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1 Introduction

Nonlocal Boundary Value Problems (BVP) are widely used for mathematical
modelling of various processes of physics, ecology, chemistry and industry, when
it is impossible to determine the boundary values of the unknown function. New
applications are found in heat conduction [4], linear thermoelasticity [7].

Consider the following one-dimensional Sturm–Liouville equation

−u′′(t) = λu(t), t ∈ (0, 1), (1.1)

■
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Figure 1. Bijective map: λ = (πq)2 between Cλ and Cq ; –BP, –RP.

λ ∈ Cλ := C is a complex spectral parameter. The general solution of this
equation

u(t) = C1 cos(πqt) + C2 sin(πqt)/(πq), (1.2)

and λ = λ(q) = (πq)2. A map λ : C → C is not bijection, and the inverse map
is multivalued. The point λ = 0 is the second order Branch Point (BP) and
q = 0 is Ramification Point (RP) (with index 2). In this article, q = x + ıy,
x, y ∈ R. If q ∈ Cq := Rq + C+

q + C−
q , where Rq := R−

q + R+
q + R0

q, R−
q :=

{q = x + ιy ∈ C : x = 0, y > 0}, R+
q := {q = x + ιy ∈ C : x > 0, y = 0},

R0
q := {q = 0}, C+

q := {q = x+ ιy ∈ C : x > 0, y > 0} and C−
q := {q = x+ ιy ∈

C : x > 0, y < 0}, then the map λ : Cq → C is bijection [28] (see, Figure 1).
If we want to find particular solution of Equation (1.1), i.e., to find constants

C1 and C2 in (1.2), then we must add two additional conditions. For example,
the Dirichlet Boundary Condition (BC)

u(0) = 0 (1.3d)

gives that C1 = 0 and we have one-parametric family of solutions u(t) =
C2sin(πqt)/(πq). In the case of Neumann BC

u′(0) = 0 (1.3n)

gives that C2 = 0 and we have u(t) = C1cos(πqt). BC (1.3d) is essential
boundary condition, BC (1.3n) is natural boundary condition. For finding the
second constant we can use two-points Nonlocal Boundary Condition (NBC)
[2, 16,17]:

(Case 1) u(1) = γu(ξ), ξ ∈ [0, 1),
(Case 2) u′(1) = γu′(ξ), ξ ∈ [0, 1),

(1.4)

or integral BC [23]

u(1) = γ

∫ ξ2

ξ1

u(t) dt, 0 ≤ ξ1 < ξ2 ≤ 1, (1.5)

where γ ∈ R. In the (classical) case γ = 0 we have two local BCs. In this
article, we investigate discrete problems which approximating SLP with two-
points NBC in Case 1 and Case 2. Green’s functions for SLP with NBCs
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and more general Sturm–Liouville operator L[u] := −(p(t)u′)′ + q(t)u were
investigated in [18,19,25].

The Equation (1.1) with two BCs (1.3) and (1.4) defines Sturm–Liouville
Problem (SLP). If we have nontrivial solution (|C1|+ |C2| ≠ 0) for some value
of the parameter λ, then this value is an eigenvalue of SLP, and a solution
is a corresponding eigenfunction for this eigenvalue. For each eigenvalue λ
there exists eigenpoint q ∈ Cq. So, our main task is to describe properties of
eigenpoints in the domain Cq. For investigation of SLP we can apply method
of Characteristic Function (CF) [28]. Some results of such investigation are
presented in [2] for SLP with two-point NBC (1.4) and in [1, 23] for SLP with
integral BC (1.5). In these two papers the definition of Spectrum Curve was
used for describing the dependence of spectrum on parameters γ and ξ.

Asymptotic formulas for eigenvalues and eigenfunctions for Sturm–Liouville
operator with local BCs are investigated in the classical book [29]. Asymptotic
analysis of eigenvalues and eigenfunctions of SLPs with periodic BCs was ob-
tained in [3]. The SLP with eigenparameter in BCs was investigated in [9,12].
Discrete Sturm–Liouville problems with eigenparameter in BCs were investi-
gated in [10,11]. Some results for fractional SLP were published in [8]. We will
note paper [27] where the asymptotic properties are studied for some NBCs
together with BC (1.3) or with BC (1.4).

In the case of NBCs, properties of discrete SLP (dSLP) were investigated
in [1, 2, 5, 6, 13, 15, 22] and results were used for theoretical justification of
stability Finite Difference Schemes (FDS) for various elliptic, hyperbolic and
parabolic equations [20, 21]. Finite difference method together with asymtotic
formulas for eigenvalues [26,27] gives very good approximation of spectrum for
differential SLP.

The article is organized as follows. The statement of the problem and a
literature review are given in Section 1. In Section 2, we present results about
discrete Sturm–Liouville equation and formulas for solution with one Dirichlet
or Neumann classical BC. In Section 3, we investigate discrete SLP with two-
points NBC (1.4). We describe properties of Characteristic Function. Then in
Section 4 we present Spectrum Curves in complex domain and results about
Spectrum of dSLP.

2 Discrete Sturm–Liouville equation and natural
approximation of a derivative

2.1 Notation

We use notation: N := {1, 2, 3, . . . }, Z := {. . . ,−2,−1, 0, 1, 2, 3, . . . }, Nodd and
Neven are sets for odd and even numbers. Let us denote gcd(n1, n2) the greatest
common divisor of n1 ∈ N and n2 ∈ N. Let n ∈ N and n ≥ 2 and h := 1/n.
We use the notation Nh := (0, n) ∩ N, Nh := Nh ∪ {0, n}, N0 := {0} ∪ N.
Notation i = n1, n2, n1, n2 ∈ Z, means i ∈ I, where I = ∅ for n2 < n1,
I = {n1, n1 + 1, . . . , n2} for n2 ≥ n1.

We introduce a uniform grids in [0, 1]: ωh = {tj = jh, j = 0, n}, ωh = {tj =
jh, j = 1, n− 1} with stepsizes hj ≡ h and ωh

1/2 = {tj+1/2 = (tj + tj+1)/2, j =

Math. Model. Anal., 29(2):309–330, 2024.
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0, n− 1} with stepsizes hj+1/2 = tj+1/2 − tj−1/2 ≡ h. Additionally, we use

a nonuniform grid ωh
1/2 = ωh

1/2 ∪ {t−1/2 = 0, tn+1/2 = n}, where stepsizes

h1/2 = t1/2 − t−1/2 = h/2, hn+1/2 = tn+1/2 − tn−1/2 = h/2. Also, we make an

assumption that ξ is located on the grid ωh, i.e., ξ = m/n = M/N , m ∈ Nh,
gcd(n,m) = K, gcd(N,M) = 1.

Let us introduce spaces H(ω) := {U : ω → C} of grid functions on ω =
ωh, ωh, ωh

1/2, ω
h
1/2. We will use the notation Uj = U(tj), tj ∈ ω. We define grid

operators:

δ : H(ωh) → H(ωh
1/2), (δU)j+1/2 := (Uj+1 − Uj)/h,

δ : H(ωh
1/2) → H(ωh), (δU)j := (Uj+1/2 − Uj−1/2)/hj+1/2,

δ2 : H(ωh)→H(ωh), (δ2U)j :=
(δU)j+1/2−(δU)j−1/2

hj+1/2
=

Uj+1−2Uj+Uj−1

h2
.

If function U ∈ H(ωh) and we know values (δU)−1/2 or (δU)n+1/2 (for exam-
ple, (δU)−1/2 := U ′(0) or (δU)n+1/2 := U ′(1)), then the operator δ2 can be
extended to point t0 and tn by using formulas:

(δ2U)0 :=
(δU)1/2 − (δU)−1/2

h1/2
=

(U1 − U0)/h− (δU)−1/2

h/2
, (2.1)

(δ2U)n :=
(δU)n+1/2 − (δU)n−1/2

hn+1/2
=

(δU)n+1/2 − (Un − Un−1)/h

h/2
.

2.2 Discrete equation

Now, we consider one-dimensional discrete Sturm–Liouville equation

−δ2U = λU, t ∈ ωh, (2.2)

λ ∈ Cλ is a complex spectral parameter. We rewrite (2.2) in the form

Uj+1 − 2zUj + Uj−1 = 0, z = 1− λh2/2. (2.3)

Equation (2.3) for j ∈ Z and its solutions were described in [21] for z ∈ R. For
a general solution of this equation we have expression

Uj = C1Tj(z) + C2T̃j−1(z), j ∈ Z,

where

Tj(z) =
(z +

√
z2 − 1)j + (z −

√
z2 − 1)j

2
, j ∈ Z,

are the Chebyshev polynomials of the first kind of degree j in z,

T̃j(z) =
(z +

√
z2 − 1)j+1 − (z −

√
z2 − 1)j+1

2
√
z2 − 1

, j ∈ Z,

are the Chebyshev polynomial of the second kind of degree j in z. The Cheby-
shev polynomials can be further extended into (or initially defined as) a polyno-
mials of a complex variable z [14,24]. We can find these Chebyshev polynomials
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Figure 2. Bijective map: λ = λn(z) = 2n2(1− z) between Cλ and Cz .

as solutions of two Cauchy problems:

Tj+1 − 2zTj + Tj−1 = 0, T0 = 1, T1 = z, (2.4)

T̃j+1 − 2zT̃j + T̃j−1 = 0, T̃−1 = 0, T̃0 = 1. (2.5)

Formulas (2.4)–(2.5) written in recursive form allow to find Chebyshev poly-

nomials Tj(z) and T̃j−1(z) for all j ∈ Z. We see that for all z ∈ C functions

Tj : Z → C and T̃j−1 : Z → C are linearly independent.
We have that map λn : Cz → Cλ:

λ = λn(z) := 2n2(1− z) = 2h−2(1− z) (2.6)

is linear. So, we have bijection between two complex planes Cλ and Cz (see,
Figure 2). Note, if z = −1, then λ = 4h−2 = 4n2, if z = 1, then λ = 0.

Let us consider the following map z : C̄ → C̄, z = z(ω) := (ω+ω−1)/2. This
function takes the same value z0 at two different points ω1,2 = z0±

√
z20 − 1 and

ω1ω2 = 1. Let us consider a domain such that ω1 and ω2 where ω1ω2 = 1 do not
both belong to it. Then function is single valued in such domain. In Figure 3
we see two such domains: Cω := {ω ∈ C : 0 < |ω| < 1} ∪ {ω = eıπφ : 0 ≤
φ ≤ π}, Cω∗ := {ω ∈ C : Imω > 0} ∪ [−1, 0) ∪ (0, 1]. If ω1, ω2 ̸∈ Cω ∩ Cω∗

and ω1ω2 = 1, then these points are symmetrical (according the line Imω = 0
and the circle |ω| = 1 to the same point in Cω ∩ Cω∗ . The second order BPs
z = ±1 correspond to RPs ω = ±1 and z(−1) = −1, z(1) = 1. Note, that
z(0) = ∞. We use the notation Cω = Cω ∪ {0}. From (2.6) we have (see,
Figure 4) λ = λn(ω) := (λn ◦ z)(ω) = n2

(
2 − (ω + ω−1)

)
, and formula for

general solution of equation

Uj+1 − (ω + ω−1)Uj + Uj−1 = 0, (2.7)

is Uj = C1Wj(ω) + C2W̃j(ω), j ∈ Z, where Wj(ω) = (ωj + ω−j)/2, W̃j(ω) =
(ωj − ω−j)(ω− ω−1)−1, j ∈ Z. We will use the domain Cω for investigation of
properties of dSLP when λ is near ∞ and corresponding point ω = 0 is isolated
point in the domain Cω.

The main domain in our investigation will be (see, Figure 4) Ch
q := R−

y +

{0}+Rh
x+{n}+Rh+

q +Ch+
y +Ch−

q , where Rh
x := {q = x+ıy : 0 < x < n, y = 0},

Math. Model. Anal., 29(2):309–330, 2024.
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Figure 3. Bijective map: z = z(ω) = (ω + ω−1)/2 between Cz and Cω .

Figure 4. Bijective mappings: ω = ωh(q) = eıπqh between Cω∗ and Ch
q ,

λ = λh(q) = (4/h2) sin2(πqh/2) between Cλ and Ch
q ; – BP, – RP.

R−
y := {q = ıy : y > 0}, Rh+

y := {q = n+ ıy : y > 0}, Ch+
q := {q = x+ ıy : 0 <

x < n, y > 0}, Ch−
q := {q = x + ıy : 0 < x < n, y < 0}. The conformal map

ωh : Cq → Cω∗ , ω = ωh(q) := eıπqh, is bijection. Using maps λn and ωh we
construct the bijection between complex plane Cλ and domain Cq:

λ = λh(q) := (λn ◦ ωh)(q) =
2

h2

(
1− eıπqh + e−ıπqh

2

)
=

4

h2
sin2

πqh

2
. (2.8)

Points q ∈ R−
y correspond to negative λ, q ∈ Rh

x – to positive λ < 4n2, q ∈ Rh+
y

– to positive λ > 4n2, q ∈ Ch±
q – to complex (non-real) λ. The second order

BPs λ = 0 and λ = 4n2 correspond to RPs q = 0 and q = n. We use the
notation Ch

q = Ch
q ∪ {∞}. Now, Equation (2.7) can be rewritten in the form

Uj+1 − 2 cos(πqh)Uj + Uj−1 = 0, q ∈ Ch
q , (2.9)

and the general solution of this difference equation is

Uj = C1 cos(πqtj) + C2sin(πqtj)/sin(πqh), where tj = jh, j ∈ Z. (2.10)

2.3 Solutions of problems with classical BC at the point t = 0

Let us consider discrete equation (2.3) or equivalent equation (2.9). If we
approximate Dirichlet BC (1.3d) as U0 = 0, then from (2.10) we get C1 = 0
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and discrete equation (2.9) with such condition has solutions [1]:

Uj = C2sin(πqtj)/sin(πqh), tj = jh, j ∈ Z. (2.11)

If we approximate Neumann BC (1.3n) as

(δU)1/2 = 0, i.e., U0 = U1, (2.12)

then we have

Uj = C̃cos
(
πq(tj − h/2)

)
/cos(πqh/2), tj = jh, j ∈ Z. (2.13)

Remark 1. The truncation error for condition (2.12) is O(h). We have a shift
−h/2 in the argument of function (2.13).

Example 1. Let us consider dSLP with local BCs [21]

−δ2U = λU, t ∈ ωh, U0 = 0, Un = 0.

From (2.11) and BC Un = 0 that nontrivial solutions exist for qk = k, k =
1, . . . , n− 1. So, eigenvalues and eigenfunctions are:

λk =
4

h2
sin2

πqkh

2
, Uk

j = sin(πqktj), qk = k, k = 1, . . . , n− 1.

Since qk ̸= 0 and qk ̸= n, we write more simple expression for eigenfunction
than in (2.11).

Example 2. Let us consider dSLP

−δ2U = λU, t ∈ ωh, U0 = U1, Un = Un−1.

Formally, we have two NBCs. From (2.13) and BC Un = Un−1 it follows that
nontrivial solutions exists if cos

(
πq(1 − h/2)

)
= cos

(
πq(1 − 3h/2)

)
. Roots of

this equation are qk = (k − 1)/(1 − 2h), k = 1, . . . , n − 1, and roots q1 = 0
and qn−1 = n are double. Since these two points are RP, the corresponding
eigenvalues are simple. So, eigenvalues and eigenfunctions are:

λk =
4

h2
sin2

πqkh

2
, Uk

j =
cos

(
πqk(tj−h/2)

)
cos(πqh/2)

, qk =
k − 1

1−2h
, k = 1, . . . , n− 1.

In both examples the number of eigenvalues are n− 1.

2.4 Natural approximation of a derivative

Let us approximate natural condition u′(0) = 0 as [21]

(δU)1/2 = −h1/2λU0. (2.14)

Remark 2. If the Sturm–Liouville equation is valid for t0 = 0 and operator
δ2 is defined by formula (2.1) where h1/2 = h/2, then the condition (2.14) is
equivalent to δU−1/2 = 0, and −δ2U0 = λU0. So, we can say, that condition
(2.14) is natural condition for Equation (2.2).

Math. Model. Anal., 29(2):309–330, 2024.
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If function U ∈ H(ωh) is solution of discrete Sturm––Liouville equation
(2.3), then we define grid operators:

δ+ : H(ωh) → H(ωh ∪ {0}), (δ+U)j :=
Uj+1 − zUj

h
=

Uj+1 − cos(πqh)Uj

h
,

δ− : H(ωh) → H(ωh ∪ {n}), (δ−U)j :=
zUj − Uj−1

h
=

cos(πqh)Uj − Uj−1

h
.

From Equation (2.3) we have equality Uj+1 − zUj = zUj − Uj−1. On the grid
ωh we have

(δ+U)j = (δ−U)j =
(
(δ+U)j + (δ−U)j

)
/2 =

Uj+1 − Uj−1

2h
=: (δ̄U)j .

If (δ̄U)0 := (δ+U)0, (δ̄U)n := (δ−U)n, then we have natural approximation
(δ̄U)j of derivative u′(tj) on the grid ωh.

Remark 3. If u ∈ C3[0, 1] satisfies Sturm–Liouville equation (1.1) for t ∈ [0, 1],
then truncation error for natural approximation is O(h2). For t ∈ ωh this
statement is well known. For j = 0 we have

Ψ =
u(h)− zu(0)

h
− u′(0) =

(
u′′(0) + λu(0)

)h
2
+O(h2) = O(h2).

For j = n the proof is similar.

If we have natural BC u′(0) = 0 for differential equation (1.1), then BC
δ̄U0 = 0 for discrete equation (2.2) is equivalent to (2.14):

0 = δ̄U0 =
U1 − zU0

h
=

U1 − (1− λh2/2)U0

h
= (δU)1/2 + λh1/2U0.

We can rewrite condition BC δ̄U0 = 0 (or BC (2.14)) in the form U1 =
cos(πqh)U0. Then the equality C1 cos(πqh) + C2 = cos(πqh)C1 is valid. So,
C2 = 0 and

Uj = C1 cos(πqtj), j ∈ N0. (2.15)

Example 3. Let us consider dSLP with two local BCs

−δ2U = λU, t ∈ ωh, (δ̄U)0 = 0, Un = 0.

From (2.15) and BC Un = 0 it follows that nontrivial solutions exist for qk =
k − 1/2, k = 1, . . . , n. So, eigenvalues and eigenfunctions are:

λk =
4

h2
sin2

πqkh

2
, Uk

j = cos(πqktj), qk = k − 1/2, k = 1, . . . , n.

Example 4. Let us consider dSLP with two local natural BCs

−δ2U = λU, t ∈ ωh, (δ̄U)0 = 0, (δ̄U)n = 0.

BC (δ̄U)n = 0 is equivalent to Un−1 = cos(πhq)Un. From (2.15) it follows that
nontrivial solutions exist if sin(πq) sin(πqh) = 0. The first multiplier sin(πq)
gives q = 0, 1, . . . , n− 1, n, the second multiplier sin(πqh) gives q = 0, n. Since
the points q = 0, n are RPs of the second order, we get that the eigenvalues
λ = 0 and λ = 4n2 are simple. So, eigenvalues and eigenfunctions are:

λk =
4

h2
sin2

πqkh

2
, Uk

j = cos(πqktj), qk = k, k = 0, . . . , n.
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3 Discrete Sturm–Liouville problem

Let us consider discrete Sturm–Liouville equation (2.2)

−δ2U = λU, t ∈ ωh, (3.1)

with Dirichlet BC or the natural BC:

(Case d) U0 = 0, (3.2d)

(Case n) (δ̄U)0 = 0, (3.2n)

and two–point NBC:

(Case 1) Un = γUm, (3.31)

(Case 2) (δ̄U)n = γ(δ̄U)m, (3.32)

where 0 ≤ m < n, γ ∈ R. If γ = ∞, then we replace BC (3.31) with Um = 0
(0 < m < n), BC (3.32) with δ̄Um = 0 (0 < m < n). Our task is to investigate
eigenvalues and eigenfunctions of dSLP (3.1)–(3.3). The number q ∈ Ch

q is

called Eigenvalue Point for eigenvalue λ if λh(q) = λ (see, bijection (2.8)).
Substituting expression (2.11) or (2.15) into BC (3.3) we get the character-

istic equation
Zh(q) = γPh

ξ (q), q ∈ Ch
q ,

where

Zh(q) :=
sin(πq)

sin(πqh)
, Ph

ξ (q) :=
sin(πqξ)

sin(πqh)
, 0 < m < n, (3.4d1)

Zh(q) := cos(πq), Ph
ξ (q) := cos(πqξ), 0 ≤ m < n, (3.4d2,n1)

Zh(q) := sin(πqh) sin(πq), Ph
ξ (q) := sin(πqh) sin(πqξ), 0 < m < n. (3.4n2)

Remark 4. In the differential case we have Z0(q) = γP 0
ξ (q), q ∈ Cq, where

Z0(q) = sin(πq)/(πq), P 0
ξ (q) = sin(πqξ)/(πq), 0 < ξ < 1, (3.5d1)

Z0(q) = cos(πq), P 0
ξ (q) = cos(πqξ), 0 ≤ ξ < 1, (3.5d2,n1)

Z0(q) = πq sin(πq), P 0
ξ (q) = πq sin(πqξ), 0 < ξ < 1. (3.5n2)

3.1 Constant Eigenvalue points

We define a Constant Eigenvalue as the eigenvalue that does not depend on
parameter γ for fixed ξ [28]. For any Constant Eigenvalue there exists the
Constant Eigenvalue Point (CEP). The notation Cξ is used for the set of all
CEPs and nce = |Cξ| is the number of CEPs in Cξ. We can find CEPs as
solutions of the following system

Zh(q) = 0, Ph
ξ (q) = 0.

Math. Model. Anal., 29(2):309–330, 2024.
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Remark 5. If m = 0 in Case d2 and Case n1, then Ph
0 (q) = 1. So, C0 = ∅. So,

in this subsection we assume that 0 < m < n.

Zeroes of the functions Zh(q), q ∈ Ch
q , coincide with Eigenvalue Points in

the classical case γ = 0. On the other hand, function Zh = Ph
1 , and zeroes of

the function Zh coincide with zeroes of the function Ph
1 . If Ẑh = Žh

1 and Žh
ξ

are sets of zeroes for functions Zh and Ph
ξ , then

Ẑh = {ẑl = l, l = 1, n− 1}, nẑ = n− 1, (3.6d1)

Ẑh = {ẑl = l − 1/2, l = 1, n}, nẑ = n, (3.6d2,n1)

Ẑh = {ẑl = l, l = 0, n}, nẑ = n+ 1; (3.6n2)

and

Žh
ξ = {žk = k/ξ = kž1, k = 1,m− 1}, nž = m− 1, (3.7d1)

Žh
ξ = {žk = (k − 1/2)/ξ = (2k − 1)ž1, k = 1,m}, nž = m, (3.7d2,n1)

Žh
ξ = {žk = k/ξ = kž1, k = 0,m}, nž = m+ 1; (3.7n2)

where nẑ = |Ẑh|, nž = |Žh
ξ |. For all cases nẑ − nž = n−m.

Remark 6. We can use formula (3.6) with n = ∞ and formula (3.7) with m =
∞. Then we get the sets for zeroes in the differential case.

All zeroes are simple, except ẑ0 = ž0 = 0, ẑn = žm = n in Case n2 when
they are of the second order and real. We note, that Žh

1/n = ∅ in Case d1.

We have Cξ = Ẑh ∩ Žh
ξ . We use notation κ: if N ·M ∈ Neven, then κ = 0

in Case d2, n1, else κ = 1.

Lemma 1. For dSLP (3.1)–(3.3) Constant Eigenvalues are equal to λj=λh(cj),
where

cj = ẑlj = žkj = Nj, j ∈ Jξ := {j : j = 1,K − 1}, (3.8d1)

cj = ẑlj = žkj
= N(j − 1/2), j ∈ Jξ := {j : j = 1,κK}, (3.8d2,n1)

cj = ẑlj = žkj
= Nj, j ∈ Jξ := {j : j = 0,K}, (3.8n2)

and

nce = K − 1, lj = Nj, kj = Mj, (3.9d1)

nce = κK, lj = Nj − (N − 1)/2, kj = Mj − (M − 1)/2, (3.9d2,n1)

nce = K + 1, lj = Nj, kj = Mj. (3.9n2)

All Constant Eigenvalues are simple.

Proof. From Remark 6 it follows that CEP for this problem are the CEPs for
corresponding differential SLP [28] with K = ∞ (if κ = 0, then Jξ = ∅). In
addition, we must look for j = 0,K in Case n2 (points q = 0, n). ⊓⊔
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Remark 7. In Case n2 Constant Eigenvalues λ0 = 0, λK = 4n2 are simple, but
corresponding CEPs c0 = 0, cK = n are of the second order, because points
λ = 0, 4n2 are BPs (q = 0, n are RPs).

Additionaly, we use notation Cξ := Cξ ∪ {c0, cK}, c0 = 0, cK = n, in
Case d1 and Cξ := Cξ in Cases d2, n1, n2. An union of CEPs for all Cases

d1, n1, d2, n2 we denote C̃ξ. Thus for x ∈ Cξ we have sin(πx) = sin(πxξ) = 0

in Case d1, n2 and cos(πq) = cos(πqξ) = 0 in Case d2, n1. If x ∈ C̃ξ we have
sin(πx) = sin(πxξ) = 0 or cos(πx) = cos(πxξ) = 0.

3.2 Complex Characteristic Function

Let us consider Complex Characteristic Function (Complex CF) [28]:

γc : Ch
q → C, γc(q) = γh

c (q; ξ) :=
Zh(q)

Ph
ξ (q)

, q ∈ Ch
q , ξ = m/n.

For dSLP (3.1)–(3.3) we have meromorphic functions

γc(q) :=
Zh(q)

Ph
ξ (q)

=
cos(πq)

cos(πqξ)
, 0 ≤ m < n, (3.10a)

γc(q) :=
Zh(q)

Ph
ξ (q)

=
sin(πq)

sin(πqξ)
, 0 < m < n, (3.10b)

where Case a is for Cases d2, n1, Case b is for Case d1, n2. We see, that Complex
CFs γc in the discrete case are the same as Complex CFs in the differential
case and γc for dSLP is equal to γ0

c |Ch
q
for ξ ∈ Q, where γ0

c (q) = Z0(q)/P 0
ξ (q).

3.2.1 Auxilary equations and functions

Let us consider equations

cos z = γ cos(ξz), (3.11a)

sin z = γ sin(ξz), (3.11b)

where z ∈ C, ξ ∈ [0, 1), γ ∈ R.

Lemma 2. All complex (not real) roots of Equations (3.11a) and (3.11b) are
simple. If |γ| ̸∈ [1, ξ−1], then real roots are simple as well.

Proof. The lemma is valid for ξ = 0 and for γ = 0. If |γ| < 1, then all roots
of equations (3.11) are real and simple [27,28]. So, we assume that |γ| ≥ 1 and
ξ ∈ (0, 1).

Now we claim that not simple complex roots may exist only for z = x+ ıy,
where cosx = 0 for Equation (3.11a) and sinx = 0 for Equation (3.11b).

Let us consider the case of Equation (3.11a). For not simple root z we have
a system of two equations

cos z = γ cos(ξz), sin z = ξγ sin(ξz). (3.12)

Math. Model. Anal., 29(2):309–330, 2024.
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If we eliminate cos(ξz) and sin(ξz), then we get

cos2 z = cos2 x cosh2 y−sin2 x sinh2 y−ı sinx cosx sinh(2y) =
1− γ2ξ2

1− ξ2
. (3.13)

Since the right-hand side of (3.13) is real for real γ, we have sinx = 0 or
cosx = 0. In the case sinx = 0 we use (3.13) and for |γ| ≥ 1 to get estimate
cosh2 y = (1− γ2ξ2)(1− ξ2)−1 ≤ 1. From this inequality it follows that y = 0
and γ = ±1.

In the case of Equation (3.11b) we have sin z = γ sin(ξz), cos z = ξγ cos(ξz).
Then, we derive

sin2 z = sin2 x cosh2 y−cos2 x sinh2 y+ı sinx cosx sinh(2y) =
1− γ2ξ2

1− ξ2
. (3.14)

We have that sinx = 0 or cosx = 0. In the case cosx = 0 it follows that y = 0,
γ = ±1. So, we prove that sinx = 0. Thus, we have proven our claim.

If |γ| ≤ ξ−1, then for complex not simple roots we have (see, (3.13) with
condition cosx = 0 and (3.14) with condition sinx = 0) that − sinh2 y ≥ 0.
So, the complex roots are simple.

Now we investigate the case |γ| > ξ−1. For real roots cos2 x < 0 (see, (3.13))
and sin2 x < 0 (see, (3.14)). So, real roots in this case are simple.

We rewrite Equation (3.11a) as

cosx cosh y − ı sinx sinh y = γ cos(ξx) cosh(ξy)− γı sin(ξx) sinh(ξy).

If cosx = 0, then cos(xξ) = 0. From Equation (3.11b) and sinx = 0 we get
sin(xξ) = 0. It follows (see, Lemma 1, [28]) that system cosx = 0, cos(ξx) = 0
and system sinx = 0, sin(ξx) = 0 have solution only for rational ξ = M/N :

x = xj = πN(j − 1/2), j ∈ Z, N,M ∈ Nodd, (3.15a)

x = xj = πNj, j ∈ Z. (3.15b)

We have

cos(πN(j − 1/2) + ıy) = ı(−1)(2j−1)N/2+1/2 sinh y, (3.16a)

sin(πNj + ıy) = ı(−1)Nj sinh y. (3.16b)

So, Equations (3.11) have not simple complex roots if and only if an equation

sinh y = γ̃ sinh(ξy) (3.17)

has not simple real root y > 0, where ξ ∈ Q,

γ̃ = γ(−1)(N−M)(2j−1)/2, (3.18a)

γ̃ = γ(−1)(N−M)j , (3.18b)

and |γ̃| = |γ|. The conditions for existence of such root are

sinh y = γ̃ sinh(ξy), cosh y = ξγ̃ cosh(ξy).
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Then, y satisfies equation

φ(y) := y cosh y/ sinh y = ξy cosh(ξy)/ sinh(ξy) = φ(ξy), (3.19)

where φ is increasing positive function [17]. So, Equation (3.19) does not have
positive roots. Consequently, Equation (3.17) has only simple roots. ⊓⊔

From (3.13) and (3.14) the property follows.

Corollary 1. If |γ| = ξ−1, then for not simple root z both sides of (3.11) are
equal to zero and z ∈ R.

Complex CFs (3.10) are the partial case of meromorphic function

h(z) = f(z)/g(z), (3.20)

where f, g : D → C, domain D ⊂ C, are holomorphic functions and g ̸≡ 0.
Now, we prove few statements for such function h.

Lemma 3. If b ∈ D and g(b) ̸= 0, then, at the point b the function h has a
zero of the same order as function f .

Proof. For proof we use the general Leibniz rule for the nth derivative of
function f = hg. ⊓⊔

If b ∈ D and g(b) ̸= 0, then, derivatives of the first and the second order of
the function (3.20) at the point b are equal to

h′ =
f ′g − fg′

g2
=

f ′

g
− h

g′

g
, h′′ =

f ′′

g
− h′ 2g

′

g
− h

g′′

g
.

Lemma 4. Suppose, that conditions

f ′′ = αf, g′′ = βg, z ∈ D, (3.21)

are valid. If b ∈ D, g(b) ̸= 0 and h′(b) = 0, then, h′′(b) = (α− β)h(b).

Proof. It follows from (3.21) that h′′ = (α − β)h − 2h′ g′/g. We finish the
proof by using condition h′(b) = 0. ⊓⊔

If c ∈ D, f(c) = g(c) = 0 and g′(c) ̸= 0, then,

h(c) = lim
z→c

h(z) = lim
z→c

f(z)

g(z)
= lim

z→c

f ′(z)

g′(z)
=

f ′(c)

g′(c)
. (3.22)

If additionally, functions f and g satisfy conditions (3.21), then,

lim
z→c

(h′g′/g) =g′(c) lim
z→c

f ′g − fg′

g3
= g′(c) lim

z→c

f ′′g − fg′′

3g2g′

= lim
z→c

αfg − βfg

3g2
=

α− β

3
lim
z→c

f

g
=

α− β

3
· h(c).
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Corollary 2. If c ∈ D, f(c) = g(c) = 0 and g′(c) ̸= 0, then, h′(c) = 0.

Lemma 5. Suppose, that conditions (3.21) are valid. Let c ∈ D, f(c) = g(c) =

0, g′(c) ̸= 0, then, h′′(c) = (α−β)
3 h(c).

Proof. We find

lim
z→c

h′′ = lim
z→c

(f ′g − fg′

g2

)′
= lim

z→c

f ′′g − fg′′

g2
− lim

z→c
(f ′g − fg′)

2g′

g3

= lim
z→c

αfg − βfg

g2
− 2 lim

z→c

h′g′

g

=(α− β)h(c)− 2

3
(α− β)h(c) =

(α− β)

3
h(c). ⊓⊔

3.2.2 Properties of Complex Characteristic Functions

Lemma 6. Complex CF γc(q) for dSLP (3.1)–(3.3) has the properties: γc(q) =
γc(q̄); if Re q ∈ [0, N ], then, γc(N − q) = (−1)N−Mγc(q); Re q ∈ [0, n],
then, γc(n − q) = (−1)n−mγc(q); if Re q ∈ [0, n − N ], then, γc(q + N) =
(−1)N−Mγc(q).

Proof. Elementary proof of this statement is obtained by using the properties
of trigonometric functions. ⊓⊔

A set of these Pole Points (PP) of Complex CF at Ch
q is Pξ := Žh

ξ ∖ Ẑh =

Žh
ξ ∖ Cξ. In our case all these poles are of the first order, real and deg+(p) = 1

for p ∈ Pξ ⊂ Rh
x = (0, n). So,

Pξ = {žk ∈ Žh
ξ : k ̸= kj , j ∈ Jξ} = {pi, i = 1, np : 0 < p1 < . . . < pnp < n},

where kj is defined by (3.9), np = |Pξ| = nž−nce. The point p∞ = ∞ ̸∈ Ch
q . We

denote Pξ := Pξ ∪ {p∞}. In the domain Cw, this point corresponds to w = 0.
We can investigate Complex CF in the neighborhood w = 0 (w = eıπqh) in the
domain Cw:

γc(w) =
wn ∓ w−n

wm ∓ w−m
=

1

wn−m

(
1 +O(w2m)

)
.

A lemma follows from this formula.

Lemma 7. Complex CF γc(w) at the point p∞ = ∞ for dSLP (3.1)–(3.3) has
PP of the n−m-order, i.e., n∞ := deg+(p∞) = nẑ − nž = n−m.

A set of zeroes of Complex CF is Zξ := Ẑh ∖ Žh
ξ = Ẑh ∖ Cξ. In our case

Zξ ⊂ Rh
x and all zeroes are simple, real and deg+(z) = 1 for z ∈ Zξ ⊂ Rh

x. So,

Zξ={žl ∈ Ẑh
ξ : l ̸= lj , j ∈ Jξ}={zi, i=1, nz : 0 < z1 < . . . < znz

< n}, (3.23)

where lj is defined by (3.9), nz = |Zξ| = nẑ − nce.
If γ′

c(b) = 0, b ∈ Ch
q , then, point b is Critical Point (CP) of the function

γc, and value γc(b) is a critical value of the function γc [28]. We denote a set
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of CPs Bξ := {bi, i = 1, nb}, where nb = |Bξ| is the number of CPs at Ch
q . If

b ∈ Bξ then, deg+(b) is one unit larger than the order of CP b.
If the point q ∈ Cξ, then it is Removable Singularity Point of Complex CF.

We can calculate values of Complex CF and its derivatives at cj ∈ Cξ:

γj :=γc(cj ; ξ) = (−1)(N−M)/2ξ−1; (3.24a)

γj :=γc(cj ; ξ) = (−1)(1−ξ)cjξ−1; (3.24b)

γ′
j :=γ′

c(cj ; ξ) = 0; (3.24′a,b)

γ′′
j :=γ′′

c (cj ; ξ) = −1

3
π2(1− ξ2)γj(ξ). (3.24′′a,b)

Formula (3.24) follows from (3.22). We have (3.24′a,b) from Corollary 2 and we
get (3.24′′a,b) from Lemma 5. From formula(3.24′a,b) we get that every CEP is
CP. The contrary statement is not valid (see, Figure 5(e)).

(a) ξ = 3/4 (b) ξ = 5/8 (c) ξ = 6/10

(d) ξ = 1/3 (e) ξ = 2/6 (f) ξ = 3/9

Figure 5. Real CF for various ξ in Case a.

Taylor series for γc(q) at RP q = 0 are

γc(q) = 1− 1−ξ2

2 π2q2 +O(q4) = 1− n2−m2

2n2 π2q2 +O(q4), (3.25a)

γc(q) =
1
ξ − 1−ξ2

6ξ π2q2 +O(q4) =
n

m
− n2−m2

6nm π2q2 +O
(
q4
)
, (3.25b)

and they follow from Taylor series formulas for cos q and sin q. Formula (3.25)
is valid for the differential case, too.

Using Lemma 6 we derive formulas for γc(q) at RP q = n:

γc(q) = (−1)n−m − (−1)n−mn2−m2

2n2 π2(q − n)2 +O
(
(q − n)4

)
, (3.26a)

γc(q) = (−1)n−m n
m − (−1)n−mn2−m2

6nm π2(q − n)2 +O
(
(q − n)4

)
. (3.26b)
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Remark 8. Formulas (3.25) and (3.26) show that at RPs q = 0 and q = n we
have CPs of the first order (γ′′

c (q) ̸= 0). We note, that for such CPs, the
derivative of CF γc ◦ (λh)−1 at the corresponding point λ = 0 or λ = 4n2 is
not equal to zero, and we do not have a CP.

3.3 Complex-Real Characteristic Function

All nonconstant eigenvalues (which depend on the parameter γ ∈ R) are γ-
points of Complex-Real Characteristic Function (CF) [28]. CF γ(q) is the
restriction of Complex CF γc(q) on a set Dξ := {q ∈ Ch

q : Im γc(q) = 0} [1]. If

q ∈ Dξ, then, λ = 4/h2 sin2(πqh/2) is nonconstant eigenvalue of dSLP for some
real γ. We can extend CF to domain Ch

q : γ(∞) = ∞. We call set Dξ Spectrum

Domain. We use notation Dξ := Dξ ∪ Pξ for extended Spectrum Domain.
The condition Im γc(q) = 0 (q ̸∈ Pξ) is equivalent to

sin(πx) cos(πxξ) sinh(πy)
cosh(πy) = cos(πx) sin(πxξ) sinh(πyξ)

cosh(πyξ) ,

cos(πx) sin(πxξ) sinh(πy)
cosh(πy) = sin(πx) cos(πxξ) sinh(πyξ)

cosh(πyξ) .
(3.27)

If q ∈ Dξ, then, γ(q) = Re γc(q) = γc(q), and

γ(q) = sin(πx)
sin(πxξ)

sinh(πy)
sinh(πyξ) , x ∈ Cξ, γ(q) = cos(πx)

cos(πxξ)
cosh(πy)
cosh(πyξ) , x ̸∈ Cξ, (3.28a)

γ(q) = cos(πx)
cos(πxξ)

sinh(πy)
sinh(πyξ) , x ∈ Cξ, γ(q) = sin(πx)

sin(πxξ)
cosh(πy)
cosh(πyξ) , x ̸∈ Cξ. (3.28b)

Complex-Real CF γ(q) for dSLP (3.1)–(3.3) and for SLP in the differential
case have the property of symmetry γ(q̄) = γ(q) (see, Lemma 6). If q ∈ Dξ,
Re q +N ∈ [0, n], then q +N ∈ Dξ.

A restriction of a Complex CF or a Complex-Real CF on the Rh
q is called

Real Characteristic Function (Real CF) γr(q). Real CF describes real noncon-
stant eigenvalues. We can plot the graph of Real CF for Eigenvalue Points:
0 < q = x < n in the middle graph; q = 0 + ıy, y > 0 in the left half plane
and q = n + ıy, y > 0 in the right half plane. Two γ-axes correspond to RPs
q = 0, n. The graphs of Real CF in Case a are presented in Figure 5. We
add vertical lines x = cj , j ∈ Jξ, to represent CEPs for each γ. Thus, each
horizontal line crossing the CF graph and these vertical lines give all eigenvalue
points (including their multiplicity). The graphs of Real CF in Case b can be
found in [2, 16,17,28].

Lemma 8. There exist only real CPs for Complex-Real CF (or for correspond-
ing CF in the case of differential problem) γ(q), and they can exist only for γ
values: |γ| ∈ [1, ξ−1]. Every CP b such that |γ(b)| = ξ−1 is CEP.

Proof. Case a. If cos(πξq) ̸= 0, then, cos(πq) = γ cos(πξq) and a condition

0 = −γ′(q)/π =
sin(πq) cos(πξq)− ξ cos(πq) sin(πξq)

cos2(πξq)
=

sin(πq)− ξγ sin(πξq)

cos(πξq)

is equivalent to the system (3.12), where z = πq, q ∈ Ch
q or q ∈ C0

q. So, CP q
for CF corresponds to not simple root z = πq of the Equation (3.11a). Then,
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(a) ξ = 3/4 (b) ξ = 5/8 (c) ξ = 6/10

(d) ξ = 1/3 (e) ξ = 2/6 (f) ξ = 3/9

Figure 6. Specrum Curves for various ξ in Case d2, n1. – CP, – CEP and CP,
– eigenvalue point at RP, – PP.

we use Lemma 2 and Corollary 1. If cos(πξq) = 0, then, q = x is real. In this
case x ∈ Cξ. In Case b the proof is the same. ⊓⊔

So, all CPs of CF are CPs of Real CP. For our problems all CPs are of the
first order and nb = n−m− 1.

4 Spectrum curves

The definition of Spectrum Curve was introduced in articles [1,2,23], but as a
mathematical object it was already used before [28].

The Spectrum Domain Dξ := {q ∈ Ch
q : Im γc(q) = 0} is a contour line

(isoline) of function Im γc : Ch
q → R for fixed ξ. The contour line is a smooth

curve outside the critical points b ∈ Bξ. For CF γ(q) = Re γc(q)|Dξ
at point

a ∈ Dξ ∖ Bξ we have γ(q) = γ(a) + Re
(
γ′
c(a)(q − a)

)
+ o(q − a), γ′

c(a) ̸=
0. Thus, we can parametrize each such curve using the parameter γ. We
add arrow on this curve N (γ) (arrows show the direction in which γ ∈ R is

increasing). At a CP b ∈ Bξ we have Im
(
γ
(r)
c (b)(q − b)r/r!

)
+ o

(
(q − b)r

)
= 0,

γ
(r)
c (b) ̸= 0, r > 1. So, for CP the structure of contour line is as for function

w = (q − b)r. For our problems CPs are of the first order and real. In this
case Im

(
(q − b)2/2

)
= (x − b)y and we have intersection of lines x = b and

y = 0 at point b (see, [28]). At CP b ∈ Bξ, these curves change direction and
the angle between the old and the new direction is π/deg+(b). We use the
“right-hand rule”. So, the curve turns to the right. For the γ → ±∞, curve
N (γ) approaches PP p ∈ Pξ. If q ∈ Pξ + Bξ, then deg+(q) corresponds to the

Math. Model. Anal., 29(2):309–330, 2024.
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(a) m = 2, n = 3 (b) m = 1, n = 3 (c) m = 0, n = 3

(d) m = 3, n = 4 (e) m = 2, n = 4 (f) m = 1, n = 4 (g) m = 0, n = 4

Figure 7. Spectrum Curves in Cw for n = 3 and n = 4 in Case d2, n1.

number of outgoing curves at that point. Note that incoming curves alternate
with outgoing, so deg(q) = deg+(q) = deg−(q).

We can enumerate curves N (γ) : Rγ = (−∞,+∞) → Dξ ⊂ Ch
q for our

problem by classical case (γ = 0): Nl(0) = ẑl ∈ Zξ (see, (3.23)). These curves
are regular Spectrum Curves. The regular Spectrum Curves form Spectrum
Domain Dξ = ∪ẑl∈Zξ

Nl (see, Figure 6 in Case d2, n1 and article [28] in Case
d1, n2). The index of b ∈ Bξ is formed of the indices of the regular Spectrum
Curves which intersect at this CP. If CP of the first order is real, then the
left index coincides with the index of Spectral Curve which is defined by the
smaller real λ values, and the right index is defined by greater λ values.

Note that the part of the Spectrum Domain Dξ in domain Ch+
q is symmetric

to the part in domain Ch−
q . More properties about symmetricity of Dξ we can

get using Lemma 6.

For every CEP cj ∈ Cξ, j ∈ Jξ, (see, (3.8)), we define nonregular Spectrum
Curve Nlj = {cj} and such Spectrum Curve is one point the same for all γ. We
note that nonregular Spectrum Curves can overlap with a point of a regular
Spectrum Curve. So, we have nẑ = nz + nce Spectrum Curves: nz regular and
nce nonregular and we have a collection N ξ := {Nl : ẑl ∈ Ẑh} of all Spectrum
Curves. In our cases Cξ ⊂ Dξ and Spectrum Domain Dξ = Dξ. Function γc
has real values on Dξ except pole points. If Cξ ̸= ∅, then we will always add
points cj , j ∈ Jξ, in the domain Ch

q .

The domain Cw is useful for investigation of Spectrum Curves near the point
q = ∞ (w = 0). Lemma 7 states that this point is PP of the (n − m)-order.
We see Spectrum Curves in Cw in Figure 7 (Case d2, n1).

Spectrum Curves describe a qualitative view of the spectrum for a fixed ξ.
Each of Spectrum Curves Nl describes eigenvalue points for eigenvalue λl, and
we know how eigenvalue point is moving in the domain Ch

q when γ is changing
from −∞ to +∞. If y = 0, then, equalities (3.27) are valid, and [0, n]∖Pξ ⊂ Dξ.
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(a) m = 1, n = 2 (b) m = 1, n = 3 (c) m = 4, n = 6

Figure 8. Surfacecontours and contour lines for the function Re γc(q) in Case b.

If x ∈ C̃ξ (i.e., sin(πx) = sin(πxξ) = 0 or cos(πx) = cos(πxξ) = 0), then,

equalities (3.27) are valid, too. So, vertical lines x + ıy, x ∈ C̃ξ, belong to

the Spectrum Domain Dξ (see, Figure 6) and all x ∈ C̃ξ ∖ {0, n} are CPs.
Particulary, R−

y ,Rh+
y ⊂ Dξ. Another Spectrum Curves parts in complex domain

Ch+
q +Ch−

q are not vertical lines. From Lemma 8 it folows that in this domain
Spectrum Curves do not intersect (there is no CPs). PPs are eigenvalue points
for γ = ∞.

For m = n − 1 CPs do not exist (nb = 0) and there exist real eigenvalues
only (see, Figure 6(a) and Figure 7(a),(d)).

4.1 Spectrum of dSLP

If we want to get information about dSLP spectrum, then we must know the
values of CF on Spectrum Curve. First of all, we must calculate values of CF
for special points: RP (see, (3.25)), CEP (see, (3.24)) and CPs. If CP is not
RP or CEP, then, in general there is no formula for CP (we can find CP only

numerically). If CP b = c̃j belongs to C̃ξ ∖ Cξ, then |γ(b)| = 1:

c̃j = Nj, γ̃j := γ(c̃j) = (−1)(1−ξ)c̃j , j = 0,K, (4.1a)

c̃j = N(j − 1/2), γ̃j := γ(c̃j) = (−1)(N−M)/2, j = 1,κK. (4.1b)

If x ∈ C̃ξ, then Spectrum Curves parts belongs to vertical lines x+ıy, y ∈ R,
x = cj (see, (3.8)) or x = c̃j (see, (4.1)) and we have simple formulas between
γ and y:

γ(cj + ıy) = γj
sinh(πy)
sinh(πyξ) , γ(c̃j + ıy) = γ̃j

cosh(πy)
cosh(πyξ) , (4.2a)

γ(cj + ıy) = γj
sinh(πy)
sinh(πyξ) , γ(c̃j + ıy) = γ̃j

cosh(πy)
cosh(πyξ) . (4.2b)

Because {0, n} ⊂ C̃ξ we have function γ(ıy) = cosh(πy)/ cosh(πyξ) in Case a
and function γ(ıy) = sinh(πy)/ sinh(πyξ) in Case b for description negative
eigenvalues. For positive eigenvalues λ ≥ 4n2 we can use function γ(n +
ıy) = (−1)(1−ξ)n cosh(πy)/ cosh(πyξ) in Case a and function γ(n + ıy) =
(−1)(n−m) sinh(πy)/ sinh(πyξ) in Case b. For positive eigenvalues λ, 0 ≤

Math. Model. Anal., 29(2):309–330, 2024.
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(a) Spectrum Curves (b) Contours γ = −2, 0, 2 (c) Eigenvalue Points

Figure 9. Spectrum of dSLP in Case n2, m = 4, n = 6. – CEP at RP, – CEP.

λ ≤ 4n2, we can investigate real CF: (a) γ(x) = cos(πx)/ cos(πxξ) or (b)
γ(x) = sin(πx)/ sin(πxξ), x ∈ [0, n]∖ Pξ.

Let us return to general case. We can look for contour lines for the function
Re γc(q) (see, Figure 8). Every γ-contour line has intersections with Spec-
trum Domain Dξ. On every regular Spectrum Curve we have one intersection
point. If we add CEPs, then we get full Spectrum of dSLP (see, Figure 9).
If γ-contour line intersects CP, then we have not simple eigenvalue (the geo-
metrical multiplicity is 1, algebraic multiplicity is 2, and if additionally CP is
CEP, then algebraic multiplicity is 3). In Figure 9(c) we see eigenvalue points
for γ = −2, 0, 2. We have 4 eigenvalues points on regular Spectrum Curves
(N1,N2,N4,N5), and 3 CEPs (N0 = {c0},N3 = {c1},N6 = {c3}). CEPs c0
and c2 are double and they are in RPs. So, corresponding eigenvalues λ = 0
and λ = 4n2 = 146 are simple. These eigenvalues will be not simple (dou-
ble) for γ = 1.5, when coresponding 1.5-contour line intersects both RPs (see,
Figure 8(c)) and give additional eigenvalue point on regular Spectrum Curves
N1,N5.

5 Conclusions

In this paper, we investigated dSLP with four cases (d1,d2,n1,n2) of BCs where
one of the BCs is nonlocal. We introduced a natural approximation of the
derivative and obtained a second-order SLP approximation using dSLP. The
approximation with a natural discrete derivative in BCs, which we considered
in this article, gives the same CFs as in the differential case.
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