from (4.6),

we obtain∥∥und∥∥0 + k
√
ν
∥∥∂yund∥∥0 +

√
kε
(∥∥pnd∥∥0 − ∥∥%hpnd∥∥0) 6 C

∥∥u0
d

∥∥
0
. (4.7)
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If pnd 6= 0, then ‖pnd‖0 > ‖%hpnd‖0. Thus, there is a constant α ∈ (0.1) satisfying
α‖pnd‖0 = ‖%hpnd‖0. Therefore, from (4.7), we obtain (4.1) when n = L+ 1, L+
2, . . . , N . If pnd = 0, (4.1) is obviously correct.

If n = 1, 2, . . . , L, from Lemma 2, we can obtain (4.2). If n = L + 1, L +
2, . . . , N , by noting that Ud ⊂ Uh and Md ⊂ Mh and subtracting Problem V
from Problem IV taking vh = vd and qh = qd, we obtain the following system
of error equations:

(
unh − und ,vd

)
+ ka

(
ūnh − ūnd ,vd

)
+ ka1

(
ūnh, ū

n
h,vd

)
− ka1

(
ūnd , ū

n
d ,vd

)
− kb

(
vd, p

n
h − pnd

)
=
(
un−1h − un−1d ,vd

)
, ∀vd ∈ Ud, n = L+ 1, L+ 2, . . . , N ;

b
(
unh − und , qd

)
+D

(
pnh − pnd , qd

)
= 0, ∀qd ∈Md.

(4.8)

Put en = P dunh −und , ρn = unh −P dunh, ηn = Qdpnh − pnd , and ξn = pnh −Qdpnh.
Thus, on the one hand, it is obtained by using Lemma 2, the system of error
equations (4.8), and the properties of operator %h that

2
(∥∥en∥∥2

0
−
∥∥en−1∥∥2

0

)
+ kν

∥∥∂y(en + en−1
)∥∥2

0

= 2
(
ρn−1 − ρn, en + en−1

)
+ 2ka

(
ūnh − ūnd , en + en−1

)
+ 2
(
unh − und −

(
un−1h − un−1d

)
, en + en−1

)
− 2ka

(
ρn + ρn−1, en + en−1

)
= 2
(
ρn−1 − ρn, en + en−1

)
+ 2kb

(
en + en−1, pnh − pnd

)
− 2
(
un−1h − un−1d , en + en−1

)
− ka1

(
ūnh, ū

n
h, e

n + en−1
)

+ ka1
(
ūnd , ū

n
d , e

n + en−1
)

= 2
(
ρn−1 − ρn, en + en−1

)
+ 2kb

(
ξn, en + en−1

)
− 2
(
un−1h − un−1d , en + en−1

)
− 2k

(
pnh + pn−1h − pnd − pn−1d − %h

(
pnh + pn−1h − pnd − pn−1d

)
, ηn
)

− ka1
(
ūnh, ū

n
h, e

n + en−1
)

+ ka1
(
ūnd , ū

n
d , e

n + en−1
)

6 C
(
k−1

∥∥ρn−1 − ρn∥∥2−1 + k
∥∥ρn−1∥∥2

0
+
∥∥en−1∥∥2

0

)
+ Ck

∥∥ξn∥∥2
0

− 2k
(
pnh + pn−1h − pnd − pn−1d − %h

(
pnh + pn−1h − pnd − pn−1d

)
, ηn
)
.

+
kν

4

∥∥∇(en + en−1
)∥∥2

0
− ka1

(
ūnh, ū

n
h, e

n + en−1
)

+ ka1
(
ūnd , ū

n
d , e

n + en−1
)
. (4.9)

Next, by triangle inequality, we have

− 2k
(
pnh + pn−1h − pnd − pn−1d − %h

(
pnh + pn−1h − pnd − pn−1d

)
, ηn
)

= −2k
(
ηn − %hηn, ηn − %hηn

)
− 2k

(
ηn−1 − %hηn−1, ηn − %hηn

)
6 −2k

(∥∥ηn∥∥2
0
−
∥∥%hηn∥∥20)+ k

(∥∥ηn−1∥∥2
0
−
∥∥%hηn−1∥∥20)

+ k
(∥∥ηn∥∥2

0
−
∥∥%hηn∥∥20)

6 k
(∥∥ηn−1∥∥2

0
−
∥∥%hηn−1∥∥20)− k(∥∥ηn∥∥20 − ∥∥%hηn∥∥20). (4.10)
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In addition, if C̄0ν
−1‖∇ūnh‖0,∞ 6 1/4 and C̄0ν

−1‖∇ūnd‖0,∞ 6 1/4 (n = L+ 1,
L+ 2, . . . , N), by the properties of a1(., ., .), (2.6), and Lemma 2, we have

ka1
(
ūnd , ū

n
d , e

n + en−1
)
− ka1

(
ūnh, ū

n
h, e

n + en−1
)

6 Ck‖ρ‖20 +
kν

4

∥∥∂y(en + en−1
)∥∥2

0
. (4.11)

Thus, if k = O(h), combining (4.10) and (4.11) with (4.9) yields that

4
(∥∥en∥∥2

0
−
∥∥en−1∥∥2

0

)
+ kν

∥∥∂y(en + en−1
)∥∥2

0
+ 4k

(∥∥ηn∥∥2
0
−
∥∥%hηn∥∥20)

6 C
(
k
∥∥ρn∥∥2

0
+ k
∥∥ρn−1∥∥2

0
+
∥∥en−1∥∥2

0

)
+ Ck

∥∥ξn∥∥2
0

+ 4k
(∥∥ηn−1∥∥2

0
−
∥∥%hηn−1∥∥20). (4.12)

Summing (4.12) from L+ 1 to n and using Lemma 2 yield that

4
∥∥en∥∥2

0
+ kµ

n∑
i=L+1

∥∥∂y(ei + ei−1)
∥∥2
0

+ 2k
(∥∥ηn∥∥2

0
−
∥∥%hηn∥∥20)

6 4
∥∥eL∥∥2

0
+ 4k

(∥∥ηL∥∥2
0
−
∥∥%hηL∥∥20)

+ Ck

[
n∑
i=L

(∥∥ρi∥∥2
0

+
∥∥ξi∥∥2

0

)
+

n−1∑
i=L

∥∥ei∥∥2
0

]
. (4.13)

If ηn 6= 0, there hold ‖ηn‖20 > ‖%hηn‖20 (n = L,L+ 1, . . . , N). Thus, there are
α1 ∈ (0, 1) and α2 ∈ (0, 1) that satisfy α1‖ηn‖20 = ‖%hηn‖20 and α2‖ηL‖20 =
‖%hηL‖20. Then, we could simplify (4.13) into the following inequality

∥∥en∥∥2
0

+ k

n∑
i=L+1

∥∥∂y(ei + ei−1
)∥∥2

0
+ k
∥∥ηn∥∥2

0

6 C
∥∥eL∥∥2

0
+ Ck

∥∥ηL∥∥2
0

+ Ck

[
n∑
i=L

(∥∥ρi∥∥2
0

+
∥∥ξi∥∥2

0

)
+

n−1∑
i=L

∥∥ei∥∥2
0

]
. (4.14)

Applying Lemma 3 to (4.14) yields

∥∥en∥∥2
0

+ k

n∑
i=L+1

∥∥∂y(ei + ei−1
)∥∥2

0
+ k
∥∥ηn∥∥2

0

6 C

[∥∥eL∥∥2
0

+ k
∥∥ηL∥∥2

0
+ k

n∑
i=L

(∥∥ρi∥∥2
0

+
∥∥ξi∥∥2

0

)]
exp
(
C(n− L)k

)
. (4.15)

By extracting the square root for (4.15) and using (
∑n
i=1 b

2
i )

1/2 >
∑n
i=1 |bi|/

√
n

and ‖∂y(en + en−1)‖0 > ‖∂yen‖0 − ‖∂yen−1‖0, we obtain∥∥en∥∥
0

+ k
∥∥∂yen∥∥0 + k1/2

∥∥ηn∥∥
0

6 C

[∥∥eL∥∥2
0

+ k
∥∥ηL∥∥2

0
+ k

n∑
i=L

(∥∥ρi∥∥2
0

+
∥∥ξi∥∥2

0

)]1/2
. (4.16)
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Moreover, from Lemma 2 and Theorem 3, we obtain∥∥ρi∥∥
0
6
∥∥uih − u(ti)

∥∥
0

+
∥∥u(ti)− Phu(ti)

∥∥
0

+
∥∥Ph(u(ti)− uih

)∥∥
0

6 C
[∥∥u(ti)− Phu(ti)

∥∥
0

+
∥∥u(ti)− uih

∥∥
0

]
6 C

(
h2 + k2

)
, (4.17)

k
∥∥pih −Qdpih∥∥0 6 k

[∥∥pih − p(ti)∥∥0 +
∥∥p(ti)−Qhp(ti)∥∥0 +

∥∥Qh(p(ti)− pih)∥∥0]
6 Ck

[∥∥p(ti)−Qhp(ti)∥∥0 +
∥∥p(ti)− pih∥∥0] 6 C

(
h2 + k2

)
.

(4.18)

Combining (4.17) and (4.18) with (4.16) and using Lemma 2 and (4.2) yield
(4.3). If ηn = 0, the error estimates (4.3) is obviously correct, which completes
the proof of Theorem 4. ut

Combining Theorem 4 and Theorem 3 yields the following result.

Theorem 5. Under the hypotheses of Theorems 4, the error estimates between
the solution (u, p) to Problem II and the solutions (und , p

n
d ) to Problem V hold,

as follows∥∥u(tn)− und
∥∥
0

+
√
k
∥∥p(tn)− pnd

∥∥
0

6 M̃(n) + C
(
k2 + h2

)
+ C

(
k

l∑
j=d+1

λj

)1/2

, 1 6 n 6 N,

where M̃(n) = 0 (1 6 n 6 L), but M̃(n) = C(k2+h2)
√
n− L (L+1 6 n 6 N).

Remark 3. From (2.7) in Theorem 3 and (4.1) in Theorem 4 as well as their
proofs, it is easily seen that the conditions C̄0ν

−1‖∇ūnh‖0,∞ 6 1/4 and
C̄0ν

−1‖∇ūnd‖0,∞ 6 1/4 (n = L + 1, L + 2, . . . , N) hold if only ‖u0‖0 is suf-

ficiently small. The term (k
∑l
j=d+1 λj)

1/2 in Theorems 4 and 5 is caused by

POD-based reduced-order and the terms (k2 + h2)
√
n− L (L + 1 6 n 6 N)

are caused by extrapolation and iteration, i.e., the errors of the the POD-
based reduced-order SCNMFE solutions are more terms (k

∑l
j=d+1 λj)

1/2 and

(k2 + h2)
√
n− L (L + 1 6 n 6 N) than those of the classical SCNMFE solu-

tions, but the degrees of freedom for the POD-based reduced-order SCNMFE
formulation Problem V are far less than those for the classical SCNMFE for-
mulation Problem IV so that Problem V can greatly lessen the truncation error
accumulation in the computational process, alleviate the calculating load, save
the consuming time of calculations, and improve actual computational accu-
racy (see the examples in Section 5). Moreover, the errors (k

∑l
j=d+1 λj)

1/2

could be used as a suggestion to choose the number of POD basis, that is,
it is necessary to take d satisfying k

∑l
j=d+1 λj = O(k4, h4), while the terms

(k2 + h2)
√
n− L (L+ 1 6 n 6 N) can be used to guide the POD update.

4.2 Algorithm implementation for the POD-based reduced-order
SCNMFE formulation

It is possible to solve the POD-based reduced-order SCNMFE formulation
Problem V by the following seven steps.
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Step 1. Extract the snapshots W i(x, y) = (uih, p
i
h) (i = 1, 2, . . . , L� N) from

the classical SCNMVE solutions to Problem IV or the samples drawing from
actual physical system trajectories.
Step 2. Form the correlation matrix A = (Aij)L×L, where Aij = [(∇uih,∇u

j
h)

+(pih, p
j
h)]/L.

Step 3. Let v = (a1, a2, . . . , aL)T . Solve the eigenvalue equation Av = λv to
obtain eigenvalues λ1 > λ2 > · · · > λl > 0 (l = dim{W 1,W 2, . . . ,WL}) and
their associated eigenvectors vj = (aj1, a

j
2, . . . , a

j
L)T (k = 1, 2, . . . , l).

Step 4. For given spatial grid diameter h and time step k, and the re-
quired error δ, determine the number d of the POD basis to satisfy k4 + h4 +
k
∑l
j=d+1 λj 6 δ2.

Step 5. Formulate POD basis

(ψuj(x, y), ψpj(x, y)) =

L∑
i=1

aji
(
uih, p

i
h

)
/
√
Lλj , j = 1, 2, . . . , d.

Step 6. Take Ud = span{ψu1(x, y),ψu2(x, y), . . . ,ψud(x, y)} and Md =
span{ψp1(x, y), ψp2(x, y), . . . , ψpd(x, y)} and solve Problem V to obtain the
the POD-based reduced-order SCNMFE solutions (und , p

n
d ) (n = 1, 2, . . . , L,

L+ 1, . . . , N).
Step 7. If (k2 + h2)

√
n− L 6 δ, then (und , p

n
d ) (n = 1, 2, . . . , N) are the

solutions to the POD-based reduced-order SCNMFE formulation that satisfy
the accuracy requirement. Else, i.e., if (k2 + h2)

√
n− L > δ, let (uih, p

i
h) =

(uid, p
i
d) (i = n− L, n− L− 1, . . . , n− 1), return Step 2.

Remark 4. Step 7 could be changed into that if ‖un−1d −und‖0 > ‖und −un+1
d ‖0

and ‖pn−1d − pnd‖0 > ‖pnd − pn+1
d ‖0 (n = L,L + 1, . . . , N − 1), then (und , p

n
d )

(n = 1, 2, . . . , N) are the solutions to the POD-based reduced-order SCNMFE
formulation that satisfy accuracy requirement. Else, i.e., if ‖un−1d − und‖0 <
‖und − un+1

d ‖0 or ‖pn−1d − pnd‖0 < ‖pnd − pn+1
d ‖0 (n = L,L + 1, . . . , N − 1), let

(uih, p
i
h) = (uid, p

i
d) (i = n− L, n− L− 1, . . . , n− 1), return Step 2.

5 Some Numerical Experiments

In this section, some numerical experiments are used to demonstrate the feasi-
bility and efficiency of the POD-based reduced-order SCNMFE formulation for
the non-stationary parabolized Navier–Stokes equations, which validate that
the numerical results are consistent with theoretical conclusions.

The computational domain Ω comprises a channel with a width of 6 and a
length of 20, with two identical rectangular cavities a the bottom and the top
of the channel. Two rectangular cavities both have a width of 2 and a length
of 4 (see Figure 1). A structured mesh with side length 4x = 4y = 0.01 is
employed. And then each square is linked with diagonal in the same direction
divided into two triangles, which constitutes triangularizations =h with h =√

2 × 10−2. Take Re = 1000, Pr = 7, and ε = 1. Except for the inflow of the
left boundary with a velocity of u = (0.1(y − 2)(8− y), 0)T (x = 0, 2 6 y 6 8)
and the outflow of the right boundary with velocity of u = (u1, u2)T satisfying
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u2 = 0 and u1(x, y, t) = u1(19, y, t) (19 6 x 6 20, 2 6 y 6 8, 0 6 t 6 T∞), all
of the initial and boundary value conditions are taken as 0. In order to satisfy
k = O(h), the time step increment is taken as k = 0.01.

Figure 1. The computational field and boundary conditions of flow.

First, 20 numerical solutions (unh, p
n
h) (n = 1, 2, . . . , 20) obtained from

the classical SCNMFE formulation Problem IV are used to form snapshots
W i = (uih, p

i
h) (i = 1, 2, . . . , 20). And then, 20 eigenvalues which are arranged

in a decreasing order, and their associated 20 eigenvectors were found by us-
ing Step 3 in Section 4.2. This was achieved by computing that error factor
(k
∑20
j=7 λj)

1/2 6 6.5 × 10−4 when k = 0.01 and L = 20. Thus, it was only
necessary to take the main six eigenvectors (ψuj , ψpj) (j = 1, 2, . . . , 6) to ex-

pand into subspaces Ud ×Md, before finding the numerical solutions (und , p
n
d )

(n = 2000, 3000, 4000, and 5000, that is, at t = 2, 3, 4, and 5) using the
POD-based reduced-order SCNMFE formulation according to the seven steps
in Section 4.2, for which the velocity and pressure numerical solutions are de-
picted graphically in the bottom charts shown in Figures 2 and 3 (at t = 2), 4
and 5 (at t = 3), 6 and 7 (at t = 4), 8 and 9 (at t = 5). The numerical solutions
of the velocity and pressure obtained by the classical SCNMFE formulation of
Problem IV are depicted graphically in the top charts in Figures 2 and 3 (at
t = 2), 4 and 5 (at t = 3), 6 and 7 (at t = 4), 8 and 9 (at t = 5), respectively.

Each of the two charts from Figure 2 to Figure 8 exhibits quasi-identical
similarity. The errors of the POD-based reduced-order SCNMFE solutions
on the starting time-span are slightly larger than those of classical SCNMFE
solutions, but since the POD-based reduced-order SCNMFE formulation on
each time-level only had 2 × 6 degrees of freedom whereas the classical SC-
NMFE formulation on each time-level had 3 × 136 × 104 degrees of freedom,
i.e., the degrees of freedom for the POD-based reduced-order SCNMFE for-
mulation were far fewer than those for classical SCNMFE formulation, so it
can greatly lessen the truncation error accumulation in the computational pro-
cess, alleviate the calculating load, reduce the time required for the calcula-
tions, and improve actual computational accuracy. Therefore, after a specific
time, the relative deviations (which are computed by means of the formula

[rk−
∑N
k=1(rk/N)]/

∑N
k=1(rk/N), r = u or p) of the POD-based reduced-order

SCNMFE solutions were fewer than those of the classical SCNMFE solutions
(see Figures 10 and 11). Thus, the POD reduced-order SCNMFE solutions are
better and more stable than the classical SCNMFE solutions after longer time.
Especially, the POD-based reduced-order SCNMFE solutions of pressure are
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Figure 2. Top chart is the classical SCNMFE solution of velocity u and bottom chart is
the POD-based reduced-order SCNMFE solution of velocity u with 6 POD bases when

Re = 1000 and Pr = 7 at time t = 2.

Figure 3. Top chart is the classical SCNMFE solution of pressure p and bottom chart is
the POD-based reduced-order SCNMFE solution of pressure p with 6 POD bases when

Re = 1000 and Pr = 7 at time t = 2.

obviously better than the classical SCNMFE solutions.

Figure 12 shows the mean absolute errors (MAE) between solutions ob-
tained using the POD-based reduced-order SCNMFE formulation of Problem V
with different number of POD bases and solutions obtained using the classical
SCNMFE formulation of Problem IV when t = 5, Pr = 7, and Re = 1000.
These results show that the numerical results were consistent with the theoret-
ical ones because both were O(10−4).

Furthermore, we compared the classical SCNMFE formulation Problem IV
with the POD-based reduced-order SCNMFE formulation of Problem V con-
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Figure 4. Top chart is the classical SCNMFE solution of velocity u and bottom chart is
the POD-based reduced-order SCNMFE solution of velocity u with 6 POD bases when

Re = 1000 and Pr = 7 at time t = 3.

Figure 5. Top chart is the classical SCNMFE solution of pressure p and bottom chart is
the POD-based reduced-order SCNMFE solution of pressure p with 6 POD bases when

Re = 1000 and Pr = 7 at time t = 3.

taining six POD bases by implementing the numerical simulation computations
where t = 5, Pr = 7, and Re = 1000, which shown that the computing time
required for the classical SCNMFE formulation Problem IV was 240 minutes,
whereas the corresponding computing time for the POD-based reduced-order
SCNMFE formulation Problem V with six POD base was only 60 seconds, i.e.,
the computing time of the classical SCNMFE formulation of Problem IV was
240 times that of the POD-based reduced-order SCNMFE formulation Prob-
lem V with 6 POD bases. Thus, we showed that the POD-based reduced-order
SCNMFE formulation can greatly save the time-consuming of calculations and
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Figure 6. Top chart is the classical SCNMFE solution of velocity u and bottom chart is
the POD-based reduced-order SCNMFE solution of velocity u with 6 POD bases when

Re = 1000 and Pr = 7 at time t = 4.

Figure 7. Top chart is the classical SCNMFE solution of pressure p and bottom chart is
the POD-based reduced-order SCNMFE solution of pressure p with 6 POD bases when

Re = 1000 and Pr = 7 at time t = 4.

alleviate the computational load. We also showed that seeking the numeri-
cal solutions for the non-stationary parabolized Navier–Stokes equations using
the POD-based reduced-order SCNMFE formulation is computationally highly
effective and feasible.

6 Conclusions

In this study, we employed the POD technique and SCNMFE method to estab-
lish the POD-based reduced-order SCNMFE formulation for the non-stationary
parabolized Navier–Stokes equations. First, we extracted snapshots from the
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Figure 8. Top chart is the classical SCNMFE solution of velocity u and bottom chart is
the POD-based reduced-order SCNMFE solution of velocity u with 6 POD bases when

Re = 1000 and Pr = 7 at time t = 5.

Figure 9. Top chart is the classical SCNMFE solution of pressure p and bottom chart is
the POD-based reduced-order SCNMFE solution of pressure p with 6 POD bases when

Re = 1000 and Pr = 7 at time t = 5.

first few L (L� N) numerical solutions to the classical SCNMFE formulation
of the non-stationary parabolized Navier–Stokes equations, although in actual
applications, we may formulate the snapshots by drawing samples from experi-
ments of physical system trajectories. And then, we formulated the POD basis
of the snapshots using the POD method. Next, the FE subspaces of the clas-
sical SCNMFE formulation were replaced with the subspaces that spanned a
small number of the main POD basis functions, and we established the POD-
based reduced-order SCNMFE formulation for the non-stationary parabolized
Navier–Stokes equations. Finally, we provided the error estimates between
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Figure 10. The relative deviations of the classical SCNMFE solution and the POD-based
reduced-order SCNMFE solution with 6 POD bases of velocity u for Re = 1000 on

0 6 t 6 5.

Figure 11. The relative deviations of the classical SCNMFE solution and the POD-
based reduced-order SCNMFE solution with 6 POD bases of pressure p for Re = 1000 on

0 6 t 6 5.

Figure 12. Absolute error for Re = 1000 and Pr = 7 when POD basic is different and at
the time level t = 5.
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the classical SCNMFE solutions and the POD-based reduced-order SCNMFE
formulation solutions and the algorithm implementation for solving the POD-
based reduced-order SCNMFE formulation of the non-stationary parabolized
Navier–Stokes equations. Moreover, some numerical experiments had verified
that the numerical results were consistent with the theoretical ones, thus vali-
dating both the feasibility and efficiency of the POD-based reduced-order SC-
NMFE formulation.
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