MATHEMATICAL MODELLING AND ANALYSIS Volume 19 Number 1, February 2014, 52–65 http://dx.doi.org/10.3846/13926292.2014.893261 © Vilnius Gediminas Technical University, 2014

Publisher: Taylor&Francis and VGTU http://www.tandfonline.com/TMMA Print ISSN: 1392-6292

Online ISSN: 1648-3510

A Mixed Joint Universality Theorem for Zeta-Functions. II

Vaida Pocevičienė^a and Darius Šiaučiūnas^b

^a Faculty of Technologies, Panevėžys Institute, Kaunas University of Technology

S. Daukanto str. 12, LT-35212 Panevėžys, Lithuania

^bFaculty of Mathematics and Informatics, Šiauliai University

P. Višinskio str. 19, LT-77156 Šiauliai, Lithuania

E-mail(corresp.): siauciunas@fm.su.lt

E-mail: vaida.poceviciene@ktu.lt

Received June 28, 2013; revised December 26, 2013; published online February 20, 2014

Abstract. In the paper, a joint universality theorem on the approximation of analytic functions for zeta-function of a normalized Hecke eigen cusp form and a collection of periodic Hurwitz zeta-functions with algebraically independent parameters is obtained.

Keywords: Hurwitz zeta-function, universality, zeta-function of certain cusp form.

AMS Subject Classification: 11M41.

Let $\mathfrak{a} = \{a_m : m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}\}$ be a periodic sequence of complex numbers with minimal period $k \in \mathbb{N}$, α , $0 < \alpha \le 1$, be a fixed parameter, and $s = \sigma + it$. The periodic Hurwitz zeta-function $\zeta(s, \alpha; \mathfrak{a})$ is defined, for $\sigma > 1$, by

$$\zeta(s,\alpha;\mathfrak{a}) = \sum_{m=0}^{\infty} \frac{a_m}{(m+\alpha)^s},$$

and is analytically continued to an entire function if

$$a \stackrel{def}{=} \frac{1}{k} \sum_{l=0}^{k-1} a_l = 0,$$

while if $a \neq 0$, then $\zeta(s, \alpha; \mathfrak{a})$ is a meromorphic function having the unique simple pole at s = 1 with residue a.

In [4], a joint universality theorem for the Riemann zeta-function $\zeta(s)$ and a collection of periodic Hurwitz zeta-functions has been obtained. For $j = 1, \ldots, r$ let α_j , $0 < \alpha_j \le 1$, be a fixed parameter, $l_j \in \mathbb{N}$, and, for $j = 1, \ldots, r$, $l = 1, \ldots, l_j$, let $\mathfrak{a}_{jl} = \{a_{mjl} : m \in \mathbb{N}_0\}$ be a periodic sequence of complex

numbers with minimal period k_{jl} , and $\zeta(s, \alpha_j; \mathfrak{a}_{jl})$ denote the corresponding periodic Hurwitz zeta-function. Denote by k_j the least common multiple of the periods k_{j1}, \ldots, k_{jl_j} , and define

$$B_{j} = \begin{pmatrix} a_{1j1} & a_{1j2} & \dots & a_{1jl_{j}} \\ a_{2j1} & a_{2j2} & \dots & a_{2jl_{j}} \\ \dots & \dots & \dots & \dots \\ a_{k_{j}j1} & a_{k_{j}j2} & \dots & a_{k_{j}jl_{j}} \end{pmatrix}, \quad j = 1, \dots, r.$$

Let $D = \{s \in \mathbb{C} : \frac{1}{2} < \sigma < 1\}$, and let, for brevity,

$$\nu_T(\dots) = \frac{1}{T} \operatorname{meas} \{ \tau \in [0, T] : \dots \},$$

where meas A denotes the Lebesgue measure of a measurable set $A \subset \mathbb{R}$, and in the place of dots a condition satisfied by τ is to be written. Then the main result of [4] is contained in the following theorem.

Theorem 1. Suppose that the numbers $\alpha_1, \ldots, \alpha_r$ are algebraically independent over the field of rational numbers \mathbb{Q} , and that $\operatorname{rank}(B_j) = l_j$, $j = 1, \ldots, r$. For every $j = 1, \ldots, r$ and $l = 1, \ldots, l_j$, let K_{jl} be a compact subset of the strip D with connected complement, and let $f_{jl}(s)$ be a continuous on K_{jl} function which is analytic in the interior of K_{jl} . Moreover, let K be a compact subset of the strip D with connected complement, and f(s) be a continuous non-vanishing on K function which is analytic in the interior of K. Then, for every $\varepsilon > 0$,

$$\lim_{T \to \infty} \inf \nu_T \left(\sup_{s \in K} \left| \zeta(s + i\tau) - f(s) \right| < \varepsilon,
\sup_{1 \le j \le r} \sup_{1 \le j \le l_j} \sup_{s \in K_{jl}} \left| \zeta(s + i\tau, \alpha_j; \mathfrak{a}_{jl}) - f_{jl}(s) \right| < \varepsilon \right) > 0.$$

A natural question arises if the Riemann zeta-function in Theorem 1 can be replaced by other zeta-functions which are universal in a certain strip?

Let F be a normalized Hecke eigen cusp form of weight κ for the full modular group, and let

$$F(z) = \sum_{m=1}^{\infty} c(m) e^{2\pi i m z}$$

be its Fourier series expansion. The zeta-function $\varphi(s, F)$ attached to the form F is defined, for $\sigma > \frac{\kappa+1}{2}$, by

$$\varphi(s,F) = \sum_{m=1}^{\infty} \frac{c(m)}{m^s},$$

and is analytically continued to an entire function. Moreover, for $\sigma > \frac{\kappa+1}{2}$, the function $\varphi(s,F)$ has the Euler product over primes

$$\varphi(s,F) = \prod_{p} \left(1 - \frac{\alpha(p)}{p^s}\right)^{-1} \left(1 - \frac{\beta(p)}{p^s}\right)^{-1},$$

where $\alpha(p)$ and $\beta(p)$ are complex conjugate numbers such that $\alpha(p) + \beta(p) = c(p)$, and

 $\left|\alpha(p)\right| < p^{\frac{\kappa-1}{2}}, \qquad \left|\beta(p)\right| \le p^{\frac{\kappa-1}{2}}.$

In [5], the universality of the function $\varphi(s,F)$ has been obtained. Let $D_{\kappa} = \{s \in \mathbb{C} : \frac{\kappa}{2} < \sigma < \frac{\kappa+1}{2}\}.$

Theorem 2. [5] Let K be a compact subset of the strip D_{κ} with connected complement, and let f(s) be a continuous non-vanishing function on K, and analytic in the interior of K. Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \nu_T \left(\sup_{s \in K} \left| \varphi(s + i\tau, F) - f(s) \right| < \varepsilon \right) > 0.$$

The main result of the present paper connects Theorems 1 and 2.

Theorem 3. Suppose that the numbers $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} , and that $\operatorname{rank}(B_j) = l_j$, $j = 1, \ldots, r$. Let K_{jl} and f_{jl} be the same as in Theorem 1, and K and f(s) be the same as in Theorem 2. Then, for every $\varepsilon > 0$,

$$\lim_{T \to \infty} \inf \nu_T \left(\sup_{s \in K} \left| \varphi(s + i\tau, F) - f(s) \right| < \varepsilon,
\sup_{1 \le j \le r} \sup_{1 \le l \le l_j} \sup_{s \in K_{jl}} \left| \zeta(s + i\tau, \alpha_j; \mathfrak{a}_{jl}) - f_{jl}(s) \right| < \varepsilon \right) > 0.$$

For the proof of Theorem 3, we apply the probabilistic approach based on a joint limit theorem in the space of analytic functions. Theorem 3 is the first result on the joint universality for zeta-functions which presents the universality property in two different strips D and D_{κ} . This is the novelty of the paper.

1 Functional Limit Theorems

For a region G on the complex plane, let us denote by H(G) the space of analytic functions on G equipped with the topology of uniform convergence on compacta. Let

$$H^{v}(D_{\kappa}, D) = H(D_{\kappa}) \times \underbrace{H(D) \times \cdots \times H(D)}_{v_{1}}, \quad v_{1} = \sum_{j=1}^{r} l_{j}, \quad v = v_{1} + 1.$$

For brevity, we set

$$\alpha = (\alpha_1, \dots, \alpha_r), \quad \mathfrak{a} = (\mathfrak{a}_{11}, \dots, \mathfrak{a}_{1l_1}, \dots, \mathfrak{a}_{r1}, \dots, \mathfrak{a}_{rl_r})$$

and

$$\underline{\zeta}(\hat{s}, s, \underline{\alpha}; \underline{\mathfrak{a}}, F) = (\varphi(\hat{s}, F), \zeta(s, \alpha_1; \mathfrak{a}_{11}), \dots, \zeta(s, \alpha_1; \mathfrak{a}_{1l_1}), \dots, \zeta(s, \alpha_r; \mathfrak{a}_{rl_r})).$$

Denote by $\mathcal{B}(S)$ the class of Borel sets of the space S. In this section, we consider the weak convergence of the probability measure

$$P_T(A) \stackrel{def}{=} \nu_T \big(\underline{\zeta}(\hat{s}+i\tau,s+i\tau,\underline{\alpha};\underline{\mathfrak{a}},F) \in A\big), \quad A \in \mathcal{B}\big(H^v(D_\kappa,D)\big),$$

as $T \to \infty$. To state a limit theorem, we need some notation.

Denote by γ the unit circle on the complex plane, and define

$$\hat{\Omega} = \prod_{p} \gamma_{p}$$
 and $\Omega = \prod_{m=0}^{\infty} \gamma_{m}$,

where $\gamma_p = \gamma$ for all primes p, and $\gamma_m = \gamma$ for all $m \in \mathbb{N}_0$. By the Tikhonov theorem, the tori $\hat{\Omega}$ and Ω are compact topological Abelian groups. Therefore, on $(\hat{\Omega}, \mathcal{B}(\hat{\Omega}))$ and $(\Omega, \mathcal{B}(\Omega))$ the probability Haar measures \hat{m}_H and m_H , respectively, can be defined. We obtain two probability spaces $(\hat{\Omega}, \mathcal{B}(\hat{\Omega}), \hat{m}_H)$ and $(\Omega, \mathcal{B}(\Omega), m_H)$.

Furthermore, we put $\underline{\Omega} = \hat{\Omega} \times \Omega_1 \times \cdots \times \Omega_r$, where $\Omega_j = \Omega$ for $j = 1, \dots, r$. Then the Tikhonov theorem implies again that $\underline{\Omega}$ is a compact topological Abelian group, and, similarly as above, we obtain one more probability space $(\underline{\Omega}, \mathcal{B}(\underline{\Omega}), \underline{m}_H)$, where \underline{m}_H is the probability Haar measure on $(\underline{\Omega}, \mathcal{B}(\underline{\Omega}))$. Denote by $\hat{\omega}(p)$ the projection of $\hat{\omega} \in \Omega$ to the coordinate space γ_p , $p \in \mathcal{P}$, (\mathcal{P}) is the set of all prime numbers), and by $\omega_j(m)$ the projection of $\omega_j \in \Omega_j$ to the coordinate space γ_m , $m \in \mathbb{N}_0$. Let $\underline{\omega} = (\hat{\omega}, \omega_1, \dots, \omega_r)$ stand for elements of $\underline{\Omega}$. On the probability space $(\underline{\Omega}, \mathcal{B}(\underline{\Omega}), \underline{m}_H)$, define the $H^v(D_\kappa, D)$ -valued random element $\underline{\zeta}(\hat{s}, s, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}, F)$ by the formula

$$\underline{\zeta}(\hat{s}, s, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}, F) = (\varphi(\hat{s}, \hat{\omega}, F), \zeta(s, \alpha_1, \omega_1; \mathfrak{a}_{11}), \dots, \zeta(s, \alpha_r, \omega_r; \mathfrak{a}_{r1}), \dots, \zeta(s, \alpha_r, \omega_r; \mathfrak{a}_{rl_r})),$$

where

$$\varphi(\hat{s}, \hat{\omega}, F) = \prod_{p} \left(1 - \frac{\alpha(p)\hat{\omega}(p)}{p^s} \right)^{-1} \left(1 - \frac{\beta(p)\hat{\omega}(p)}{p^s} \right)^{-1},$$

and

$$\zeta(s, \alpha_j, \omega_j; \mathfrak{a}_{jl}) = \sum_{m=0}^{\infty} \frac{a_{mjl}\omega_j(m)}{(m+\alpha_j)^s}, \quad j = 1, \dots, r, \ l = 1, \dots, l_j.$$

Denote by $P_{\underline{\zeta}}$ the distribution of the random element $\underline{\zeta}(\hat{s}, s, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}, F)$, i.e., for $A \in \mathcal{B}(H^v(D_{\kappa}, D))$,

$$P_{\underline{\zeta}}(A) = \underline{m}_H \big(\underline{\omega} \in \underline{\varOmega} \colon \underline{\zeta}(\hat{s}, s, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}, F) \in A \big).$$

Theorem 4. Suppose that the numbers $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} . Then P_T converges weakly to P_{ζ} as $T \to \infty$.

We divide the proof of Theorem 4 into several lemmas. Define

$$Q_T(A) = \nu_T(((p^{-i\tau}: p \in \mathcal{P}), ((m+\alpha_1)^{-i\tau}: m \in \mathbb{N}_0), \dots, ((m+\alpha_r)^{-i\tau}: m \in \mathbb{N}_0)) \in A), \quad A \in \mathcal{B}(\underline{\Omega}).$$

Lemma 1. Suppose that the numbers $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} . Then Q_T converges weakly to the Haar measure \underline{m}_H as $T \to \infty$.

Proof of the lemma is given in [4], Lemma 1. Let $\sigma_1 > \frac{1}{2}$ be a fixed number,

$$\begin{split} u_n(m) &= \exp\left\{-\left(m/n\right)^{\sigma_1}\right\}, \quad m, n \in \mathbb{N}, \\ u_n(m, \alpha_j) &= \exp\left\{-\left(\frac{m + \alpha_j}{n + \alpha_j}\right)^{\sigma_1}\right\}, \quad m \in \mathbb{N}_0, \ n \in \mathbb{N}. \end{split}$$

Define

$$\varphi_n(\hat{s}, F) = \sum_{m=1}^{\infty} \frac{c(m)u_n(m)}{m^{\hat{s}}}, \quad \zeta_n(s, \alpha_j; \mathfrak{a}_{jl}) = \sum_{m=0}^{\infty} \frac{a_{mjl}u_n(m, \alpha_j)}{(m + \alpha_j)^s},$$

 $j=1,\ldots,r,\,l=1,\ldots,l_j$. By a standard method based on the application of the Mellin formula, it is obtained that the series for $\varphi_n(\hat{s},F)$ converges absolutely for Re $\hat{s}>\frac{\kappa}{2}$, and the series for $\zeta_n(s,\alpha_j;\mathfrak{a}_{jl})$ converges absolutely for $\sigma>\frac{1}{2}$.

We extend the functions $\hat{\omega}(p)$ to the set N by the formula

$$\hat{\omega}(m) = \prod_{p^l \parallel m} \hat{\omega}^l(p), \quad m \in \mathbb{N},$$

where $p^l \parallel m$ means that $p^l \mid m$ but $p^{l+1} \nmid m$, and define

$$\varphi_n(\hat{s}, \hat{\omega}, F) = \sum_{m=1}^{\infty} \frac{c(m)\hat{\omega}(m)u_n(m)}{m^{\hat{s}}},$$

$$\zeta_n(s, \alpha_j, \omega_j; \mathfrak{a}_{jl}) = \sum_{m=0}^{\infty} \frac{a_{mjl}\omega_j(m)u_n(m, \alpha_j)}{(m + \alpha_j)^s}, \quad j = 1, \dots, r, \ l = 1, \dots, l_j.$$

Clearly, the series for $\varphi_n(\hat{s}, \hat{\omega}, F)$ converges absolutely for Re $\hat{s} > \frac{\kappa}{2}$, and the series for $\zeta_n(s, \alpha_j, \omega_j; \mathfrak{a}_{jl})$ converges absolutely for $\sigma > \frac{1}{2}$. For brevity, we set

$$\underline{\zeta}_n(\hat{s}, s, \underline{\alpha}; \underline{\mathfrak{a}}, F) = (\varphi_n(\hat{s}, F), \zeta_n(s, \alpha_1; \mathfrak{a}_{11}), \dots, \zeta_n(s, \alpha_1; \mathfrak{a}_{1l_1}), \dots, \zeta_n(s, \alpha_r; \mathfrak{a}_{rl_r}))$$

and

$$\underline{\zeta}_n(\hat{s}, s, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}, F) = (\varphi_n(\hat{s}, \hat{\omega}, F), \zeta_n(s, \alpha_1, \omega_1; \mathfrak{a}_{11}), \dots, \zeta_n(s, \alpha_1, \omega_1; \mathfrak{a}_{1l_1}), \dots, \zeta_n(s, \alpha_r, \omega_r; \mathfrak{a}_{rl_r})).$$

Now, on the space $(H^v(D_{\kappa}, D), \mathcal{B}(H^v(D_{\kappa}, D)))$, define two probability measures

$$\begin{split} P_{T,n}(A) &= \nu_T \big(\underline{\zeta}_n(\hat{s} + i\tau, s + i\tau, \underline{\alpha}; \underline{\mathfrak{a}}, F) \in A \big), \\ P_{T,n,\underline{\omega}_0}(A) &= \nu_T \big(\zeta_n(\hat{s} + i\tau, s + i\tau, \underline{\alpha}, \underline{\omega}_0; \underline{\mathfrak{a}}, F) \in A \big), \end{split}$$

where $\underline{\omega}_0 = (\hat{\omega}_0, \omega_{10}, \dots, \omega_{r0})$ is a fixed element of $\underline{\Omega}$.

Lemma 2. Suppose that the numbers $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} . Then the probability measures $P_{T,n}$ and $P_{T,n,\underline{\omega}_0}$ both converge weakly to the same probability measure P_n on $(H^v(D_\kappa, D), \mathcal{B}(H^v(D_\kappa, D)))$ as $T \to \infty$.

Proof. We argue similarly to the proof of Lemma 2 from [4]. The absolute convergence of the series for $\varphi_n(\hat{s}, F)$ and $\zeta_n(s, \alpha_j; \mathfrak{a}_{jl})$ implies the continuity of the function $h_n: \underline{\Omega} \to H^v(D_\kappa, D)$ defined by the formula

$$h_n(\underline{\omega}) = \underline{\zeta}_n(\hat{s}, s, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}, F).$$

Moreover, we have that

$$h_n((p^{-i\tau}: p \in \mathcal{P}), ((m+\alpha_1)^{-i\tau}: m \in \mathbb{N}_0), \dots, ((m+\alpha_r)^{-i\tau}: m \in \mathbb{N}_0))$$

= $\underline{\zeta}_n(\hat{s} + i\tau, s + i\tau, \underline{\alpha}; \underline{\mathfrak{a}}, F).$

Hence, $P_{T,n} = Q_T h_n^{-1}$. This, the continuity of the function h_n and Theorem 5.1 from [1] together with Lemma 1 show that the measure $P_{T,n}$ converges weakly to $P_n = \underline{m}_H h_n^{-1}$ as $T \to \infty$.

Let the function $g_n: \underline{\Omega} \to H^v(D_\kappa, D)$ be given by the formula $g_n(\underline{\omega}) = h_n(\underline{\omega}\,\underline{\omega}_0)$. Then the above arguments show that the measure $P_{T,n,\underline{\omega}_0}$ converges weakly to the measure $\underline{m}_H g_n^{-1}$ as $T \to \infty$. However, the invariance of the Haar measure \underline{m}_H implies the equality $\underline{m}_H h_n^{-1} = \underline{m}_H g_n^{-1}$. This proves the lemma. \square

For the proof of Theorem 4, we need to pass from $\underline{\zeta}_n(\hat{s}, s, \underline{\alpha}; \underline{\mathfrak{a}})$ to $\underline{\zeta}(\hat{s}, s, \underline{\alpha}; \underline{\mathfrak{a}})$. This procedure requires the metric on the space $H^v(D_\kappa, D)$ which induces its topology of uniform convergence on compacta. It is well known that there exists a sequence $\{\hat{K}_k \colon k \in \mathbb{N}\}$ of compact subsets of D_κ and a sequence of compact subsets of D such that $D_\kappa = \bigcup_{k=1}^\infty \hat{K}_k$ and $D = \bigcup_{k=1}^\infty K_k$. Moreover, the sets \hat{K}_k and K_k can be chosen to satisfy $\hat{K}_k \subset \hat{K}_{k+1}$, $K_k \subset K_{k+1}$ for all $k \in \mathbb{N}$, and, for every compact $\hat{K} \subset D_\kappa$ and $K \subset D$, there exist \hat{k} and k such that $\hat{K} \subset \hat{K}_{\hat{k}}$ and $K \subset K_k$. For $\hat{f}, \hat{g} \in H(D_\kappa)$, let

$$\hat{\rho}(\hat{f}, \hat{g}) = \sum_{k=1}^{\infty} 2^{-k} \frac{\sup_{s \in \hat{K}_k} |\hat{f}(s) - \hat{g}(s)|}{1 + \sup_{s \in \hat{K}_k} |\hat{f}(s) - \hat{g}(s)|}$$

and similarly, for $f, g \in H(D)$, let

$$\rho(f,g) = \sum_{k=1}^{\infty} 2^{-k} \frac{\sup_{s \in K_k} |f(s) - g(s)|}{1 + \sup_{s \in K_k} |f(s) - g(s)|}.$$

Then $\hat{\rho}$ and ρ are the metrics on $H(D_{\kappa})$ and H(D), respectively, which induce the topology of uniform convergence on compacta. For $\underline{f} = (\hat{f}, f_{11}, \dots, f_{1l_1}, \dots, f_{r1}, \dots, f_{rl_r}), g = (\hat{g}, g_{11}, \dots, g_{1l_1}, \dots, g_{r1}, \dots, g_{rl_r}) \in \overline{H}^v(D_{\kappa}, D)$, define

$$\rho_v(\underline{f},\underline{g}) = \max \Big(\hat{\rho}(\hat{f},\hat{g}), \max_{1 \le j \le r} \max_{1 \le l \le l_j} \rho(f_{jl},g_{jl}) \Big).$$

Then we have that ρ_v is a metric on $H^v(D_\kappa, D)$ inducing its topology.

Having the metric on $H^v(D_\kappa,D)$, we can approximate in the mean $\underline{\zeta}(\hat{s},s,\underline{\alpha};\underline{\mathfrak{a}},F)$ by $\underline{\zeta}_n(\hat{s},s,\underline{\alpha};\underline{\mathfrak{a}},F)$, and $\underline{\zeta}(\hat{s},s,\underline{\alpha},\underline{\omega};\underline{\mathfrak{a}},F)$ by $\underline{\zeta}_n(\hat{s},s,\underline{\alpha},\underline{\omega};\underline{\mathfrak{a}},F)$.

Lemma 3. The relation

$$\lim_{n\to\infty} \limsup_{T\to\infty} \frac{1}{T} \int_0^T \rho_v \left(\underline{\zeta}(\hat{s}+i\tau,s+i\tau,\underline{\alpha};\underline{\mathfrak{a}},F),\underline{\zeta}_n(\hat{s}+i\tau,s+i\tau,\underline{\alpha};\underline{\mathfrak{a}},F) \right) \mathrm{d}\tau = 0$$

holds.

Proof. In [5], it was obtained that, for every compact subset $K \subset D_{\kappa}$,

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \sup_{s \in K} |\varphi(s + i\tau, F) - \varphi_n(s + i\tau, F)| d\tau = 0.$$

Hence, we have that

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \hat{\rho}(\varphi(\hat{s} + i\tau, F), \varphi_n(\hat{s} + i\tau, F)) d\tau = 0.$$
 (1.1)

Similarly, it follows from [6] that

$$\lim_{n\to\infty} \limsup_{T\to\infty} \frac{1}{T} \int_0^T \max_{1\leq j\leq r} \max_{1\leq l\leq l_j} \rho(\zeta(s+i\tau,\alpha_j;\mathfrak{a}_{jl}),\zeta_n(s+i\tau,\alpha_j;\mathfrak{a}_{jl})) d\tau = 0.$$

This, (1.1) and definition of the metric ρ_v prove the lemma. \square

Lemma 4. Suppose that the numbers $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} . Then, for almost all $\underline{\omega} \in \underline{\Omega}$,

$$\begin{split} \lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \rho_v \big(\underline{\zeta}(\hat{s} + i\tau, s + i\tau, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}, F), \\ \zeta_n \big(\hat{s} + i\tau, s + i\tau, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}, F) \big) \, \mathrm{d}\tau = 0. \end{split}$$

Proof. In [5], it was proved that, for every compact subset $K \subset D_{\kappa}$,

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \sup_{s \in K} \left| \varphi(s + i\tau, \hat{\omega}, F) - \varphi_n(s + i\tau, \hat{\omega}, F) \right| d\tau = 0$$

for almost all $\hat{\omega} \in \hat{\Omega}$. From this, we obtain that, for almost all $\hat{\omega} \in \hat{\Omega}$,

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \hat{\rho} \left(\varphi(\hat{s} + i\tau, \hat{\omega}, F), \varphi_n(\hat{s} + i\tau, \hat{\omega}, F) \right) d\tau = 0.$$
 (1.2)

Similarly, by [6], we have that, for almost all $(\omega_1, \ldots, \omega_r) \in \Omega_1 \times \cdots \times \Omega_r$,

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \max_{1 \le j \le r} \max_{1 \le l \le l_j} \rho(\zeta(s + i\tau, \alpha_j, \omega_j; \mathfrak{a}_{jl}),$$

$$\zeta_n(s + i\tau, \alpha_j, \omega_j; \mathfrak{a}_{jl})) \, d\tau = 0. \tag{1.3}$$

Since the measure \underline{m}_H is the product of the Haar measures on $(\hat{\Omega}, \mathcal{B}(\hat{\Omega}))$, and on $(\Omega_1 \times \cdots \times \Omega_r, \mathcal{B}(\Omega_1 \times \cdots \times \Omega_r))$, (1.2), (1.3) and the definition of the metric ρ_v imply, for almost all $\underline{\omega} \in \underline{\Omega}$, the equality of the lemma. \square

For $\underline{\omega} \in \underline{\Omega}$, define one more probability measure

$$\widetilde{P}_T(A) \stackrel{def}{=} \nu_T \big(\underline{\zeta}(\hat{s}+i\tau,s+i\tau,\underline{\alpha},\underline{\omega};\underline{\mathfrak{a}},F) \in A\big), \quad A \in \mathcal{B}\big(H^v(D_\kappa,D)\big).$$

Lemma 5. Suppose that the numbers $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} . Then the probability measures P_T and \widetilde{P}_T both converge weakly to the same probability measure P on $(H^v(D_\kappa, D), \mathcal{B}(H^v(D_\kappa, D)))$ as $T \to \infty$.

Proof. Let θ be a random variable on a certain probability space $(\Omega_0, \mathcal{B}(\Omega_0), \mathbb{P})$ which is uniformly distributed on [0,1]. On $(\Omega_0, \mathcal{B}(\Omega_0), \mathbb{P})$, define the $H^v(D_\kappa, D)$ -valued random element $X_{T,n}$ by the formula

$$\underline{X}_{T,n}(\hat{s},s) = (X_{T,n}(\hat{s}), X_{T,n,1,1}(s), \dots, X_{T,n,1,l_1}(s), \dots, X_{T,n,r,l_1}(s), \dots, X_{T,n,r,l_r}(s)) = \zeta_n(\hat{s} + i\theta T, s + i\theta T, \underline{\alpha}; \underline{\mathfrak{a}}, F).$$

Then Lemma 2 implies the relation

$$\underline{X}_{T,n}(\hat{s},s) \xrightarrow[T \to \infty]{\mathcal{D}} \underline{X}_n(\hat{s},s),$$
 (1.4)

where

$$\underline{X}_n(\hat{s}, s) = (X_n(\hat{s}), X_{n,1,1}(s), \dots, X_{n,1,l_1}(s), \dots, X_{n,r,1}(s), \dots, X_{n,r,l_r}(s))$$

is an $H^v(D_\kappa, D)$ -valued random element with the distribution P_n in the notation of Lemma 2, and, as usual, $\stackrel{\mathcal{D}}{\longrightarrow}$ means the convergence in distribution. We have mentioned above that the series for $\varphi_n(s, F)$ converges absolutely for $\sigma > \frac{\kappa}{2}$. Therefore, for $\sigma > \frac{\kappa}{2}$,

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \left| \varphi_n(\sigma + it, F) \right|^2 dt = \sum_{m=1}^\infty \frac{c^2(m) u_n^2(m)}{m^{2\sigma}}$$

$$\leq \sum_{n=1}^\infty \frac{c^2(m)}{m^{2\sigma}} < \infty \tag{1.5}$$

for all $n \in \mathbb{N}$, because of the Deligne [3] estimate

$$\left|c(m)\right| \ll m^{\frac{\kappa-1}{2}}.$$

Similarly, the absolute convergence of the series for $\zeta_n(s, \alpha_j; \mathfrak{a}_{jl})$ shows that, for $\sigma > \frac{1}{2}$,

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \left| \zeta_n(\sigma + it, \alpha_j; \mathfrak{a}_{jl}) \right|^2 dt = \sum_{m=0}^\infty \frac{|a_{mjl}|^2 u_n^2(m, \alpha_j)}{(m + \alpha_j)^{2\sigma}}$$

$$\leq \sum_{m=0}^\infty \frac{|a_{mjl}|^2}{(m + \alpha_j)^{2\sigma}} < \infty \tag{1.6}$$

for all $n \in \mathbb{N}$. Now a simple application of the Cauchy integral formula and (1.5) lead to the inequality

$$\limsup_{T \to \infty} \frac{1}{T} \int_0^T \sup_{s \in \hat{K}_k} \left| \varphi_n(s + i\tau, F) \right| d\tau \le \hat{C}_k \left(\sum_{m=1}^\infty \frac{c^2(m)}{m^{2\hat{\sigma}_k}} \right)^{\frac{1}{2}}, \quad n \in \mathbb{N}$$
 (1.7)

with some $\hat{C}_k > 0$ and $\hat{\sigma}_k > \frac{\kappa}{2}$. Analogically, (1.6) shows that

$$\limsup_{T \to \infty} \frac{1}{T} \int_0^T \sup_{s \in K_k} \left| \zeta_n(s + i\tau, \alpha_j; \mathfrak{a}_{jl}) \right| d\tau \le C_k \left(\sum_{m=0}^\infty \frac{|a_{mjl}|^2}{(m + \alpha_j)^{2\sigma_k}} \right)^{\frac{1}{2}}, \quad n \in \mathbb{N}$$

$$\tag{1.8}$$

with some $C_k > 0$ and $\sigma_k > \frac{1}{2}$. Here \hat{K}_k and K_k are compact sets from the definition of the metric ρ_v .

We set

$$\hat{R}_k = \hat{C}_k \left(\sum_{m=1}^{\infty} \frac{c^2(m)}{m^{2\hat{\sigma}_k}} \right)^{\frac{1}{2}}, \qquad R_{jlk} = C_k \left(\sum_{m=0}^{\infty} \frac{|a_{mjl}|^2}{(m+\alpha_j)^{2\sigma_k}} \right)^{\frac{1}{2}}.$$

Then, taking $\hat{M}_k = \hat{R}_k 2^{k+1} \varepsilon^{-1}$ and $M_{jlk} = R_{jlk} 2^{v_1 + k + 1} \varepsilon^{-1}$, where $k \in \mathbb{N}$ and $\varepsilon > 0$ is an arbitrary number, we obtain by (1.7) and (1.8) that

$$\begin{split} & \limsup_{T \to \infty} \mathbb{P} \Big(\Big(\sup_{\hat{s} \in \hat{K}_k} \left| X_{T,n}(\hat{s}) \right| > \hat{M}_k \Big) \vee \exists j,l \colon \Big(\sup_{s \in K_k} \left| X_{T,n,j,l}(s) \right| > M_{jlk} \Big) \Big) \\ & \leq \limsup_{T \to \infty} \mathbb{P} \Big(\sup_{\hat{s} \in \hat{K}_k} \left| X_{T,n}(\hat{s}) \right| > \hat{M}_k \Big) \\ & + \sum_{j=1}^r \sum_{l=1}^{l_j} \limsup_{T \to \infty} \mathbb{P} \Big(\sup_{s \in K_k} \left| X_{T,n,j,l}(s) \right| > M_{jlk} \Big) \\ & \leq \frac{1}{\hat{M}_k} \sup_{n \in \mathbb{N}} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \sup_{\hat{s} \in \hat{K}_k} \left| \varphi_n(\hat{s} + i\tau, F) \right| d\tau \\ & + \sum_{j=1}^r \sum_{l=1}^{l_j} \frac{1}{M_{jlk}} \sup_{n \in \mathbb{N}} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \sup_{s \in K_k} \left| \zeta_n(s + i\tau, \alpha_j; \mathfrak{a}_{jl}) \right| d\tau \\ & \leq \frac{\hat{R}_k}{\hat{M}_k} + \sum_{j=1}^r \sum_{l=1}^{l_j} \frac{R_{jlk}}{M_{jlk}} = \frac{\varepsilon}{2^{k+1}} + \frac{\varepsilon}{2^{k+1}} = \frac{\varepsilon}{2^k}. \end{split}$$

Using (1.4), hence, we deduce that, for all $n \in \mathbb{N}$,

$$\mathbb{P}\left(\left(\sup_{\hat{s}\in\hat{K}_{k}}\left|X_{n}(\hat{s})\right|>\hat{M}_{k}\right)\vee\exists j,l\colon\left(\sup_{s\in K_{k}}\left|X_{n,j,l}(s)\right|>M_{jlk}\right)\right)\leq\frac{\varepsilon}{2^{k}}.$$
 (1.9)

Define a set

$$H_{\varepsilon}^{v} = \left\{ (g, g_{11}, \dots, g_{1l_{1}}, \dots, g_{r1}, \dots, g_{rl_{r}}) \in H^{v}(D_{\kappa}, D) \colon \sup_{\hat{s} \in \hat{K}_{k}} |g(\hat{s})| \le \hat{M}_{k}, \right.$$
$$\left. \sup_{s \in K_{k}} |g_{jl}(s)| \le M_{jlk}, \ j = 1, \dots, r, \ l = 1, \dots, l_{j}, \ k \in \mathbb{N} \right\}.$$

Then H_{ε}^{v} is a compact subset of the space $H^{v}(D_{\kappa}, D)$. Moreover, in view of (1.9),

$$\mathbb{P}(\underline{X}_n(\hat{s}, s) \in H_{\varepsilon}^v) \ge 1 - \varepsilon \sum_{k=1}^{\infty} \frac{1}{2^k} = 1 - \varepsilon$$

for all $n \in \mathbb{N}$. Thus, by the definition of the random element $\underline{X}_n(\hat{s}, s)$,

$$P_n(H_{\varepsilon}^v) \ge 1 - \varepsilon$$

for all $n \in \mathbb{N}$. This means that the family of probability measures $\{P_n : n \in \mathbb{N}\}$ is tight, and, by the Prokhorov theorem, it is relatively compact. Therefore, there exists a subsequence $\{P_{n_k}\} \subset \{P_n\}$ such that P_{n_k} converges weakly to a certain probability measure P on $(H^v(D_\kappa, D), \mathcal{B}(H^v(D_\kappa, D)))$ as $k \to \infty$. This can be written in the form

$$\underline{X}_{n_k}(\hat{s}, s) \xrightarrow[k \to \infty]{\mathcal{D}} P.$$
 (1.10)

Define one more $H^v(D_\kappa, D)$ -valued random element $\underline{X}_T(\hat{s}, s)$ by the formula

$$X_T(\hat{s}, s) = \underline{\zeta}(\hat{s} + i\theta T, s + i\theta T, \underline{\alpha}; \underline{\mathfrak{a}}, F).$$

Then Lemma 3 shows that, for every $\varepsilon > 0$,

$$\begin{split} & \lim_{n \to \infty} \limsup_{T \to \infty} \mathbb{P} \left(\rho_v \left(\underline{X}_T(\hat{s}, s), \underline{X}_{T, n}(\hat{s}, s) \right) \ge \varepsilon \right) \\ &= \lim_{n \to \infty} \limsup_{T \to \infty} \nu_T \left(\rho_v \left(\underline{\zeta}(\hat{s} + i\tau, s + i\tau, \underline{\alpha}; \underline{\mathfrak{a}}, F), \underline{\zeta}_n(\hat{s} + i\tau, s + i\tau, \underline{\alpha}; \underline{\mathfrak{a}}) \right) \ge \varepsilon \right) \\ &\leq \lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T\varepsilon} \int_0^T \rho_v \left(\underline{\zeta}(\hat{s} + i\tau, s + i\tau, \underline{\alpha}; \underline{\mathfrak{a}}, F), \underline{\zeta}_n(\hat{s} + i\tau, s + i\tau, \underline{\alpha}; \underline{\mathfrak{a}}, F) \right) d\tau = 0. \end{split}$$

This, (1.4), (1.10) and Theorem 4.2 of [1] imply the relation

$$\underline{X}_T(\hat{s}, s) \xrightarrow[T \to \infty]{\mathcal{D}} P$$
 (1.11)

and thus, P_T converges weakly to P as $T \to \infty$. The relation (1.11) also shows that the measure P is independent of the choice of the sequence $\{P_{n_k}\}$, and this yields the relation

$$\underline{X}_n(\hat{s}, s) \xrightarrow[n \to \infty]{\mathcal{D}} P.$$
 (1.12)

It remains to show that the measure \widetilde{P}_T also converges weakly to P as $T \to \infty$. We set

$$\begin{split} & \underline{\widetilde{X}}_{T,n}(\hat{s},s) = \underline{\zeta}_n(\hat{s}+i\theta T,s+i\theta T,\underline{\alpha},\underline{\omega};\underline{\mathfrak{a}},F), \\ & \underline{\widetilde{X}}_T(\hat{s},s) = \underline{\zeta}(\hat{s}+i\theta T,s+i\theta T,\underline{\alpha},\underline{\omega};\underline{\mathfrak{a}},F). \end{split}$$

Then the above arguments together with Lemmas 2 and 4, and relation (1.12) applied for the random elements $\underline{\widetilde{X}}_{T,n}(\hat{s},s)$ and $\underline{\widetilde{X}}_{T}(\hat{s},s)$ show that the measure \widetilde{P}_{T} also converges weakly to P as $T \to \infty$. \square

In order to prove Theorem 4, it suffices to show that the limit measure P in Lemma 5 is the distribution of the random element $\underline{\zeta}(\hat{s}, s, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}, F)$. Define $\underline{\Phi}_{\tau}(\underline{\omega}) = \underline{a}_{\tau}\underline{\omega}, \underline{\omega} \in \underline{\Omega}$, where $\underline{a}_{\tau} = \{(p^{-i\tau} : p \in \mathcal{P}), ((m + \alpha_1)^{-i\tau} : m \in \mathbb{N}_0), \ldots,$

 $((m+\alpha_r)^{-i\tau}: m \in \mathbb{N}_0)$ for $\tau \in \mathbb{R}$. Then $\{\underline{\Phi}_\tau: \tau \in \mathbb{R}\}$ is a one-parameter group of measurable measure preserving transformations on $\underline{\Omega}$. A set $A \in \mathcal{B}(\underline{\Omega})$ is called invariant with respect to this group if, for every $\tau \in \mathbb{R}$, the sets A and $\underline{\Phi}_\tau(A)$ may differ one from another only by \underline{m}_H -measure zero. The group $\{\underline{\Phi}_\tau: \tau \in \mathbb{R}\}$ is ergodic if its σ -field of invariant sets consists only of the sets having \underline{m}_H -measure zero or one.

Lemma 6. Suppose that the numbers $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} . Then the group $\{\underline{\Phi}_{\tau} \colon \tau \in \mathbb{R}\}$ is ergodic.

Proof of the lemma is given in [7, Lemma 7].

Proof of Theorem 4. We fix a continuity set A of the limit measure P in Lemma 5. Then, using an equivalent of the weak convergence of probability measures in terms of continuity sets, Theorem 2.1 of [1], we have by Lemma 5 that

$$\lim_{T \to \infty} \nu_T \left(\underline{\zeta}(\hat{s} + i\tau, s + i\tau, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}, F) \in A \right) = P(A). \tag{1.13}$$

On the probability space $(\underline{\Omega}, \mathcal{B}(\underline{\Omega}), \underline{m}_H)$, define the random variable $\xi(\underline{\omega})$ by the formula

$$\xi(\underline{\omega}) = \begin{cases} 1 & \text{if } \underline{\zeta}(\hat{s}, s, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}, F) \in A, \\ 0 & \text{otherwise.} \end{cases}$$

Then the expectation

$$\mathbb{E}\xi = \underline{m}_H \left(\underline{\omega} \in \underline{\Omega} : \zeta(\hat{s}, s, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}, F) \in A\right) = P_{\zeta}(A), \tag{1.14}$$

where $P_{\underline{\zeta}}$ is the distribution of the random element $\underline{\zeta}(\hat{s}, s, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}, F)$. Lemma 6 implies the ergodicity of the process $\xi(\underline{\Phi}_{\tau}(\underline{\omega}))$. Therefore, by the Birkhoff–Khintchine theorem, see, for example, [2], for almost all $\underline{\omega} \in \underline{\Omega}$,

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \xi(\underline{\Phi}_{\tau}(\underline{\omega})) d\tau = \mathbb{E}\xi.$$
 (1.15)

However, by the the definitions of ξ and $\underline{\Phi}_{\tau}$, we have that

$$\frac{1}{T} \int_0^T \xi(\underline{\Phi}_{\tau}(\underline{\omega})) d\tau = \nu_T \left(\underline{\zeta}(\hat{s} + i\tau, s + i\tau, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}, F) \in A\right).$$

Therefore, taking into account (1.14) and (1.15), we obtain that

$$\lim_{T \to \infty} \nu_T \left(\underline{\zeta}(\hat{s} + i\tau, s + i\tau, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}, F) \in A \right) = P_{\underline{\zeta}}(A).$$

This and (1.13) show that $P(A) = P_{\underline{\zeta}}(A)$. Since A is an arbitrary continuity set A of P, hence, $P(A) = P_{\underline{\zeta}}(A)$ for all continuity sets of P. Therefore, $P(A) = P_{\underline{\zeta}}(A)$ for all $A \in \mathcal{B}(\overline{H^v}(D_\kappa, D))$ because all continuity sets form a determining class, see [1]. This completes the proof of Theorem 4. \square

2 The Support of the Measure P_{ζ}

For the proof of the Theorem 3, we need the support of the measure $P_{\underline{\zeta}}$. Since the space $H^v(D_\kappa,D)$ is separable, the support of $P_{\underline{\zeta}}$ is a minimal closed set $S_{P_{\underline{\zeta}}}$ of $H^v(D_\kappa,D)$ such that $P_{\underline{\zeta}}(S_{P_{\underline{\zeta}}})=1$. The set $S_{P_{\underline{\zeta}}}$ consists of all points $\underline{g}\in H^v(D_\kappa,D)$ such that $P_{\underline{\zeta}}(G)>0$ for every open neighbourhood G of \underline{g} .

$$S_{\kappa} = \{g \in H(D_{\kappa}) \colon g(s) \neq 0 \text{ or } g(s) \equiv 0\}.$$

Theorem 5. Suppose that $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} , and that $\operatorname{rank}(B_j) = l_j, j = 1, \ldots, r$. Then the support of P_{ζ} is the set $S_{\kappa} \times H^{v_1}(D)$.

Proof. By the definition,

$$H^{v}(D_{\kappa}, D) = H(D_{\kappa}) \times H^{v_1}(D).$$

Since the spaces $H(D_{\kappa})$ and $H^{v_1}(D)$ are separable, it suffices [1] to consider $P_{\underline{\zeta}}(A)$ for $A = B \times C$, where $B \in \mathcal{B}(H(D_{\kappa}))$ and $C \in \mathcal{B}(H^{v_1}(D))$. The Haar measure \underline{m}_H is the product of the Haar measures \hat{m}_H and m_H^r on $(\hat{\Omega}, \mathcal{B}(\hat{\Omega}))$ and $(\Omega_1 \times \cdots \times \Omega_r, \mathcal{B}(\Omega_1 \times \cdots \times \Omega_r))$, respectively. Therefore, we have that, for $A = B \times C \in \mathcal{B}(H^v(D_{\kappa}, D))$,

$$\begin{split} P_{\underline{\zeta}}(A) &= \underline{m}_H \left(\underline{\omega} \in \underline{\Omega} \colon \underline{\zeta}(\hat{s}, s, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}, F) \in A \right) \\ &= \underline{m}_H \left(\underline{\omega} \in \underline{\Omega} \colon \varphi(\hat{s}, \hat{\omega}, F) \in B, \left(\zeta(s, \alpha_1, \omega_1; \mathfrak{a}_{11}), \dots, \zeta(s, \alpha_r, \omega_r; \mathfrak{a}_{rl_r}) \right) \in C \right) \\ &= \hat{m}_H \left(\hat{\omega} \in \hat{\Omega} \colon \varphi(\hat{s}, \hat{\omega}, F) \in B \right) \\ &\times m_H^r \left((\omega_1, \dots, \omega_r) \in \Omega_1 \times \dots \times \Omega_r \colon \left(\zeta(s, \alpha_1, \omega_1; \mathfrak{a}_{11}), \dots, \zeta(s, \alpha_r, \omega_r; \mathfrak{a}_{rl_r}) \right) \in C \right). \\ &\qquad \qquad \zeta(s, \alpha_1, \omega_1; \mathfrak{a}_{1l_1}), \dots, \zeta(s, \alpha_r, \omega_r; \mathfrak{a}_{r1}), \dots, \zeta(s, \alpha_r, \omega_r; \mathfrak{a}_{rl_r}) \right) \in C \right). \end{split}$$

In [5], it was obtained that the support of the random element $\varphi(\hat{s}, \hat{\omega}, F)$ is the set S_{κ} , i.e., S_{κ} is a minimal closed subset of $H(D_{\kappa})$ such that

$$\hat{m}_H(\hat{\omega} \in \hat{\Omega} : \varphi(\hat{s}, \hat{\omega}, F) \in S_{\kappa}) = 1. \tag{2.2}$$

Also, in [6], it was proved that $H^{v_1}(D)$ is the support of the random element

$$(\zeta(s,\alpha_1,\omega_1;\mathfrak{a}_{11}),\ldots,\zeta(s,\alpha_1,\omega_1;\mathfrak{a}_{1l_1}),\ldots,\zeta(s,\alpha_r,\omega_r;\mathfrak{a}_{r1}),\ldots,\zeta(s,\alpha_r,\omega_r;\mathfrak{a}_{rl_r})),$$

i.e., $H^{v_1}(D)$ is a minimal closed set of $H^{v_1}(D)$ such that

$$m_H^r((\omega_1, \dots, \omega_r) \in \Omega_1 \times \dots \times \Omega_r : (\zeta(s, \alpha_1, \omega_1; \mathfrak{a}_{11}), \dots, \zeta(s, \alpha_1, \omega_1; \mathfrak{a}_{1l_1}), \dots, \zeta(s, \alpha_r, \omega_r; \mathfrak{a}_{r1}), \dots, \zeta(s, \alpha_r, \omega_r; \mathfrak{a}_{rl_r})) \in H^{v_1}(D)) = 1.$$
(2.3)

Therefore, the theorem is a result of (2.1)–(2.3). \square

3 Proof of Theorem 3

We start with the Mergelyan theorem on the approximation of analytic functions by polynomials.

Lemma 7. Let K be a compact subset of the complex plane with connected complement, and let f(s) be a continuous function on K which is analytic in the interior of K. Then, for every $\varepsilon > 0$, there exists a polynomial p(s) such that

$$\sup_{s \in K} |f(s) - p(s)| < \varepsilon.$$

Proof is given in [8], [9].

Proof of Theorem 3. By Lemma 7, there exist polynomials p(s) and $p_{jl}(s)$ such that

$$\sup_{s \in K} |f(s) - p(s)| < \frac{\varepsilon}{4} \tag{3.1}$$

and

$$\sup_{1 \le j \le r} \sup_{1 \le l \le l_j} \sup_{s \in K_{jl}} \left| f_{jl}(s) - p_{jl}(s) \right| < \frac{\varepsilon}{2}. \tag{3.2}$$

Since $f(s) \neq 0$ on K, $p(s) \neq 0$ on K as well if ε is small enough. Thus, on K we can define a continuous branch of $\log p(s)$ which will be analytic in the interior of K. Therefore, by Lemma 7, there exists a polynomial q(s) such that

$$\sup_{s \in K} |p(s) - e^{q(s)}| < \frac{\varepsilon}{4}.$$

This together with (3.1) shows that

$$\sup_{s \in K} \left| f(s) - e^{q(s)} \right| < \frac{\varepsilon}{2}. \tag{3.3}$$

Define

$$G = \left\{ (g, g_{11}, \dots, g_{1l_1}, \dots, g_{r1}, \dots, g_{rl_r}) \in H^v(D_\kappa, D) : \\ \sup_{s \in K} |g(s) - e^{q(s)}| < \frac{\varepsilon}{2}, \sup_{1 < j < r} \sup_{1 < l < l_j} \sup_{s \in K_{il}} |g_{jl}(s) - p_{jl}(s)| < \frac{\varepsilon}{2} \right\}.$$

In view of Theorem 5, $(e^{q(s)}, p_{11}(s), \ldots, p_{1l_1}(s), \ldots, p_{r1}(s), \ldots, p_{rl_r}(s))$ is an element of the support of the measure $P_{\underline{\zeta}}$. Since the set G is open, hence, we have that $P_{\underline{\zeta}}(G) > 0$. Therefore, by Theorem 4 and an equivalent of the weak convergence of probability measures in terms of open sets (Theorem 2.1 of [1]), we obtain that

$$\begin{split} & \liminf_{T \to \infty} \nu_T \bigg(\sup_{s \in K} \left| \varphi(s + i\tau, F) - \mathrm{e}^{q(s)} \right| < \frac{\varepsilon}{2}, \\ & \sup_{1 \le j \le r} \sup_{1 \le l \le l_j} \sup_{s \in K_{jl}} \left| \zeta(s + i\tau, \alpha_j; \mathfrak{a}_{jl}) - p_{jl}(s) \right| < \frac{\varepsilon}{2} \bigg) > 0. \end{split}$$

Combining this with (3.2) and (3.3) completes the proof of the theorem. \square

References

- P. Billingsley. Convergence of Probability Measures. John Wiley & Sons, New York, 1968.
- [2] H. Cramér and M.R. Leadbetter. Stationary and Related Stochastic Processes. Willey, New York, 1967.
- [3] P. Deligne. La conjecture de Weil. Inst. Hautes Études Sci. Publ. Math., 43:273–307, 1974.
- [4] J. Genys, R. Macaitienė, S. Račkauskienė and D. Šiaučiūnas. A mixed joint universality theorem for zeta-functions. *Math. Model. Anal.*, 15(4):431–446, 2010. http://dx.doi.org/10.3846/1392-6292.2010.15.431-446.
- [5] A. Laurinčikas and K. Matsumoto. The universality of zeta-functions attached to certain cusp forms. *Acta Arith.*, 98:345–359, 2001. http://dx.doi.org/10.4064/aa98-4-2.
- [6] A. Laurinčikas and S. Skerstonaitė. Joint universality for periodic Hurwitz zetafunctions. II. In R. Steuding and J. Steuding(Eds.), New Dirrections in Value Distribution Theory of Zeta and L-Functions, pp. 161–170, Aachen, 2009. Shaker Verlag.
- [7] A. Laurinčikas. Joint universality of zeta-functions with periodic coefficients. *Izv. RAN, Ser. Matem.*, **74**(3):79–102, 2010. http://dx.doi.org/10.4213/im2771. (In Russian)
- [8] S.N. Mergelyan. Uniform approximations to functions of complex variable. Usp. Mat. Nauk, 7:31–122, 1952. (In Russian)
- [9] J.L. Walsh. Interpolation and Approximation by Rational Functions in the Complex Domain, vol. 20. Amer. Math. Soc. Coll. Publ., 1960.