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1 Introduction

We consider the following Cauchy singular integral equation on the real line:

φ(x)− λ

∫ +∞

−∞

φ(t)

t− x
dt = f(x), −∞ < x < +∞, (1.1)

where the Hilbert transform of a real-valued measurable function φ on R is
defined by

H(φ;x) =
1

π

∫ +∞

−∞

φ(t)

t− x
dt, x ∈ R .
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The divergence at x = t is allowed for by taking the Cauchy principal value of
the integral, i.e.,

H(φ;x) = lim
ϵ→0

Hϵ(φ;x),

where

Hϵ(φ;x) =
1

π

∫
|x−t|>ϵ

φ(t)

t− x
dt, ϵ > 0, x ∈ R .

In operator form we can rewrite Equation (1.1) as

(I − πλH)φ = f. (1.2)

Several papers and books have dealt with the numerical approximation of such
kind of singular integral equations in the case of bounded domain of integra-
tion ( see for example [7, 8, 9, 10, 11] and the references given there). On the
other hand, the literature is very poor if we consider Cauchy singular integral
equations on the real line. This is because quadrature formulas for an infi-
nite interval are associated with orthogonal Hermite polynomials whose weight
function is specific exponential function. This is a serious obstacle to their use
in solving the governing integral equations of some applied problems, since the
considered functions of these equations, as a rule, do not have the indicated
behaviour at infinity. For example in [1], a quadrature formula for Hilbert
transform on an infinite interval was obtained but it was not possible to use it
for solving the contact problem of elasticity theory. Even if the fate awaits the
first method in the present paper, the suggested alternative method could be
used. Therefore it will be possible to use it for solving a mixed boundary value
problem in the theory of elasticity.

Now, we recall some basic properties of this type of integral equation (see
for example [13]). Let Lp, 1 < p < +∞ be the usual Banach space with respect

to the norm ∥u∥p =
[ ∫∞

−∞[u(x)]pdx
]1/p

. In particular L2 is also a Hilbert

space with respect to the scalar product < u, v >=
∫∞
−∞ u(x)v(x)dx. Recalling

the reciprocity property of H, i.e., H(H(φ)) coincides almost everywhere with
−φ for any φ ∈ Lp(R), 1 < p < +∞, the solution φ ∈ Lp of Equation (1.2)
in case of f ∈ Lp of such integral equation can be represented by the Hilbert
transform of a known function f . For this, applying the Hilbert transform to
both sides of Equation (1.2), we have

H(φ) + πλφ = Hf.

Consequently,

(1 + λ2π2)φ = f + λπH(f),

or written explicitly

φ(x) =
1

1 + λ2π2

[
f(x) + λ

∫ +∞

−∞

f(t)

t− x
dt

]
. (1.3)

Thus, we obtain the explicit inversion formula (1.3) for the singular integral
equation (1.1).
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The paper is organized as follows: in Sections 2 and 3, we present two differ-
ent methods (one of these was proposed firstly in [2]) for the numerical solution
of the Equation (1.1) whose convergence is proved under different regularity
hypotheses on the smoothness of the function f in (1.1). Both methods make
use of a suitable interpolation process based on the zeros of the orthogonal
Hermite polynomials.

2 The first numerical method and its convergence

Let w(x) = e−x2

be the Hermite weight function. Let g(x) = f(x)
w(x) , then

f(x) = w(x)g(x) and in place of relation (1.3) we consider:

φ(x) =
1

1 + λ2π2

[
w(x)g(x) + λπH(wg;x)

]
. (2.1)

The methods described below are addressed to give an approximation of (2.1).
It is obvious that for this to approximate the solution of (1.1), one has to
guarantee that wg ∈ Lp and the proposed approximations converge also in Lp.

Before proceeding further we recall some results concerning the Lagrange
operator considered on the Hermite zeros and some results concerning some
product rule used to approximate the Hilbert transform.

In the following, the symbol ”C” stands for a positive constant taking differ-
ent values in different occurrences. If A and B are two expressions depending
on some variables, then we write A ∼ B if and only if |AB−1| ≤ C and
|A−1B| ≤ C, uniformly for the variables under consideration.

At first, we recall the definition of the best weighted uniform approximation
error, i.e.,

Em(g)√w,∞ := inf
P∈Pm

∥(g − P )
√
w∥∞,

for any function

g ∈ C0√
w := {g continuous on R and lim

|x|→∞
g(x)

√
w(x) = 0},

and where Pm denotes the set of the polynomials of degree at most m.
Let {pm(w)} be the sequence of the orthonormal Hermite polynomials as-

sociated with the weight function w(x) = e−x2

, so that

pm(w;x) = γmxm + ..., γm > 0,∫ ∞

−∞
pm(w;x)pn(w;x)w(x)dx = δm,n.

The zeros of pm(w) are indexed in decreasing size, as

−∞ < xm,m < xm,m−1 < ... < xm,2 < xm,1 < +∞.

It is well known that xm,1 = −xm,m <
√
2m+ 1. For a given function g ∈

C0√
w
we denote by Lm(w; g) the Lagrange interpolating polynomial of g on the

Hermite zeros, i.e.,

Lm(w; g;xm,k) = g(xm,k), k = 1, ...,m.
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Now, if we denote by Hm(wg) the product quadrature rule used to approximate
the Hilbert transform, based on the interpolation process Lm(w), i.e.,

Hm(wg;x) =
1

π

∫ ∞

−∞

Lm(w; g; t)w(t)

t− x
dt,

we can approximate Equation (2.1) in the following way

φm(x) =
1

1 + λ2π2

[
w(x)g(x) + λHm(wg;x)

]
. (2.2)

Regarding the computation of (2.2) we recall the results in [2].
To prove the convergence of the proposed method at first we need to give
necessary condition for the boundedness of the Hilbert transform in suitable
spaces of functions. We recall that even if H is a bounded operator in the
Lp(R) spaces, 1 < p < ∞, it is an unbounded operator in the space of the
continuous functions on R equipped with the uniform norm.
For any function g ∈ C0√

w
we define the norm

∥g∥C0√
w
:= ∥g

√
w∥∞ = max

x∈R
|g(x)

√
w(x)|.

An important parameter associated with a weight w belonging to a suitable
class of Freud weights is the so-called Mhaskar-Rahmanov-Saff number an.
When w is the Hermite weight this number an is equal to

√
2n. Then, we

define the following weighted modulus of continuity

Ω(g, t)√w,∞ := sup
0<h≤t

max
|x|≤σ(h)

|∆hg(x)|
√
w(x),

where

∆hg(x) = g
(
x+ h/2

)
− g

(
x− h/2

)
, w(x) = exp

(
− x2

)
,

and σ(u) := inf{an : an/n ≤ u}, u > 0.
This modulus of continuity is related to the weighted Ditzian-Lubinsky

modulus of smoothness ω(g, t)√w,∞ defined by (see [5, p.102])

ω(f, t)√w,∞ = Ω(f, t)√w,∞ + inf
P∈P0

max
|x|≥σ(t)

|[f(x)− P (x)]
√
w(x)|, (2.3)

where P0 denotes the set of the polynomials of degree zero. Under the assump-
tion on g ∈ C0√

w
, we can bound H(wg) as follows

max
x∈R

|H(wg;x)| ≤ C

[
∥g

√
w∥∞ +

∫ 1

0

ω(g, t)√w,∞

t
dt

]
,

with some constant C independent of g, (see [3]). Then, if Ω(g, t)√w,∞ has a
prescribed behaviour, we can deduce the boundedness of H(wg) on R. More-
over, we can state [2]
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Theorem 1. Assume the g ∈ C0√
w

satisfies the condition∫ 1

0

ω(g, t)√w,∞

t
dt < ∞,

we have

max
x∈R

|H(wg;x)−Hm(wg;x)| ≤ C

{
Em−1(g)√w,∞ logm+

∫ 1√
m

0

ω(g, t)√w,∞

t
dt

}
,

for some constant C independent of g and m.

Consequentely, we can state the following result.

Theorem 2. For all g ∈ C0√
w

satisfying the condition∫ 1

0

ω(g, t)√w,∞

t
dt < ∞,

we have

max
x∈R

|φ(x)− φm(x)| ≤ C

{
Em−1(g)√w,∞ logm+

∫ 1√
m

0

ω(g, t)√w,∞

t
dt

}
,

for some constant C independent of g and m.

Proof. The result is obtained immediately by applying Theorem 1, observing
that, subtracting (2.1) and (2.2), in this case we have

|φ(x)− φm(x)| = |H(wg;x)−Hm(wg;x)|.

⊓⊔

3 The second method and its convergence

Now, we want to consider another suitable space of functions and to examine
the boundedness of the function H(wg;x) when g belongs to it, (see [3] for
more details).
If g belongs to the set

W∞
0 :=

{
g ∈ C0

LOC(R) : lim
|x|→∞

g(x)e−x2/2 = 0
}

(3.1)

and satisfies a Dini type condition by the Ditzian-Totik modulus of continuity,
then H(wf) is bounded on R . To be more precise, let g ∈ W∞

0 , where W∞
0 is

the set defined in (3.1), equipped with the norm

∥g∥W∞
0

:= ∥g
√
w∥∞ = max

x∈R
|g(x)

√
w(x)|.

Then, let us introduce the following weighted modulus of continuity

Ωr(f, t)√w,∞ = sup
0<h≤t

max
|x|≤ 1

h

|∆r
hf(x)|

√
w(x), r ≥ 1,
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where

∆r
hf(x) =

r∑
i=0

(−1)i
(

r
i

)
f

(
x+

h

2
[r − 2i]

)
.

By Ωr(f, t)√w,∞, we can define the r−th Ditzian-Totik weighted modulus of
smoothness ωr(f, t)√w,∞ [6, p.182]

ωr(f, t)√w,∞ =Ωr(f, t)√w,∞ + ∥(f − Pr−1)
√
w∥L∞(−∞,− 1

t )
(3.2)

+ ∥(f −Qr−1)
√
w∥L∞( 1

t ,∞),

where Pr−1 and Qr−1 are the orthonormal projections of f onto Pr−1 in
L∞(−∞,− 1

t ) and L∞( 1t ,∞), respectively. We remark that the differences
between the modulus defined in (2.3) and the one defined in (3.2), in addition
to being in the class to which the function for which they can be belongs, lies
in the motivations of the authors of [5] and [6] who induced to introduce them.
Now, if we suppose that g ∈ W∞

0 and∫ 1

0

Ω1(g, t)√w,∞

t
dt < ∞,

under these assumptions on g, we can bound H(wg) as follows

max
x∈R

|H(wg;x)| ≤ C

[
∥g

√
w∥∞ +

∫ 1

0

Ω1(g, t)√w,∞

t
dt

]
, (3.3)

with some constant C independent of g (see [3]). So that if Ω1(g, t)√w,∞ has
a prescribed behaviour, then we can deduce the boundedness of H(wg) on R.
Now, for a given function g ∈ W∞

0 we consider again the Lagrange interpolating
polynomial of g on the Hermite zeros, i.e.,

Lm(w; g;xm,k) = g(xm,k), k = 1, ...,m.

Unfortunately, this interpolation process is not efficient in W∞
0 . Indeed, the

corresponding Lebesgue constants

∥Lm(w)∥W∞
0

= sup
∥g

√
w∥∞=1

∥Lm(w; g)
√
w∥∞ = max

R

√
w(x)

m∑
k=1

|lm,k(x)|√
w(xm,k)

satisfy the following relation

∥Lm(w)∥W∞
0

∼ m
1
6 ,

(see [12]). Denoting with xm,0 =
√
2m, xm,m+1 = −

√
2m, we consider the

matrix of interpolation nodes T := {xm,k = 0, 1, ...,m + 1}. Therefore, for a

given function g ∈ W∞
0 we denote by L̃m+2(w; g) the Lagrange interpolating

polynomial of g on the zeros xm,k of pm(w), plus the additional knots xm,0 =
−xm,m+1 =

√
2m, i.e.,

L̃m+2(w; g;xm,k) = g(xm,k), k = 0, 1, ...,m+ 1.

The theorem stated below shows the optimal convergence of this interpolation
process (see [12] for more details).
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274 M.R. Capobianco and G. Criscuolo

Theorem 3. For a given constant C independent of m it is proved that

1

C
logm ≤ ∥L̃m+2(w)∥W∞

0
≤ C logm.

Equivalently, for all g ∈ W∞
0 the estimate

∥[g − L̃m+2(w; g)]
√
w∥∞ ≤ CEm+1(g)√w,∞ logm

holds, where C is a positive constant independent of m and g.

Now, if we denote by H̃m+2(wg) the product quadrature rule used to approxi-
mate the Hilbert transform, based on the interpolation process L̃m+2(w), i.e.,

H̃m+2(wg;x) =
1

π

∫ +∞

−∞

L̃m+2(w; g; t)w(t)

t− x
dt, (3.4)

we can approximate Equation (2.1) in the following way

φ̃m+2(x) =
1

1 + λ2π2

[
w(x)L̃m+2(w; g;x) + λH̃m+2(wg;x)

]
. (3.5)

The idea of product rule (3.4) has been considered for the first time in [4].
Now, we can state the principal result of the Section.

Theorem 4. For all g ∈ W∞
0 , satisfying the condition∫ 1

0

Ωr(g, t)√w,∞

t
dt < ∞,

we have

max
x∈R

|φ(x)− φ̃m+2(x)| ≤ C log2 m

[ ∫ 1√
m

0

Ωr(g, t)√w,∞

t
dt

]
,

where C is a constant independent of m and g.

Proof. Substracting (2.1) and (3.5), and applying relation (3.3), we obtain

|φ(x)− φ̃m+2(x)| ≤C[∥[g − L̃m+2(w; g)]
√
w∥∞

+

∫ 1

0

Ω1([g − L̃m+2(w; g)], t)√w,∞

t
dt].

Recalling Theorem 3, we can write (see also [4] for more details)

|φ(x)− φ̃m+2(x)| ≤ C

[
Em+1(g)√w,∞ logm

+

∫ 1√
m

0

Ω1([g−L̃m+2(w; g)], t)√w,∞

t
dt+

∫ 1

1√
m

Ω1([g−L̃m+2(w; g)], t)√w,∞

t
dt

]

≤ C

[
Em+1(g)√w,∞ logm+Em+1(g)√w,∞ log2 m+

∫ 1√
m

0

Ωr(g, t)√w,∞

t
dt

]
.
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Applying the weaker version of the Jackson theorem(see [6], pp.180–195), we
obtain

Em+1(g)√w,∞ ≤ C

∫ 1√
m

0

Ωr(g, t)√w,∞

t
dt,

thus, the assertion easily follows. ⊓⊔

4 Conclusions

We have suggested two operable different methods for the numerical solution
of the Equation (1.1) whose convergence is proved under different regularity
hypotheses on the smoothness of the function f in (1.1). Both methods make
use of a suitable interpolation process based on the zeros of the orthogonal Her-
mite polynomials. In particular we observe that even if the first formula (2.2)
is more simple of formula (3.5), it converges under more strong assumptions on
the smoothness of f .
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