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Abstract. We consider an abstract mixed variational problem consisting of two
inequalities. The first one is governed by a functional φ, possibly non-differentiable.
The second inequality is governed by a nonlinear term depending on a non negative
parameter ε. We study the existence and the uniqueness of the solution by means of
the saddle point theory. In addition to existence and uniqueness results, we deliver
convergence results for ε→ 0. Finally, we illustrate the abstract results by means of
two examples arising from contact mechanics.
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1 Introduction

In the present paper we study the following variational problem.

Problem 1. Given f, h ∈ X and ε ≥ 0, find uε ∈ K ⊆ X and λε ∈ Λ ⊆ Y such
that

a(uε, v−uε)+φ(v)−φ(uε)+b(v − uε, λε) ≥ (f, v − uε)X for all v ∈ K, (1.1)

b(uε, µ− λε)− ε(‖µ‖2Y − ‖λε‖2Y ) ≤ b(h, µ− λε) for all µ ∈ Λ, (1.2)

where
(h1) X and Y are two Hilbert spaces;

�
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(h2) The form a : X ×X → R is symmetric, bilinear, continuous (of rank
Ma > 0) and X−elliptic (of rank ma > 0);

(h3) The form b : X × Y → R is bilinear, continuous (of rank Mb > 0);

(h4) The functional φ : X → R+ is Lipschitz continuous (of rank Lφ > 0)
and convex;

(h5) Λ is a closed, convex subset of Y that contains 0Y ;

(h6) K is a closed, convex subset of X that contains 0X .

We can associate to Problem 1 the following functional:

Lε : K × Λ→ R, Lε(v, µ) =
1

2
a(v, v) + b(v − h, µ)− (f, v)X − ε‖µ‖2Y + φ(v).

Assuming that Problem 1 has a solution (uε, λε) ∈ K ×Λ, then this solution is
a saddle point of the functional Lε. Conversely, assuming that the functional Lε
has a saddle point (uε, λε) ∈ K × Λ, then this saddle point verifies Problem 1.
Thus, Problem 1 can be called saddle point problem.

The present study is motivated by mechanical and numerical reasons. If
ε > 0, Problem 1 is a saddle point problem with penalty term. Saddle point
problems with penalty term can arise in elasticity theory, see, e.g., [3], pages
137–138. If ε = 0, Problem 1 can be seen as a generalization of Problem (S)
in [3], page 129. Also, if ε = 0, Problem 1 can be seen as a mixed variational
formulation with Lagrange multipliers for a class of contact problems; see, e.g.,
[11]. Due to the interest on the mixed variational formulations via Lagrange
multipliers in contact mechanics, a lot of work has been done in the last decade.
For recent related papers we refer to, e.g., [2, 7, 12,13,14,15,18].

Notice that Lε is strictly convex in the first argument and concave in the
second one. If ε > 0, Lε is also strictly concave in the second argument; algo-
rithms of type multi-level can be envisaged in this case in order to approximate
the solution (uε, λε).

The present work focuses on existence and uniqueness results as well as on
the convergence of the sequence (uε, λε)ε when ε → 0. Then, two examples
are delivered. Both examples are related to the weak solvability via mixed
variational formulations with Lagrange multipliers of a contact model with
two-contact zones, by considering a deformable body in unilateral frictionless
contact on a part of the boundary and in bilateral frictional contact on another
one. The ”differentiable case” is related to the description of the friction by
means of a regularized friction law. To simplify the presentation, the examples
we deliver in the present work are only ”inspired” from realistic models. By
using some specific function spaces in 3D contact mechanics, other examples,
more realistic models from the physical point of view, can be delivered.

The reader can consult [9, 10] for helpful techniques in the saddle point
theory. However, for the convenience of the reader, we recall here two main
tools: the definition of the saddle point and an existence theorem.

Definition 1. Let A and B be two non-empty sets. A pair (u, λ) ∈ A× B is
said to be a saddle point of a functional L : A×B → R if and only if

L(u, µ) ≤ L(u, λ) ≤ L(v, λ) for all v ∈ A, µ ∈ B.

Math. Model. Anal., 25(4):608–621, 2020.
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Theorem 1. Let (X, (·, ·)X , ‖ · ‖X), (Y, (·, ·)Y , ‖ · ‖Y ) be two Hilbert spaces and
let A ⊆ X, B ⊆ Y be non-empty, closed, convex subsets. Assume that a func-
tional L : A×B → R satisfies the following conditions:

v → L(v, µ) is convex and lower semi-continuous for all µ ∈ B,
µ→ L(v, µ) is concave and upper semi-continuous for all v ∈ A.

Moreover,

A is bounded or lim
‖v‖X→∞, v∈A

L(v, µ∗) =∞ for some µ∗ ∈ B,

B is bounded or lim
‖µ‖Y→∞, µ∈B

inf
v∈A
L(v, µ) = −∞.

Then, the functional L has at least one saddle point.

The proof of Theorem 1 can be found in [9].
The rest of the paper has the following structure. In Section 2 we prove the

existence of at least one solution (uε, λε) ∈ K×Λ assuming that the functional
φ is non-differentiable. The uniqueness in the first argument is also obtained.
Furthermore, we give some convergence results for ε → 0. In Section 3 the
study is devoted to the case when φ is a Gâteaux differentiable functional.
This additional hypothesis allows us to obtain uniqueness as well as strong
convergence in the second component of the pair solution. In Section 4 we
illustrate the abstract results through two examples related to contact models
involving multi-contact zones.

2 The non-differentiable case

In this section we deliver existence, uniqueness and convergence results under
the hypotheses (h1)–(h6), assuming that the functional φ is non-differentiable.
Let us start with an auxiliary result.

Lemma 1. If (uε, λε) ∈ K × Λ is a solution of Problem 1, then this pair is a
saddle point of the functional Lε : K × Λ→ R,

Lε(v, µ) =
1

2
a(v, v) + b(v − h, µ)− (f, v)X − ε‖µ‖2Y + φ(v).

Conversely, assuming that the functional Lε has a saddle point (uε, λε) ∈
K × Λ, then this pair is a solution of Problem 1.

Proof. Let (uε, λε) ∈ K × Λ be a solution of Problem 1. By summing (1.2)

with
1

2
a(uε, uε) + φ(uε)− (f, uε)X , we obtain

Lε(uε, µ) ≤ Lε(uε, λε) for all µ ∈ Λ.

On the other hand,

Lε(uε, λε)− Lε(v, λε) ≤ −1

2
a(uε − v, uε − v) ≤ 0 for all v ∈ K.
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Therefore, (uε, λε) is a saddle point of Lε.
Let us assume now that (uε, λε) ∈ K ×Λ is a saddle point of the functional

Lε. Since
Lε(uε, µ) ≤ Lε(uε, λε) for all µ ∈ Λ,

by the definition of Lε we immediately get (1.2). In addition, because

Lε(uε, λε)− Lε(w, λε) ≤ 0 for all w ∈ K,

then,

1

2
a(uε, uε)−

1

2
a(w,w) + φ(uε)− φ(w) + b(uε − w, λε) + (f, w − uε)X ≤ 0.

Setting w = uε + t(v − uε), with t ∈ (0, 1] and v ∈ K,

t a(uε, v−uε)+
t2

2
a(v−uε, v−uε)+t (φ(v)−φ(uε))+t b(v−uε, λε) ≥ t(f, v−uε)X .

Dividing by t > 0 and then passing to the limit as t→ 0, we obtain (1.1). ut

Remark 1. The hypothesis (h3) allows us to write:
for each sequence (un)n ⊂ X such that un ⇀ u in X as n → ∞, we have

b(un, µ)→ b(u, µ) for all µ ∈ Λ;
for each sequence (λn)n ⊂ Y such that λn ⇀ λ in Y as n → ∞, we have

b(v, λn)→ b(v, λ) for all v ∈ X.

Theorem 2. Under the hypotheses (h1)–(h6), if Λ ⊆ Y is bounded, then Prob-
lem 1 has at least one solution (uε, λε) ∈ K × Λ, unique in its first argument.

Proof. In order to obtain the existence part, we consider two cases.
1. K ⊆ X is a bounded subset.
By Theorem 1, we immediately deduce that the functional Lε has at least

one saddle point (uε, λε) ∈ K × Λ. So, Problem 1 has at least one solution.
2. K ⊆ X is an unbounded subset.
We have to verify that

lim
‖v‖X→∞,v∈K

Lε(v, µ∗) =∞ for some µ∗ ∈ Λ. (2.1)

Indeed, let µ∗ = 0Y . We write,

Lε(v, 0Y ) =
1

2
a(v, v)− (f, v)X + φ(v) for all v ∈ K.

Thus,

Lε(v, 0Y ) ≥ ma

2
‖v‖2X − ‖f‖X ‖v‖X for all v ∈ K.

Passing to the limit as ‖v‖X →∞, we get (2.1). Using Theorem 1 and Lemma 1
we obtain the existence of a solution (uε, λε) ∈ K×Λ of Problem 1 in this case
too.

Math. Model. Anal., 25(4):608–621, 2020.
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Next, we study the uniqueness. Let (u1ε , λ
1
ε), (u

2
ε , λ

2
ε) ∈ K × Λ be two

solutions of Problem 1. For all v ∈ K, µ ∈ Λ and i ∈ {1, 2},

a(uiε, v − uiε) + φ(v)− φ(uiε) + b(v − uiε, λiε) ≥ (f, v − uiε)X
b(uiε, µ− λiε)− ε ‖µ‖2Y + ε ‖λiε‖2Y ≤ b(h, µ− λiε).

We take v = u2ε , µ = λ2ε , if i = 1 and v = u1ε , µ = λ1ε , if i = 2 to obtain,

a(u1ε − u2ε , u2ε − u1ε) + b(u1ε − u2ε , λ2ε − λ1ε) ≥ 0, b(u1ε − u2ε , λ2ε − λ1ε) ≤ 0.

Consequently,
ma ‖u1ε − u2ε‖2X ≤ 0,

which implies u1ε = u2ε . ut

Below we will need an additional assumption.

(h7) There exists α > 0 s.t. infµ∈Y,µ6=0Y supv∈X,v 6=0X

b(v, µ)

‖v‖X ‖µ‖Y
≥ α.

Theorem 3. Under the hypotheses (h1)–(h7), if K ⊆ X is a linear subspace,
then Problem 1 has a solution, unique in its first argument. Moreover,

‖uε‖X ≤ k1, (2.2)

‖λε‖Y ≤
1

α
(‖f‖X +Ma k1 + Lφ), (2.3)

where

k1 =
2

ma

√(
1 +

m2
a

4M2
a

)
(‖f‖2X + L2

φ) +
3M2

aM
2
b

α2
‖h‖2X .

Proof. Let us consider the following two cases.
1. Λ ⊆ Y is a bounded subset. As in Theorem 2 we obtain the existence

of a solution (uε, λε) ∈ K × Λ of Problem 1 and the uniqueness of the first
argument uε ∈ K.

2. Λ ⊆ Y is an unbounded subset. We check if

lim
‖µ‖Y→∞,µ∈Λ

inf
v∈K
Lε(v, µ) = −∞. (2.4)

Let µ ∈ Λ and let uµ ∈ K be the unique solution of the variational inequality
of the second kind,

a(uµ, v − uµ) + φ(v)− φ(uµ) ≥ (fµ, v − uµ)X for all v ∈ K, (2.5)

where fµ ∈ X is defined by Riesz’s representation theorem as follows,

(fµ, v)X = (f, v)X − b(v, µ) for all v ∈ X. (2.6)

Since uµ minimizes the functional

X 3 v → 1

2
a(v, v) + φ(v)− (fµ, v)X ,
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then,

inf
v∈K
Lε(v, µ) =

1

2
a(uµ, uµ) + φ(uµ)− (f, uµ)X + b(uµ − h, µ)− ε ‖µ‖2Y .

Taking v = 0X in (2.5) and then summing with 1
2a(uµ, uµ), we are lead to

1

2
a(uµ, uµ)− (f, uµ)X + φ(uµ) + b(uµ, µ) ≤ −ma

2
‖uµ‖2X + φ(0X).

Therefore,

inf
v∈K
Lε(v, µ) ≤ −ma

2
‖uµ‖2X − ε ‖µ‖2Y − b(h, µ) + φ(0X).

Setting now v = uµ − w with w ∈ K, in (2.5), and keeping in mind (2.6), we
obtain

b(w, µ) ≤ (f, w)X − a(uµ, w) + φ(uµ − w)− φ(uµ).

Due to the inf-sup property of the form b, we get

α‖µ‖Y ≤ ‖f‖X +Ma‖uµ‖X + Lφ.

Thus,

‖µ‖2Y ≤ c(‖f‖2X + ‖uµ‖2X + L2
φ),

where c > 0 depends on the positive constant α from (h7).

Consequently, we can write,

inf
v∈K
Lε(v, µ) ≤ −c̃(‖µ‖2Y − ‖f‖2X − L2

φ) +Mb ‖h‖X ‖µ‖Y − ε ‖µ‖2Y + φ(0X),

where c̃(α,ma,Ma) > 0. We pass to the limit as ‖µ‖Y → ∞ in this last
relation to obtain (2.4). By Theorem 1 we get the existence of a saddle point
(uε, λε) ∈ K × Λ of the functional Lε and then, by Lemma 1, we deduce that
this saddle point verifies Problem 1.

Furthermore, as in the previous theorem we obtain the uniqueness of the
first component of the pair solution of Problem 1, uε ∈ K.

Let us prove now (2.2) and (2.3). To this end in view, we take v = 0X in
(1.1) and µ = 0Y in (1.2). Hence,

a(uε, uε) ≤ (f, uε)X − b(uε, λε) + φ(0X)− φ(uε),

−b(uε, λε) ≤ −b(h, λε)− ε ‖λε‖2Y ≤ −b(h, λε).

Combining these last relations, we get

a(uε, uε) ≤ (f, uε)X − b(h, λε) + φ(0X)− φ(uε).

Thus,

ma ‖uε‖2X ≤ ‖f‖X ‖uε‖X +Mb ‖h‖X ‖λε‖Y + Lφ ‖uε‖X .

Math. Model. Anal., 25(4):608–621, 2020.
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Consequently,

ma ‖uε‖2X ≤
1

2 p1
‖f‖2X +

p1
2
‖uε‖2X +

M2
b

2 p2
‖h‖2X +

p2
2
‖λε‖2Y

+
L2
φ

2 p3
+
p3
2
‖uε‖2X , (2.7)

where p1, p2, p3 > 0. Setting now v = uε − w with w ∈ K, in (1.1), we obtain

b(w, λε) ≤ (f, w)X − a(uε, w) + φ(uε − w)− φ(uε).

By the inf-sup property of the form b, we get

‖λε‖Y ≤
1

α
(‖f‖X +Ma ‖uε‖X + Lφ). (2.8)

Thus,

‖λε‖2Y ≤
3

α2
(‖f‖2X +M2

a ‖uε‖2X + L2
φ). (2.9)

Combining (2.7) with (2.9) and taking p1 = p3 = ma
2 , p2 = ma α

2

6M2
a

, we obtain

ma

4
‖uε‖2X ≤

(
1

ma
+

ma

4M2
a

)
(‖f‖2X + L2

φ) +
3M2

aM
2
b

ma α2
‖h‖2X .

Therefore,

‖uε‖2X ≤
4

m2
a

[(
1 +

m2
a

4M2
a

)
(‖f‖2X + L2

φ) +
3M2

aM
2
b

α2
‖h‖2X

]
. (2.10)

By (2.10) and (2.8) we immediately get (2.2) and (2.3). ut

Let us draw the attention to the case ε = 0. Problem 1 leads us to the
following particular problem.

Problem 2. For given f, h ∈ X, find u0 ∈ K ⊆ X and λ0 ∈ Λ ⊆ Y such that,
for all v ∈ K and µ ∈ Λ we have,

a(u0, v − u0) + φ(v)− φ(u0) + b(v − u0, λ0) ≥ (f, v − u0)X , (2.11)

b(u0, µ− λ0) ≤ b(h, µ− λ0). (2.12)

If K = X, then this problem was already studied, see, e.g., [5].
Let us introduce a new hypothesis as follows.

(h8) If (un)n ⊂ X such that un → u in X as n → ∞ and (λn)n ⊂ Y such
that λn ⇀ λ in Y as n→∞, then b(un, λn)→ b(u, λ) as n→∞.

Theorem 4. The hypotheses (h1)–(h8) hold true and, in addition, we assume
that K ⊆ X is a linear subspace. Let ((uε, λε))ε>0 ⊂ K × Λ, where for each
ε > 0, (uε, λε) is a solution of Problem 1. Then, there exists a subsequence
((uε′ , λε′))ε′ ⊂ K×Λ and there exists λ0 ∈ Λ such that uε′ → u0 and λε′ ⇀ λ0,
as ε′ → 0, (u0, λ0) ∈ K × Λ being a solution of Problem 2 (u0 is the unique
first component of the pair solution of Problem 2) .
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Proof. Let ε > 0, let (uε, λε) ∈ K × Λ be a solution of Problem 1 and let

(u0, λ̃0) ∈ K×Λ be a solution of Problem 2, unique in their first arguments, uε ∈
K and u0 ∈ K, respectively. Due to (2.2) and (2.3), passing to a subsequence,

we deduce that there exists ũ ∈ K such that uε′ ⇀ ũ and there exists λ̃ ∈ Λ
such that λε′ ⇀ λ̃, as ε′ → 0.

Let ε′ > 0. We take v = uε′ in (2.11) and v = u0 in (1.1) to obtain,

a(u0 − uε′ , uε′ − u0) + b(uε′ − u0, λ̃0 − λε′) ≥ 0. (2.13)

Recall that (u0, λ̃0) verifies (2.11)–(2.12), because, in this proof, as mentioned

in the beginning, (u0, λ̃0) denotes a solution of Problem 2. Setting now µ = λε′

in (2.12) and µ = λ̃0 in (1.2), we get

b(uε′ − u0, λ̃0 − λε′) ≤ ε′ ‖λ̃0‖2Y − ε′ ‖λε′‖2Y . (2.14)

Combining (2.13)–(2.14) and taking into account the X-ellipticity of the form
a, we have

‖uε′ − u0‖2X ≤
ε′

ma
(‖λ̃0‖2Y − ‖λ′ε‖2Y ).

By passing to the limit as ε′ → 0 in the relation above, we obtain that uε′ → u0.
Due to the uniqueness of the limit, we conclude that ũ = u0.

Passing now to the limit as ε′ → 0 in Problem 1 and keeping in mind (h8),

we deduce that (u0, λ̃) ∈ K × Λ verifies Problem 2. We conclude the proof of

the theorem by considering λ0 = λ̃. ut

3 The differentiable case

In this section we pay attention to the case when φ is a differentiable functional.
Precisely, in addition to (h1)–(h8), we admit the following new hypothesis.

(h9) The functional φ : X → R+ is Gâteaux differentiable, its Gâteaux
gradient ∇φ being Lipschitz continuous (of rank L∇φ > 0).

Problem 1 becomes equivalent to the following problem.

Problem 3. Given f, h ∈ X and ε ≥ 0, find uε ∈ K ⊆ X and λε ∈ Λ ⊆ Y such
that, for all v ∈ K and µ ∈ Λ, we have:

a(uε, v) + (∇φ(uε), v)X + b(v, λε) = (f, v)X , (3.1)

b(uε, µ− λε)− ε(‖µ‖2Y − ‖λε‖2Y ) ≤ b(h, µ− λε).

Theorem 5. Assume that the hypotheses (h1)–(h7) and (h9) hold true. If, in
addition, Λ ⊆ Y is a bounded subset, then Problem 1 has an unique solution.
Moreover,

‖uε‖X ≤ k2, ‖λε‖Y ≤ 1

α
(‖f‖X +Ma k2 + L∇φ k2 + ‖∇φ(0X)‖X), (3.2)

where

k2 =
2

ma

√
‖f‖2X + L2

φ +
m2
a

4 r
(‖f‖2X + ‖∇φ(0X)‖2X) +

4M2
b r

α2
‖h‖2X ,

with r = M2
a + L2

∇φ.

Math. Model. Anal., 25(4):608–621, 2020.
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Proof. Theorem 2 ensures the existence of a solution (uε, λε) ∈ K × Λ of
Problem 1 as well as the uniqueness of its first component, uε ∈ K. We proceed
by proving the uniqueness in the second component, λε ∈ Λ.

Let (u1ε , λ
1
ε), (u

2
ε , λ

2
ε) ∈ K × Λ be two solutions of Problem 1 and hence of

Problem 3. For all v ∈ K and i ∈ {1, 2}, we can write

a(uiε, v) + (∇φ(uiε), v)X + b(v, λiε) = (f, v)X .

Therefore,

b(v, λ1ε − λ2ε) = −a(u1ε − u2ε , v)− (∇φ(u1ε)−∇φ(u2ε), v)X for all v ∈ K.

According to the inf-sup property of the form b, we obtain

α ‖λ1ε − λ2ε‖Y ≤ (Ma + L∇φ) ‖u1ε − u2ε‖X .

Since u1ε = u2ε , it results that λ1ε = λ2ε .
Let us prove (3.2). Firstly, we observe that

ma‖uε‖2X ≤
1

2 p4
‖f‖2X+

p4
2
‖uε‖2X+

M2
b

2 p5
‖h‖2X+

p5
2
‖λε‖2Y +

L2
φ

2 p6
+
p6
2
‖uε‖2X ,

(3.3)

with p4, p5, p6 > 0. Next, by (3.1) and (h7), we get

‖λε‖Y ≤
1

α
(‖f‖X +Ma ‖uε‖X + L∇φ ‖uε‖X + ‖∇φ(0X)‖X). (3.4)

Thus,

‖λε‖2Y ≤
4

α2
(‖f‖2X +M2

a ‖uε‖2X + L2
∇φ ‖uε‖2X + ‖∇φ(0X)‖2X).

Setting p4 = p6 = ma
2 and p5 = ma α

2

8(M2
a+L

2
∇φ)

in (3.3), we obtain

ma

4
‖uε‖2X ≤

1

ma
(‖f‖2X + L2

φ) +
4M2

b (M2
a + L2

∇φ)

ma α2
‖h‖2X

+
ma

4 (M2
a + L2

∇φ)
(‖f‖2X + ‖∇φ(0X)‖2X).

Due to this last relation and (3.4), we obtain (3.2). ut

Theorem 6. Under the hypotheses (h1)–(h7) and (h9), if K ⊆ X is a linear
subspace, then Problem 1 has an unique solution. Moreover, (3.2) hold true.

Proof. The existence of at least one solution is ensured by Theorem 3. For
the uniqueness part we use similar arguments with those used in the proof
of Theorems 2 and 5, respectively. Furthermore, as in Theorem 5, (3.2) take
place. ut

If φ ≡ 0, then Problem 1 drives us to,

a(uε, v − uε) + b(v − uε, λε) ≥ (f, v − uε)X for all v ∈ K, (3.5)

b(uε, µ− λε)− ε‖µ‖2Y + ε‖λε‖2Y ≤ b(h, µ− λε) for all µ ∈ Λ. (3.6)
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Corollary 1. The hypotheses (h1)–(h3), (h5)–(h7) hold true. If K ⊆ X is a
linear subspace, then the problem (3.5)–(3.6) has an unique solution (uε, λε) ∈
K × Λ.

Remark 2. Under the hypotheses (h1)–(h3), (h5) and (h6), if Λ ⊆ Y is a
bounded subset, then the problem (3.5)–(3.6) has a solution (uε, λε) ∈ K × Λ,
unique in its first argument.

If φ ≡ 0 and ε = 0 in Problem 1, we are lead to,

a(u0, v − u0) + b(v − u0, λ0) ≥ (f, v − u0)X for all v ∈ K, (3.7)

b(u0, µ− λ0) ≤ b(h, µ− λ0) for all µ ∈ Λ. (3.8)

Remark 3. Under the hypotheses (h1)–(h3), (h5) and (h6), if Λ ⊆ Y is a
bounded subset, then the problem (3.7)–(3.8) has a solution (u0, λ0) ∈ K ×Λ,
unique in its first argument.

If K = X or K is a linear subspace of X, then the problem (3.7)–(3.8)
drives us to

a(u0, v) + b(v, λ0) = (f, v)X for all v ∈ K, (3.9)

b(u0, µ− λ0) ≤ b(h, µ− λ0) for all µ ∈ Λ ⊆ Y. (3.10)

Corollary 2. The hypotheses (h1)–(h3), (h5)–(h7) hold true. If K = X or K is
a linear subspace of X, then the problem (3.9)–(3.10) has an unique solution
(u0, λ0) ∈ X × Λ.

If ε = 0, Problem 3 leads to the following simplified problem.

a(u0, v) + (∇φ(u0), v)X + b(v, λ0) = (f, v)X for all v ∈ K, (3.11)

b(u0, µ− λ0) ≤ b(h, µ− λ0) for all µ ∈ Λ. (3.12)

Next, we focus on the first convergence result of this section.

Theorem 7. The hypotheses (h1)–(h9) hold true and Λ ⊆ Y is a bounded
subset. Let ε > 0 and let (uε, λε) ∈ K ×Λ be the unique solution of Problem 1.
Then, uε → u0 and λε → λ0, as ε → 0, where (u0, λ0) ∈ K × Λ is the unique
solution of the problem (3.11)–(3.12).

Proof. As in Theorem 4, we obtain uε → u0 as ε→ 0. Subtracting now (3.11)
from (3.1), we get

a(uε − u0, v) + (∇φ(uε)−∇φ(u0), v)X + b(v, λε − λ0) = 0.

Using the inf-sup property of the form b, we obtain

‖λε − λ0‖Y ≤
Ma + L∇φ

α
‖uε − u0‖X .

Therefore, λε → λ0 as ε→ 0. ut

With similar arguments we can prove the following convergence result.

Theorem 8. The hypotheses (h1)–(h9) hold true and K ⊆ X is a linear sub-
space. Let ε > 0 and let (uε, λε) ∈ K × Λ be the unique solution of Problem 1.
Then, uε → u0 and λε → λ0, as ε → 0, where (u0, λ0) ∈ K × Λ is the unique
solution of the problem (3.11)–(3.12).
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618 M. Chivu Cojocaru and A. Matei

4 Examples

In this section we illustrate the previous abstract results by two examples.
Let us consider X = {v ∈ H1 (Ω), γ v = 0 a.e. on ΓI}, where Ω ⊂ R2

is a bounded domain with smooth boundary Γ partitioned in three parts
ΓI , ΓII , ΓIII with meas(Γi) > 0, i ∈ {I, II, III}. Herein γ : H1(Ω) → L2(Γ )
is the Sobolev’s trace operator. We introduce also the Hilbert space,

S = {ṽ = γ v a.e. on Γ, v ∈ X}.

Let Y = S ′ be the dual of the Hilbert space S. The space Y is a Hilbert space
too. Thus, (h1) is fulfilled.

For Lebesgue and Sobolev spaces we use standard notation; the reader can
consult, e.g., [1, 4, 16]. We also sent the reader to, e.g., [4, 6, 8] for details on
Hilbert spaces. Let us introduce the bilinear forms

a : X ×X → R, a(u, v) =

∫
Ω

ξ(x)∇u(x) · ∇ v(x) dx, (4.1)

where ξ(x) ≥ ξ∗ > 0, ξ ∈ L∞(Ω), and

b : X × Y → R, b(v, µ) = 〈µ, γ v〉. (4.2)

By · we denote the inner product on R2 and by 〈·, ·〉 we denote the duality
product between Y and S.

The form a in (4.1) verifies (h2) with Ma = ‖ξ‖L∞(Ω) and ma = ξ∗. By
using the trace theorem and an inequality of Poincaré type we deduce that (h3)
holds true. The hypothesis (h7) holds true due to the properties of the trace
operator and its right invers. Moreover, keeping in mind (4.2) we immediately
verify (h8). Let K = X and let Λ be the nonempty, closed, convex set of
Lagrange multipliers,

Λ = {µ ∈ Y : 〈µ, γ v〉 ≤ 0 for all v ∈ K1},

where K1 = {v ∈ X, γv ≤ 0 a.e. on ΓII}. Clearly, (h5) and (h6) are fulfilled.
Let us define the convex, non-differential functional φ by means of the

following relation,

φ : X → R+, φ(v) =

∫
ΓIII

|γ v(x)| dΓ. (4.3)

Obviously, φ defined by (4.3) is a Lipschitz continuous functional. So, (h4) is
fulfilled.

Thus, all hypotheses (h1)–(h8) are fulfilled and this first example illustrates
the abstract results in Section 2.

To proceed, we highlight the abstract results presented in Section 3 by
considering a ”regularized version” of the previous example. Precisely, we keep
the spaces X, Y , the sets K and Λ and the definitions (4.1), (4.2), but instead
of (4.3), we consider now the functional φρ : X → R+ defined as follows,

φρ(v) =

∫
ΓIII

(
√

(γ v(x))2 + ρ2 − ρ) dΓ, (4.4)
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where ρ > 0. The functional φρ defined in (4.4) is a Gâteaux differentiable
functional for each u ∈ X. Indeed, by a standard calculus we obtain

lim
t→0

φρ(u+ tv)− φρ(u)

t
=

∫
ΓIII

γuγv√
(γu)2 + ρ2

dΓ for all v ∈ X.

Moreover, since

X 3 v →
∫
ΓIII

γuγv√
(γu)2 + ρ2

dΓ

is a linear and continuous map, then by applying the Riesz representation
Theorem we conclude that there exists ∇φρ(u) ∈ X such that

lim
t→0

φρ(u+ tv)− φρ(u)

t
= (∇φρ(u), v)X for all v ∈ X.

According to, e.g., Proposition 1.32 in [17], in order to prove the convexity
of the functional φρ it can be proved that ∇φρ is a monotone functional, i.e.,
(∇φρ(u) − ∇φρ(v), u − v)X ≥ 0 for all u, v ∈ X. Indeed, let u, v ∈ X. It is
obvious that

γu(x) γv(x) + ρ2 ≤
√
γ u(x)2 + ρ2

√
γ v(x)2 + ρ2 a.e. x ∈ ΓIII .

Then, a.e. x ∈ ΓIII ,

γu(x) γv(x)− γu(x)2 ≤
√
γu(x)2 + ρ2

√
γv(x)2 + ρ2 − (γu(x)2 + ρ2),

γu(x) γv(x)− γv(x)2 ≤
√
γu(x)2 + ρ2

√
γv(x)2 + ρ2 − (γv(x)2 + ρ2).

And from these last two inequalities, we are led to

γu(x)(γv(x)− γu(x))√
γu(x)2 + ρ2

− γv(x)(γv(x)− γu(x))√
γv(x)2 + ρ2

≤ 0.

Hence,∫
ΓIII

[
γu(x)(γu(x)− γv(x))√

γu(x)2 + ρ2
− γv(x)(γu(x)− γv(x))√

γv(x)2 + ρ2

]
dΓ ≥ 0.

Therefore, ∇φρ is a monotone functional and so, φρ is a convex functional.
Moreover, since

|φρ(v)− φρ(w)| =
∣∣∣ ∫
ΓIII

(
√

(γv)2 + ρ2 −
√

(γw)2 + ρ2) dΓ
∣∣∣

=

∣∣∣∣ ∫
ΓIII

(γv + γw)√
(γv)2 + ρ2 +

√
(γw)2 + ρ2

(γv − γw) dΓ

∣∣∣∣,
we easily deduce that φρ is a Lispchitz continuous functional. It remains to
prove that ∇φρ is a Lipschitz continuous functional. Indeed,

‖∇φρ(u)−∇φρ(v)‖X = sup
w∈X,w 6=OX

(∇φρ(u)−∇φρ(v), w)X
‖w‖X

, (4.5)

Math. Model. Anal., 25(4):608–621, 2020.
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and

|(∇φρ(u)−∇φρ(v), w)X | ≤
∫
ΓIII

∣∣∣∣ γu√
(γu)2 + ρ2

− γv√
(γv)2 + ρ2

∣∣∣∣ |γw| dΓ.
We observe that a.e. on ΓIII ,∣∣∣∣ γu(x)√

γu(x)2 + ρ2
− γv(x)√

γv(x)2 + ρ2

∣∣∣∣
≤
∣∣∣∣γu(x)− γv(x)√

γu(x)2 + ρ2

∣∣∣∣+

∣∣∣∣
√
γv(x)2 + ρ2 −

√
γu(x)2 + ρ2√

γu(x)2 + ρ2
√
γv(x)2 + ρ2

γv(x)

∣∣∣∣.
Since 1√

γu(x)2+ρ2
≤ 1

ρ , γv(x)√
γv(x)2+ρ2

≤ 1 and γv(x)+γu(x)√
γv(x)2+ρ2+

√
γu(x)2+ρ2

≤ 1, we

obtain ∣∣∣∣ γu(x)√
γu(x)2 + ρ2

− γv(x)√
γv(x)2 + ρ2

∣∣∣∣ ≤ 2

ρ
|γu(x)− γv(x)|.

Therefore,

|(∇φρ(u)−∇φρ(v), w)X | ≤
2

ρ

∫
ΓIII

|γu− γv| |γw| dΓ.

And from this, keeping in mind (4.5) we deduce that ∇φρ is a Lipschitz con-
tinuous functional. We conclude that all hypotheses (h1)–(h9) are fulfilled and
the second example illustrates the abstract results in Section 3.

To end, it is worth to mention that the previous examples were ”inspired”
from contact models. Due to the interest into the study of the interaction
between bodies, recently, several papers were devoted to the mathematical
analysis of the contact models; see, for instance, [19, 20] and the references
therein.
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