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1 Introduction

In this paper, we consider a class of second-order singular p-Laplacian systems
with impulsive effects described by

d

dt

(
|u′(t)|p−2u′(t)

)
+ f(u(t)) = e(t), t 6= tj , t ∈ R,

−∆
(
|u′(tj)|p−2u′(tj)

)
= gj(u(tj)), j ∈ Z,

(1.1)
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where p ≥ 2, u = (u1, u2, ..., uN )> ∈ RN , f ∈ C(RN ,RN ) and f may be sin-
gular at u = 0, gj(u) = graduGj(u) for some Gj ∈ C1(RN ,R), e ∈ C(R,RN ),
∆(u(t)) = u(t+j ) − u(t−j ), u(t±j ) = lim

t→t±j
u(t). It is assumed that there exist an

m ∈ N and a T > 0 such that 0 = t0 < t1 < t2 < · · · < tm−1 < tm = T ,
tj+m = tj + T , gj+m = gj , j ∈ Z.

During the past years, different types of impulsive differential equations
have been studied by many authors. Some classical tools have been widely
used to get the solutions of impulsive differential equations, such as fixed point
theorems in cones, topological degree theory (including continuation method
and coincidence degree theory), the method of lower and upper solutions, and
the critical point theory. For the theory and classical results, we refer the
readers to the references, [4], [17], [19], [26], [32] and books [2], [22], [31].

Recently, the study on the existence of homoclinic solutions for the impul-
sive differential equations has attracted many researchers’ attention. See, to
name a few, [8], [29], [32]. For example, in [32], by applying the variational
methods, Zhang and Li established the existence result of homoclinic solutions
of the following second order impulsive differential equations{

q′′ + Vq(t, q) = f(t), for t ∈ (sk−1, sk),

∆q′(sk) = gk(q(sk)),

where k ∈ Z, q ∈ RN , ∆q′(sk) = q′(s+k ) − q′(s−k ) with q′(s±k ) = lim
t→s±k

q′(t),

Vq(t, q) = gradqV (t, q), f ∈ C(R,RN ), gk(q) = gradqGk(q), Gk ∈ C1(RN ,RN )
for each k ∈ N, and there exist an m ∈ N and a T ∈ R+ such that 0 = s0 <
s1 < ... < sm = T , sk+m = sk + T and gk+m ≡ gk for all k ∈ Z (that is, gk is
m-periodic in k).

Singular equations appear in a lot of physical models, see [9], [15], [18], [21],
[30] and the references therein. The existence periodic solutions and homoclinic
solutions of different kinds of singular equations has been proposed by many
authors, see [3], [5], [6], [7], [11], [13], [20], [27], [28], [33] and the references
therein. Singular problems with impulsive effects have been scarcely studied,
see [1], [12], [23], [24]. For example, in [12], the author and Luo considered the
following first-order singular problems:

x′(t) + x−α(t) = e(t)

under impulsive conditions

∆(x(tk)) = x(t+k )− x(t−k ) = Ik(x(tk)), k = 1, 2, . . . , q − 1,

where α > 0, e : R → R is continuous and T -periodic, Ik : R → R(k =
1, 2, ..., q−1) are continuous and Ik+q ≡ Ik. tk, k = 1, 2, ...q−1, are the instants
where the impulses occur and 0 = t0 < t1 < t2 < t3 < · · · < tq−1 < tq = T ,
tk+q = tk + T . By applying the continuation theorem due to Mawhin and
Gaines, the authors proved that the positive periodic solution was generated
by impulses.
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However, to the best of our knowledge, few researchers have studied the
existence of periodic wave solutions and the nonexistence of solitary wave so-
lutions for the singular p-Laplacian problems with impulsive effects. Inspired
by the works mentioned above, in this paper, by means of the mountain pass
theorem and an approximation technique, we establish the existence results of
periodic wave solutions and nonexistence results of solitary wave solutions for
system (1.1).

Definition 1. Suppose that u(s) is a solution of the system (1.1) for s ∈ R,
u(s) is called a solitary wave solution if lim

s→−∞
u(s) = lim

s→+∞
u(s). Usually, a

solitary wave solution of system (1.1) corresponds to a homoclinic solution of
system (1.1). Similarly, a periodic wave solution of system (1.1) corresponds
to a periodic solution of system (1.1).

Thus, in order to investigate the existence of periodic wave solutions and nonex-
istence of solitary wave solutions of system (1.1), we only need to prove the
existence of periodic solutions and nonexistence of homoclinic solutions of sys-
tem (1.1).

A function u ∈ C(R,RN ) is a solution of system (1.1) if function u satisfies
(1.1). A solution u of system (1.1) is homoclinic to 0 if u(t)→ 0 and u′(t±)→ 0
as t→ ±∞, and the corresponding orbit is called a homoclinic orbit.

In general, it is very difficult (if not impossible) to construct a suitable func-
tional such that the existence of its critical point implies to that of a homoclinic
orbit of system (1.1). First of all, we assume that there exists homoclinic orbits
of system (1.1). Then, by applying an approximation technique, we show that
the existence of homoclinic orbit is obtained as a limit of 2kT -periodic solutions
of the following sequence of impulsive differential equations

d

dt

(
|u′(t)|p−2u′(t)

)
+ f(u(t)) = ek(t), t 6= tj , t ∈ R,

−∆
(
|u′(tj)|p−2u′(tj)

)
= gj(u(tj)), j ∈ Z,

(1.2)

where ek : R → RN is a 2kT periodic extension of the restriction of e to the
interval [−kT, kT ].

Remark 1. Note that the domain under consideration is unbounded, and thus,
there is a lack of compactness for the Sobolev embedding. To overcome this
difficulty, we show the existence of a homoclinic orbit of system (1.1) by proving
that (1.2) has 2kT periodic solutions whose limit gives a homoclinic orbit of
system (1.1). Another difficulty is that we have to deal with the impulsive
perturbations in system (1.2).

For the sake of convenience, we list the following assumptions:

• [H1] There exist constants a > 0 and γ ∈ (1, p] such that for all u ∈ RN ,

−F (u) ≥ a|u|γ ,

where F ∈ C1(RN ,R) and f(u) = graduF (u).

Math. Model. Anal., 23(1):17–32, 2018.
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• [H2] There exists a constant θ > p such that

−F (u) ≤ −f(u)u ≤ −θF (u), for all u ∈ RN .

• [H3] Gj(0) = 0, gj(u) = o(|u|p−1) as |u| → 0, j = 1, 2, ...,m.

• [H4] There are two constants µ, β with µ > θ and 0 < β < µ − θ such
that

0 < µGj(u) ≤ gj(u)u+ βa|u|γ , u ∈ RN\{0}, j = 1, 2, ...,m.

• [H5] e ∈ C(R,RN ) ∩ Lp(R,RN ) ∩ Lq(R,RN ) with(∫ +∞

−∞
|e(t)|qdt

)1/q
<

1

Cp−1
min

{δp−1
p

,
[
a
(

1− β

µ− γ

)
δγ−1 −Mδµ−1

]}
,

where M = sup
{
Gj(u) : j = 1, 2, ...,m, |u| = 1

}
, 1/p+ 1/q = 1, δ ∈ (0, 1]

such that

a
(

1− β

µ− γ

)
δγ−1 −Mδµ−1 = max

x∈[0,1]

[
a
(

1− β

µ− γ

)
xγ−1 −Mxµ−1

]
and C > 0 is a constant.

• [H6] M1 > βa/(µ− γ), where M1 = inf
{
Gj(u) : j = 1, 2, ...,m, |u| = 1

}
.

The remainder part of this paper is organized as follows. Section 2 is de-
voted to state some necessary definitions, lemmas and the variational structure.
Section 3 is devoted to state the main results and an example is given to support
the established results. Section 4 is devoted to prove the main results.

2 Preliminary

Throughout this paper, we adopt the convention that |u| =
√∑N

j=1 u
2
j and

uv =
∑N
j=1 ujvj for u = (u1, ..., uN )> ∈ RN and v = (v1, ..., vN )> ∈ RN .

Define the space

H2kT=
{
u : R→ RN |u, u′ ∈ Lp([−kT, kT ],RN ), u(t) = u(t+ 2kT ), t ∈ R

}
.

Then H2kT is a separable and reflexive Banach space with the norm defined by

‖u‖H2kT
=

(∫ kT

−kT
|u′(t)|pdt+

∫ kT

−kT
|u(t)|pdt

)1/p

.

Denote L∞2kT (R,R)by the space of 2kT periodic essentially bounded mea-
surable functions from R into R with norm given by

‖u‖L∞2kT
= ess sup

t∈[−kT,kT ]

|u(t)|.
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Let Ωk =
{
−km+1,−km+2, ..., 0, 1, 2, ..., km−1, km

}
and define a functional

ϕk as

ϕk(u) :=
1

p
ηpk(u) +

∫ kT

−kT
ekudt−

∑
j∈Ωk

Gj(u(tj)), u ∈ H2kT , (2.1)

where

ηk(u) :=

(∫ kT

−kT
|u′(t)|pdt−

∫ kT

−kT
pF (u(t))dt

)1/p

. (2.2)

Then ϕk is Fréchet differentiable at any u ∈ H2kT . For any v ∈ H2kT , by a
simple calculation, we have

ϕ′k(u)v =

∫ kT

−kT
|u′(t)|p−2u′(t)v′(t)dt−

∫ kT

−kT
f(u(t))v(t)dt

+

∫ kT

−kT
ek(t)v(t)dt−

∑
j∈Ωk

gj(u(tj))v(tj).

Thus, by [H2], we get

ϕ′k(u)u ≤
∫ kT

−kT
|u′(t)|pdt−

∫ kT

−kT
θF (u(t))dt

+

∫ kT

−kT
ek(t)u(t)dt−

∑
j∈Ωk

gj(u(tj))u(tj).

(2.3)

It is evident that critical points of the functional ϕk are classical 2kT peri-
odic solutions of system (1.2).

Lemma 1. [10] There is a positive constant C such that for each k ∈ N and
u ∈ H2kT the following inequality holds:

‖u‖L∞2kT
≤ C ‖u‖H2kT

.

Lemma 2. [14] There exists rp > 0, for any x, y ∈ RN such that

(|x|p−2x− |y|p−2y)(x− y) ≥ rp|x− y|p, p ≥ 2.

Lemma 3. Suppose u : R→ RN is a continuous mapping such that

u′ ∈ Lploc(R,R
N )

:=
{
u : R→ R|for any finite interval [a, b], u|[a,b] ∈ Lp([a, b],RN )

}
.

Then for a, b ≥ 0 with a+ b > 0, the following inequality holds:

|u(t)| ≤ 2
p−1
p (a+ b)−

1
p max{1, (a+ b)}

(∫ t+b

t−a
(|u′(s)|p + |u(s)|p)ds

)1/p

.

Math. Model. Anal., 23(1):17–32, 2018.
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In particular,

|u(t)| ≤ 2
p−2
p a−

1
p max{1, 2a}

(∫ t+a

t−a
(|u′(s)|p + |u(s)|p)ds

)1/p

,

|u(t)| ≤ 2
2p−1

p

(∫ t+1

t−1
(|u′(s)|p + |u(s)|p)ds

)1/p

.

Proof. Fix t ∈ R, for any given δ ∈ R, we can have

|u(t)| ≤ |u(δ)|+
∣∣∣ ∫ t

δ

u′(s)ds
∣∣∣. (2.4)

Integrating (2.4) on the interval [t− a, t+ b] with respect to δ, then it follows
from the Jensen and Hölder inequalities that

(a+ b)|u(t)| ≤
∫ t+b

t−a

(
|u(δ)|+

∣∣ ∫ t

δ

u′(s)ds
∣∣)dδ

≤ (a+ b)
p−1
p

(∫ t+b

t−a

(
|u(δ)|+

∣∣ ∫ t

δ

u′(s)ds
∣∣)pdδ) 1

p

≤ (2a+ 2b)
p−1
p

(∫ t+b

t−a

(
|u(δ)|p +

∣∣ ∫ t

δ

u′(s)ds
∣∣p)dδ) 1

p

≤ (2a+ 2b)
p−1
p

(∫ t+b

t−a
|u(δ)|pdδ + (a+ b)p

∫ t+b

t−a
|u′(s)|pds

) 1
p

≤ (2a+ 2b)
p−1
p max{1, (a+ b)}

(∫ t+b

t−a
|u(δ)|pdδ +

∫ t+b

t−a
|u′(s)|pds

) 1
p

,

then, we obtain

|u(t)| ≤2
p−1
p (a+ b)−

1
p ·max{1, (a+ b)}

×
(∫ t+b

t−a
|u(δ)|pdδ +

∫ t+b

t−a
|u′(s)|pds

) 1
p

.

In particular, if a = b and a = b = 1, respectively, we have

|u(t)| ≤ 2
p−2
p a−

1
p max{1, 2a}

(∫ t+a

t−a
(|u′(s)|p + |u(s)|p)ds

)1/p

,

|u(t)| ≤ 2
2p−1

p

(∫ t+1

t−1
(|u′(s)|p + |u(s)|p)ds

)1/p

.

Therefore, the proof is completed. ut

3 Main results

Theorem 1. Assume that [H1]–[H6] hold, then the system (1.1) possesses at
least one 2kT -periodic wave solution.
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Theorem 2. Assume that [H1]–[H6] hold, then the system (1.1) possesses no
solitary wave solution.

We conclude this section considering the following example.

Example 1. Consider system (1.1) with p = 4, tj = 2jπ
m , j ∈ Z, T = 2π, m = 5,

F (u) = − 1
γu

γ + 1
1−γu

1−γ , e(t) = sin t/4, Gj(u(tj)) = (1 + |sin(tj/2)|)|u(tj)|6.
Then, it is easy to verify that F , f , Gj , gj , e satisfy the assumptions of Theorem
1-2 with a = 1/4, γ = 4, µ = 6, θ = 5 and β = 1/2. Therefore, system (1.1)
possesses at least one periodic wave solution and no solitary wave solution,
which are induced by impulses.

4 Proofs of main results

Now, we give the proof of Theorem 1 by using the mountain-pass theorem [16].

4.1 Proof of Theorem 1

Proof. For any given sequence {un} ∈ H2kT such that {ϕk(un)} is bounded
and lim

n→∞
ϕ′k(un) = 0, there exists a constant C1 > 0 such that

|ϕk(un)| ≤ C1, ‖ϕ′k(un)‖H∗2kT
≤ C1, ∀n ∈ N,

where H∗2kT is the dual space of H2kT . The rest of the proof is divided into
three steps.

Step 1. We show that {un} is bounded. In fact, by (2.1) and [H4]

ηpk(un)=pϕk(un)+p
∑
j∈Ωk

Gj(un(tj))−p
∫ kT

−kT
ek(t)un(t)dt ≤ pϕk(un)

+
p

µ

∑
j∈Ωk

[
gj(un(tj))un(tj)+βa|un(tj)|γ

]
−p
∫ kT

−kT
ek(t)un(t)dt. (4.1)

By (2.3) and µ > θ > p, we have

p

µ
ϕ′k(un)un ≤

∫ kT

−kT

[
p

µ
|u′n(t)|p − p

µ
θF (un(t)) +

p

µ
ek(t)un(t)

]
dt

− p

µ

∑
j∈Ωk

gj(un(tj))un(tj) ≤
∫ kT

−kT

[ θ
µ
|u′n(t)|p − θ

µ
pF (un(t))

+
p

µ
ek(t)un(t)

]
dt− p

µ

∑
j∈Ωk

gj(un(tj))un(tj)

=
θ

µ
ηpk(un) +

p

µ

∫ kT

−kT
ek(t)un(t)dt− p

µ

∑
j∈Ωk

gj(un(tj))un(tj). (4.2)

From (4.1) and (4.2), we can obtain(
1− θ

µ

)
ηpk(un) ≤ pϕk(u)− p

µ
ϕ′k(un)un −

(
p− p

µ

)∫ kT

−kT
ek(t)un(t)dt

Math. Model. Anal., 23(1):17–32, 2018.
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+
pβa

µ

∑
j∈Ωk

|un(tj)|γ ≤ pC1 +
pβa

µ

∫ kT

−kT
|un(t)|γdt

+

[
pC1

µ
+
(
p− p

µ

)(∫ kT

−kT
|ek(t)|qdt

)1/q]
‖un‖H2kT

, (4.3)

where q > 1 satisfying 1/p+ 1/q = 1.
On the other hand, from [H1], (2.2) and Lemma 1, we have(

1− θ

µ

)
ηpk(u) =

(
1− θ

µ

)∫ kT

−kT

(
|u′(t)|p − pF (u(t))

)
dt

+
pβa

µ

∫ kT

−kT
|un(t)|γdt− pβa

µ

∫ kT

−kT
|un(t)|γdt

≥
(

1− θ

µ

)∫ kT

−kT
|u′(t)|pdt+ pa

(
1− θ

µ
− β

µ

)∫ kT

−kT
|un(t)|γdt

+
pβa

µ

∫ kT

−kT
|un(t)|γdt ≥ min

{(
1− θ

µ

)
‖un‖pH2kT

,

paCγ−p
(

1− θ

µ
− β

µ

)
‖un‖γH2kT

}
+
pβa

µ

∫ kT

−kT
|un(t)|γdt. (4.4)

It follows from (4.3) and (4.4) that

min

{(
1− θ

µ

)
‖un‖pH2kT

, paCγ−p
(

1− θ

µ
− β

µ

)
‖un‖γH2kT

}
≤ pC1 +

[
pC1

µ
+
(
p− p

µ

)(∫ kT

−kT
|ek(t)|qdt

)1/q]
‖un‖H2kT

.

Since p ≥ γ > 1 and 0 ≤ β < µ− θ, then we can see that ‖un‖H2kT
is bounded.

Because H2kT is a reflexive Banach space, we can pick {un} be a weakly
convergent sequence to u in H2kT , and {un} converges uniformly to u in
C[−kT, kT ]. So, we have

un(t)− u(t)→ 0 as n→∞, t ∈ [−kT, kT ],
∑
j∈Ωk

[gj(un(tj))− gj(u(tj))]

× [un(tj)−u(tj)]→ 0,

∫ kT

−kT
[f(un(t))−f(u(t))][un(t)−u(t)]dt→ 0. (4.5)

Then∫ kT

−kT

[
|u′n(t)|p−2u′n(t)−|u′(t)|p−2u′(t)

][
u′n(t)−u′(t)

]
dt=

[
ϕ′k(un(t))−ϕ′k(u(t))

]
×
[
un(t)− u(t)

]
+

∫ kT

−kT

[
f(un(t))− f(u(t))

][
un(t)− u(t)

]
dt

+
∑
j∈Ωk

[
gj(un(tj))− gj(u(tj))

][
un(tj)− u(tj)

]
. (4.6)
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Thus, it follows from (4.5), (4.6) and Lemma 2 that ‖un − u‖H2kT
→ 0. There-

fore, the functional ϕk satisfies the Palais-Smale condition.

Step 2. Define

ϕ(s) = sµGj

(u
s

)
− βasµ−γ

µ− γ
|u|γ , j = 1, 2, ...,m, s > 0.

From [H4], we can have

ϕ′(s) =
d

ds

[
sµGj

(u
s

)
− βasµ−γ

µ− γ
|u|γ

]
=sµ−1

[
µGj

(u
s

)
− gj

(u
s

) u
s
− βa

(
|u|
s

)γ ]
≤ 0,

which implies that ϕ(s) is non-increasing for s > 0. Thus,

Gj(u(tj))−
βa

µ− γ
|u(tj)|γ ≤ Gj

(
u(tj)

|u(tj)|

)
|u(tj)|µ −

βa

µ− γ
|u(tj)|µ

≤
(
M − βa

µ− γ

)
|u(tj)|µ ≤M |u(tj)|µ,

(4.7)

for 0 < |u(tj)| ≤ 1, j ∈ Ωk, and

Gj(u(tj))−
βa

µ− γ
|u(tj)|γ ≥ Gj

(
u(tj)

|u(tj)|

)
|u(tj)|µ −

βa

µ− γ
|u(tj)|µ

≥
(
M1 −

βa

µ− γ

)
|u(tj)|µ,

(4.8)

for |u(tj)| ≥ 1, j ∈ Ωk. Note that [H1] implies that p ≥ γ > 0, thus, we have∫ kT

−kT
|u(t)|pdt ≤ ‖u‖p−γL∞2kT

∫ kT

−kT
|u(t)|γdt.

If ‖u‖L∞2kT
≤ δ ≤ 1, then from (2.1), [H1], [H2], (4.6) and (4.7), we have

ϕk(u) =
1

p
ηpk(u) +

∫ kT

−kT
ek(t)u(t)dt−

∑
j∈Ωk

Gj(u(tj)) =
1

p

[ ∫ kT

−kT
|u′(t)|pdt

−
∫ kT

−kT
pF (u(t))dt

]
+

∫ kT

−kT
ek(t)u(t)dt−

∑
j∈Ωk

Gj(u(tj))

≥ 1

p

∫ kT

−kT
|u′(t)|pdt+ a

∫ kT

−kT
|u(t)|γdt−

∑
j∈Ωk

(
M |u(tj)|µ +

βa

µ− γ
|u(tj)|γ

)

−
(∫ kT

−kT
|ek(t)|qdt

)1/q(∫ kT

−kT
|u(t)|pdt

)1/p

≥ 1

p

∫ kT

−kT
|u′(t)|pd+a

∫ kT

−kT
|u(t)|γdt−

∫ kT

−kT

(
M |u(tj)|µ +

βa

µ− γ
|u(tj)|γ

)
dt

−
(∫ kT

−kT
|ek(t)|qdt

)1/q(∫ kT

−kT
|u(t)|pdt

)1/p

.

Math. Model. Anal., 23(1):17–32, 2018.



26 F. Kong, Z. Luo and H. Qiu

Further, we have

ϕk(u) ≥ 1

p

∫ kT

−kT
|u′(t)|pdt+

[
a
(

1− β

µ− γ

)
−M ‖u‖µ−γL∞2kT

] ∫ kT

−kT
|u(t)|γdt

−
(∫

R
|ek(t)|qdt

)1/q(∫ kT

−kT
|u(t)|pdt

)1/p

≥ 1

p

∫ kT

−kT
|u′(t)|pdt

+

[
a
(

1− β

µ−γ

)
‖u‖γ−pL∞2kT

−M ‖u‖µ−pL∞2kT

] ∫ kT

−kT
|u(t)|pdt

−
(∫

R
|ek(t)|qdt

)1/q(∫ kT

−kT
|u(t)|pdt

)1/p

≥ min

{
1

p
, a
(

1− β

µ− γ

)
‖u‖γ−pL∞2kT

−M ‖u‖µ−pL∞2kT

}
‖u‖pH2kT

−
(∫

R
|ek(t)|qdt

)1/q

‖u‖H2kT
.

Set ρ = δ/C, and

α =
1

Cp
min

{
δp

p
, a
(

1− β

µ− γ

)
δγ −Mδµ

}
−
(∫

R
|ek(t)|qdt

)1/q
δ

C
> 0,

where C is defined in Lemma 1. Let ‖u‖H2kT
= ρ, then ‖u‖L∞2kT

≤ δ ≤ 1.

Therefore, ϕk(u) ≥ α > 0.

Step 3. We choose ζ ∈ R, ω = π
T , Q(t) = (sin(ωt), 0, ..., 0) ∈ H2T \{0}.

Then, we can see that Q(±T ) = 0. Let

m1= min{F (u) : |u(t)| ≤ 1, t ∈ [0, T ]}, m2= min{F (u) : |u(t)| = 1, t ∈ [0, T ]},

then 0 > m2 ≥ m1 > −∞.

Let h(s) = s−θF (su), s > 0. It follows from [H2] that

h′(s) =
(
f(su)su− θF (su)

)
/sθ+1 ≥ 0.

Then, we can get

F (u) ≥ |u|θF (u/|u|) , |u| ≥ 1, (4.9)

which implies that

F (u) ≥ m2|u|θ +m1, u ∈ R.

Set |ζu(tj)| ≥ 1, j ∈ Ωk. From (4.8), we can have

Gj(ζu(tj))−
βa

µ− γ
|ζu(tj)|γ ≥

(
M1 −

βa

µ− γ

)
|ζu(tj)|µ, tj ∈ Ωk.

Define

Q̃(t) =

{
Q(t), t ∈ [−T, T ],

0, t ∈ [−kT, kT ]\[−T, T ].
(4.10)
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It follows from (2.1), (2.2) and (4.9)–(4.10) that

ϕk(ζQ̃) =
1

p

∫ T

−T
|ζQ′(t)|pdt−

∫ T

−T
F (ζQ(t))dt−

∑
j∈Ω1

Gj(ζQ(tj))

+

∫ T

−T
e1(t)ζQ(t)dt ≤ T |ζ|pωp

p
−m2|ζ|θ

∫ T

−T
|Q(t)|θdt

− |ζ|γ
∑
j∈Ω1

βa

µ− γ
|Q(tj)|γ − |ζ|µ

∑
j∈Ω1

(
M1 −

βa

µ− γ

)
|Q(tj)|µ

+ |ζ|
(∫

R
|e1(t)|qdt

)1/q(∫ T

−T
|Q(t)|p

)1/p

− 2m1T.

Clearly,
ϕk(ζQ̃)→ −∞ as |ζ| → +∞.

Consequently, ϕk possesses a critical value ck ≥ α > 0. Let uk denote the
corresponding critical point of ϕk on H2kT , that is,

ϕk(uk) = ck, ϕ
′
k(uk) = 0. (4.11)

Hence, system (1.2) possesses a 2kT -periodic solution uk. Therefore, the system
(1.1) possesses at least one 2kT -periodic wave solution. ut

Theorem 3. Let {uk} be the sequence defined in (4.11). Then there exist a
subsequence {uk,k} of {uk} and a function u0 ∈ W 1,p

loc ∩ L∞loc(R,RN ) such that

{uk,k} converges to u0 weakly in W 1,p
loc and strongly in L∞loc(R,RN ).

Proof. We claim that there is a constant M3 > 0 independent of k such that
‖uk‖H2kT

≤M3. Let e1 ∈ H2T \{0} such that e1(±T ) = 0, e1(tk) 6= 0 for some
tk ∈ (−T, T ) and ϕ1(e1) ≤ 0. Define

ek(t) =

{
e1(t), |t| < T,

0, T ≤ |t| ≤ kT, k = 2, 3, . . . .

We then extend ek(k = 1, 2, ...) to be 2kT periodic, which, for convenience, we
denote also by ek. It is clear that ek ∈ H2kT and ϕk(ek) = ϕ1(e1) ≤ 0.

Define gk : [0, 1]→ H2kT by gk(s) = sek for s ∈ [0, 1]. Then, we can have

ck ≤ max
s∈[0,1]

ϕk(gk(s)) = max
s∈[0,1]

ϕ1(g1(s)) ≡ c0

independently of k, where ck is a constant of (4.11).
As in Step 1 in the proof of Theorem 1, we can prove that {uk} is a

bounded sequence in W 1,p((−T, T ),RN ). Hence, we can choose a subsequence
{u1,k} such that {u1,k} converges weakly in W 1,p((−T, T ),RN ) and strongly in
L∞((−T, T ),RN ). Note that {u1,k} is a bounded sequence in W 1,p((−2T, 2T ),
RN ), we can choose a subsequence {u2,k} such that {u2,k} converges weakly
in W 1,p((−2T, 2T ), RN ) and strongly in L∞((−2T, 2T ), RN ). Repeating this
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process, we obtain, for any positive integer n, a sequence {un,k} that converges
weakly in W 1,p((−nT, nT ),RN ) and strongly in L∞((−nT, nT ),RN ) satisfying

{uk} ⊃ {u1,k} ⊃ {u2,k} ⊃ ...{un,k} ⊃ ....

Therefore, for any positive integer n, the sequence {uj,j} converges weakly in
W 1,p((−nT, nT ),RN ) and the sequence {uj,j} converges strongly in L∞((−nT,
nT ),RN ). Therefore, there exists a function u0 ∈ W 1,p

loc (R,RN ) ∩ L∞loc(R,RN )

such that the sequence {uj,j} converges weakly u0 in W 1,p
loc (R,RN ) and strongly

in L∞loc(R,RN ). ut

4.2 Proof of Theorem 2

Proof. We divide the proof into three steps.
Step 1. We show that u0 is a solution to system (1.1). Here, for simplicity,

we denote {uk,k} by {uk}. For any given interval (a, b) ⊂ (−kT, kT ) and any

v ∈W 1,p
0 ((a, b),RN ), define

v1 =

{
v(t), t ∈ (a, b),

0, t ∈ (−kT, kT )\(a, b).

For any v ∈W 1,p
0 ((a, b),RN ), we get

0 = ϕ′k(uk)(v1) =

∫ b

a

|u′k|p−2u′kv′dt−
∫ b

a

f(uk)vdt

+

∫ b

a

ekvdt−
∑

tj∈(a,b)

gj(uk(tj))v(tj),

then, it follows that∫ b

a

|u′0|p−2u′0v′dt−
∫ b

a

f(u0)vdt+

∫ b

a

evdt−
∑

tj∈(a,b)

gj(u0(tj))v(tj)

= lim
k→+∞

(∫ b

a

|u′k|p−2u′kv′dt−
∫ b

a

f(uk)vdt+

∫ b

a

ekvdt

−
∑

tj∈(a,b)

gj(uk(tj))v(tj)

)
= 0.

By using a similar argument as the proof of Lemma 2.5 in [25], we can show
that u0 is a solution to system (1.1).

Step 2. We prove that u0(t) → 0 as t → ±∞. Since {uk} is weakly
convergent in W 1,p

loc , it follows from Step 1 of the proof of Theorem 1 that there
exists a constant M3 > 0 such that∫ +∞

−∞
(|u′0|p + |u0|p)dt = lim

k→+∞

∫ kT

−kT
(|u′0|p + |u0|p)dt

≤ lim
k→+∞

lim
j→+∞

∫ kT

−kT
(|u′j |p + |uj |p)dt ≤Mp

3 .
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So, we can have ∫
|t|≥r

(|u′0|p + |u0|p)dt→ 0, as r → +∞, (4.12)

which together with Lemma 3 yields that u0(t)→ 0 as t→ ±∞.

Step 3. We prove that u′0(t±) 6→ 0 as t→ ±∞.

Note that 0 = t0 < t1 < t2 < ... < tm = T , tj+m = tj + T , j ∈ Z,
δ = min

j∈Z
{tj − tj−1} > 0, so δ = max

j∈Z
{tj − tj−1} ≥ δ > 0. By means of the

Hölder inequality, we have

δ|u′0(t)|p−1 ≤
∫ tj

tj−1

∣∣∣∣|u′0(τ)|p−2u′0(τ) +

∫ t

τ

d

ds

(
|u′0(s)|p−2u′0(s))ds

∣∣∣∣dτ
≤ δ

1
p

(∫ tj

tj−1

|u′0(s)|pds
) p−1

p

+ δ
2p−1

p

(∫ tj

tj−1

∣∣ d
ds

(
|u′0(s)|p−2u′0(s))

∣∣pds) 1
p

.

(4.13)
From (4.12), we can see that∫ tj

tj−1

|u′0|pdt ≤
∫ tj

tj−1

(|u′0|p + |u0|p)dt→ 0, as j → ±∞. (4.14)

It follows from e ∈ Lp(R,RN ) that∫ tj

tj−1

|e(s)|pds→ 0, as j → ±∞. (4.15)

In Step 1, we have prove that u0 is a solution to system (1.1). Then,∫ tj

tj−1

∣∣∣∣ dds(|u′0(s)|p−2u′0(s)
)∣∣∣∣pds =

∫ tj

tj−1

∣∣− f(u0(s)) + e(s)
∣∣pds

≤ 2p−1
∫ tj

tj−1

(
|f(u0(s))|p + |e(s)|p

)
ds. (4.16)

However, f(0) 6= 0. So that, from lim
t→±∞

|u0(t±)| = 0, (4.15) and (4.16), we can

see that ∫ tj

tj−1

∣∣∣∣ dds(|u′0(s)|p−2u′0(s)
)∣∣∣∣p ds 6→ 0 as j → ±∞. (4.17)

Substituting (4.17) and (4.14) into (4.13), we can obtain

|u′0(t±)| 6→ 0 as j → ±∞.

Hence, by the definition of homoclinic solutions, we can see that there are no
existence of homoclinic solutions for system (1.1). Therefore, the system (1.1)
possesses no solitary wave solution. ut
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