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Let a = {a;,: m € Ny = NU{0}} be a periodic sequence of complex numbers
with minimal period k € N, a;, 0 < & < 1, be a fixed parameter, and s = o +it.
The periodic Hurwitz zeta-function ((s, a;a) is defined, for o > 1, by
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while if a # 0, then ((s,;a) is a meromorphic function having the unique
simple pole at s = 1 with residue a.

In [4], a joint universality theorem for the Riemann zeta-function ((s) and
a collection of periodic Hurwitz zeta-functions has been obtained. For j =
1,...,rlet o5, 0 < ; < 1, be a fixed parameter, I; € N, and, for j =1,...,r,
I =1,...,1 let aj; = {am;i: m € No} be a periodic sequence of complex
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numbers with minimal period kj;, and ((s, a;;a;;) denote the corresponding
periodic Hurwitz zeta-function. Denote by k; the least common multiple of the
periods kji, ..., kj;;, and define

a151 S N S 1
a2;51 a2;2 az;j1; .

B; = g j=1...,n
Ak;51  Qk;52  ---  Qk;jl;

Let D ={seC: % < o < 1}, and let, for brevity,

vp(...) = %meaS{T €0,7]: ...},

where meas A denotes the Lebesgue measure of a measurable set A C R, and
in the place of dots a condition satisfied by 7 is to be written. Then the main
result of [4] is contained in the following theorem.

Theorem 1. Suppose that the numbers ay,...,q, are algebraically indepen-
dent over the field of rational numbers Q, and that rank(B;) =1;, j=1,...,r.
Foreveryj=1,...,7 andl=1,...,1;, let Kj; be a compact subset of the strip
D with connected complement, and let f;;(s) be a continuous on Kj; function
which is analytic in the interior of Kj;. Moreover, let K be a compact subset of
the strip D with connected complement, and f(s) be a continuous non-vanishing
on K function which is analytic in the interior of K. Then, for every e > 0,

limianT<sup|C(s +ir) — f(s)] <e,
T—o0 sEK

sup sup sup |C(s—|—i7, aj;a;) — fjl(s)’ < 5) > 0.
1<j<r1<j<l; s€eKj
A natural question arises if the Riemann zeta-function in Theorem 1 can
be replaced by other zeta-functions which are universal in a certain strip?
Let F be a normalized Hecke eigen cusp form of weight x for the full modular
group, and let

F(z)= Z c(m)e?™im=

be its Fourier series expansion. The zeta-function (s, F') attached to the form
F' is defined, for o > "T'H, by

ols, Py = )

mS

m=1

and is analytically continued to an entire function. Moreover, for o > “7“, the
function ¢(s, F') has the Euler product over primes

n-i(-2) " (-)"

S S
S p p
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where a(p) and §(p) are complex conjugate numbers such that a(p) + B(p) =
¢(p), and

la(p)| <p" T, |B)| <pT.

In [5], the universality of the function (s, F') has been obtained. Let D, =
{seC: 5 <o< 5}

Theorem 2. [5] Let K be a compact subset of the strip D, with connected
complement, and let f(s) be a continuous non-vanishing function on K, and
analytic in the interior of K. Then, for every e > 0,

liminfuT(sup|cp(s+iT,F) — f(s)] < s) > 0.
T—o00 sEK

The main result of the present paper connects Theorems 1 and 2.

Theorem 3. Suppose that the numbers aq,...,q, are algebraically indepen-
dent over Q, and that rank(B;) =1;, j=1,...,r. Let Kj; and f;; be the same
as in Theorem 1, and K and f(s) be the same as in Theorem 2. Then, for
every € > 0,

lim inf Z/T< sup |o(s +i7, F) — f(s)| <&,
T—o00 sEK

sup sup sup ‘C(s—i—ir, aj;a5) — fjl(s)‘ < E) > 0.
1<5<r 1<I<l; s€K;,

For the proof of Theorem 3, we apply the probabilistic approach based on
a joint limit theorem in the space of analytic functions. Theorem 3 is the first
result on the joint universality for zeta-functions which presents the universality
property in two different strips D and D,. This is the novelty of the paper.

1 Functional Limit Theorems

For a region G on the complex plane, let us denote by H(G) the space of
analytic functions on G equipped with the topology of uniform convergence on
compacta. Let

H(Dy, D) = H(Dx) x H(D) x -+- x H(D), w1 =Y l;, v=uv+1.
j=1

v1
For brevity, we set
QZ(OQ,...,CY,»), g:(an,...,alll,...,arl,...,arlr)

and

C(§7S,Q;Q7 F) = (Lp(§,F),C(8,a1;a11),...,C(S7a1;a111)7...,

. C(Saar;arl)w",<<87ar;arlr))~
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Denote by B(S) the class of Borel sets of the space S. In this section, we
consider the weak convergence of the probability measure

Pr(A) Y vp(¢(s+ir,s+ir a0, F) € A), A e B(H"(Dy,D)),
as T — oo. To state a limit theorem, we need some notation.
Denote by v the unit circle on the complex plane, and define

Q:H'yp and Q:va,
P m=0

where vy, = v for all primes p, and 7, = « for all m € Ny. By the Tikhonov
theorem, the tori 2 and 2 are compact topological Abelian groups. There-
fore, on (£2, B(£2)) and (£2, B(£2)) the probability Haar measures iy and my,
respectively, can be defined. We obtain two probability spaces (Q, B(Q), my)
and (£2,B(£2),mp).

Furthermore, we put 2 = 2% X---x 2., where 2; = 2for j =1,...,r
Then the Tikhonov theorem implies again that §2 is a compact topological
Abelian group, and, similarly as above, we obtain one more probability space
(£2,B(£2),my;), where my; is the probability Haar measure on ({2, B({2)). De-
note by w(p) the projection of @ € 2 to the coordinate space v,, p € P, (P is
the set of all prime numbers), and by w;(m) the projection of w; € £2; to the
coordinate space vy, m € Ng. Let w = (0, w1, ...,w,) stand for elements of £2.
On the probability space (£2, B(£2), my ), define the H"(D,,, D)-valued random
element (8, s, @, w; a, F') by the formula
(8, s, a,w;a, F) = (w(é,w,F),C(s,al,wl; a11)y-- ey

C(S7 aq,Wi; alll)a sy C(SaarawT; a’rl)7 ) C(S, Qpy Wy arl,«))a

where . .

o6, F) =] (1 B a(p)W(p)) (1 B 6(p)w(p)> ,

» p® p®
and
> a. w
l .
C(S,O{j,w]';ajl mz::()(:rlj—kja ]:1,...,7", lzl,,l]

Denote by P the distribution of the random element ¢(8,5,a,w;a, F), ie., for
A€ B(HY(Dg, D)),

PS(A) :mH(QGQ: ((5,8,a,w;a,F) € A).

Theorem 4. Suppose that the numbers ay,...,q, are algebraically indepen-
dent over Q. Then Pr converges weakly to P¢ as T — oo.

We divide the proof of Theorem 4 into several lemmas. Define

QT(A) :VT(((piiTIPG’P),((m+041)7i7:TI’LGN()),...,
(m+a,)"":meNy)) € A), AecB(R).

Math. Model. Anal., 19(1):52-65, 2014.



56 V. Poceviciené and D. Siauciunas

Lemma 1. Suppose that the numbers aq,...,q, are algebraically independent
over Q. Then Qr converges weakly to the Haar measure my as T — oco.

Proof of the lemma is given in [4], Lemma 1.
Let o1 > % be a fixed number,

up(m) =exp{—(m/n)™'}, m,neN,

. g1
un(m,aj):exp{— (M) }, m € Ng, n € N.
J

Define
on(8,F) = Z M, Cn(s, s a5) = Z W7

m=1 m? m=0 (m + aj)s

j=1,...,r,1 =1,...,l;, By a standard method based on the application
of the Mellin formula, it is obtained that the series for ¢, (5, F) converges
absolutely for Res > %, and the series for (,(s,a;;a;) converges absolutely
for o > %

We extend the functions @(p) to the set N by the formula

=[] ¢'w), meN,

plllm

where p' || m means that p! | m but p'*! { m, and define

i Amgiw; (m)un (m, ;) j=1,...

(m+ag)s

Cn(sv Qj, Wy, ajl) =
m=0

Clearly, the series for ¢, (8,w, F)) converges absolutely for Res > 5, and the
series for (, (s, aj,wj; aj;) converges absolutely for o > 5. For brev1ty, we set

gn(‘g?‘g?g;g’ F) = ((,On(é,F),gn(570(1;a11),.-.7Cn(5,051;a111)7

. agn(svaﬁ arl)a ceey Cn(sa Q] arl,.))
and
gn(gﬂ S, Q, W a, F) = (Son(‘§7aj7 F)7 <n(s7a1,W1; a11)7 e 7Cn(57 aq, Wi, alll)v DRI
Cn(S, ey Wr§ arl)a cee ;Cn(sa Ay y Wi arlT))-

Now, on the space (H"(Dy,D),B(H"(D,D))), define two probability mea-

sures

Pr,(A) = I/T(Qn(§ +ir,s+ir,a;a,F) € A),
Prow,(A) = vr(¢ (3 +ir,s +iT,a,wp; 0, F) € A),

where w, = (@g, w1o, - ..,wro) is a fixed element of {2.
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Lemma 2. Suppose that the numbers aq,...,q, are algebraically independent
over Q. Then the probability measures Prn and Pr, ., both converge weakly
to the same probability measure P, on (H"(D,,, D), B(H"(Dy,D))) as T — 0.

Proof. We argue similarly to the proof of Lemma 2 from [4]. The absolute
convergence of the series for ¢, (8, F') and (,(s, a;;a;) implies the continuity
of the function h,, : 2 — HY(D,, D) defined by the formula

ho(w) =¢, (85, a,w;a, F).
Moreover, we have that

hn((p_”: pE ’P), ((m + al)_”: m e NO), e ((m + ar)_”: m e NO))
=¢, (8+its+it, a0, F).

Hence, Pr,, = Qrh, L. This, the continuity of the function h,, and Theorem 5.1
from [1] together with Lemma 1 show that the measure Pr,, converges weakly
to P, =mpyh,t as T — oco.

Let the function g, : 2 — HY(D,, D) be given by the formula g,(w) =
hn(wwy). Then the above arguments show that the measure Pr, , converges
weakly to the measure myg. ' as T — oo. However, the invariance of the
Haar measure my implies the equality myh,! = myg,!. This proves the
lemma. 0O

For the proof of Theorem 4, we need to pass from gn(é, s,a;a) to (3,8, a;
a). This procedure requires the metric on the space H(D,, D) which induces
its topology of uniform convergence on compacta. It is well known that there
exists a sequence {K’k k € N} of compact subsets of D, and a sequence of
compact subsets of D such that D, = J,—, K K and D = J,-; K. Moreover,
the sets K and K can be chosen to satisfy K, C KkJrl, Ky C Ky for all
k € N, and, for every compact K C D, and K C D, there exist k and k such
that K C KA and K C Kj. For f,g € H(D,), let

o(f, 4 i o—Fk SUD.ec g, 1£(s) = 4(s)]
i Lsupeg, |f(s) —9(s)l
and similarly, for f,g € H(D), let

L& S [£(5) — g(s)
D=2 e 1) — g(s)]

Then p and p are the metrics on H(D,) and H (D), respectively, which induce
the topology of uniform convergence on compacta. For f = (f, fi1,..., fiiys-- -,

fTh"'af’!‘lr)v g: (gagll7' "agllw"'797'17"'797'%«) € HU(DH’D)7 define

po(f,9) = rnaX(p(f,g) ) jDax  max p(sz,g]z)>

Then we have that p, is a metric on H”(D,, D) inducing its topology.
Having the metric on H"(Dy, D), we can approximate in the mean ((3, s, a;
a,F) by §"(§7s,g;g, F), and ((3,s,a,w;a, F) by Qn(é,s,g,g;g, F).

Math. Model. Anal., 19(1):52-65, 2014.
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Lemma 3. The relation

1 /7
lim lim sup T / P (g(é—i—iﬂ s+iT, a;a, F),gn(§+iT, s+iT, a;a, F)) dr=0
0

Nn—0o0 T _sno

holds.

Proof. In [5], it was obtained that, for every compact subset K C D,

1 /7
lim limsup—/ sup|(s + i7, F) — ¢n(s + i, F)| dr = 0.
0

n—00 T 00 s€EK

Hence, we have that

1 /7
lim limsupf/ p(p(5+i7, F), 0n(5 + i1, F)) dr = 0. (1.1)
0

n—oo T—00

Similarly, it follows from [6] that

T
lim limsup — max Imax S+iT, i a; s+iT, a5 a4)) dr=0.
nsoo T—)oopT/() 1§j§7"1§l§lj p(C( + » =] Jl)?Cn( + » =] Jl))

This, (1.1) and definition of the metric p, prove the lemma. O

Lemma 4. Suppose that the numbers aq, ..., q, are algebraically independent
over Q. Then, for almost all w € £2,

1 T
i timsup . [ pu(G(6 + s + i wia, ),
n—00 T 450 T 0 -

gn(,é +iT, 8+ 1T, a, w; a, F)) dr = 0.

Proof. 1In [5], it was proved that, for every compact subset K C D,
1 T
lim limsup — / sup |@(s +i7,&, F) — pn(s +i1,&, F)|dr =0
n—00 T 300 0 seK

for almost all @ € £2. From this, we obtain that, for almost all & € (2,

Nn—o0 T 4o

1 (T
lim limsup T/ p(e(5+ i, @, F), on(8 +it,0, F)) dr = 0. (1.2)
0
Similarly, by [6], we have that, for almost all (wy,...,w,) € 21 X - -+ X 2.,

o e .
i o 7 [ e o (o +ir o)
Cn(s—l—iT,aj,wj;ajl)) dr =0. (13)
Since the measure my; is the product of the Haar measures on (£2, B (£2)), and
on (29 X+ x 2., B(£21 x---x2.)), (1.2), (1.3) and the definition of the metric
Py imply, for almost all w € £2, the equality of the lemma. 0O

For w € £2, define one more probability measure

Pr(A) Y ur(C(s+im s +ir,a,wia, F) € A), Ae B(H"(D,,D)).
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Lemma 5. Suppose that the numbers aq,...,q, are algebraically independent

over Q. Then the probability measures Pr and Pr both converge weakly to the
same probability measure P on (H"(D,;, D), B(H?(D,;, D))) as T — oc.

Proof. Let 0 be a random variable on a certain probability space ({2, B({2),
P) which is uniformly distributed on [0,1]. On (£2,B({2), P), define the
H?(D,, D)-valued random element X ,, by the formula
X n(8,8) = (XTn(§) Xrn1,1(8)s -, X110, (8), - -
Xanl( ) Xanl ( )):gn(§+leT,S+29T7Q,Q,F)

Then Lemma 2 implies the relation

where

Xn(‘§7 5) = (X7l(‘§)a Xn,l,l(s)a v 7X'ﬂ717l1 (5)3 o 7Xn,?”,1(5)7 e 7Xn,T,lr (5))

is an HY(D,, D)-valued random element with the distribution P, in the no-

tation of Lemma 2, and, as usual, P, means the convergence in distribution.
We have mentioned above that the series for ¢, (s, F') converges absolutely for
o > 5. Therefore, for o > 3,

T o0 2 2
. _ ¢ (m)ug, (m)
Jin 7 [ lento+ it F) =X
— ¢*(m)
<> e <00 (1.5)

for all n € N, because of the Deligne [3] estimate

k=1

|c(m)} <«<m' =z

Similarly, the absolute convergence of the series for (,(s,a;;a;;) shows that,
for o > %,

lim —/ |Cul0 + it aj;a50)| > dt = Z |amjl| (m, ag)

m—i—a

< Z ‘“mﬂl <oco  (1.6)

era

for all n € N. Now a simple application of the Cauchy integral formula and
(1.5) lead to the inequality

T oo 2 %
limsup%/ sup|gpn(s+i7,F)|dT§Ck<Z c (m)) , neN (L.7)
0 .

20
T—o0 s€EK m—1 m

Math. Model. Anal., 19(1):52-65, 2014.
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with some Cy, > 0 and 63, > §. Analogically, (1.6) shows that

1
1 /T © ‘am.l|2 3
limsup—/ sup |Cn(s + i1, a5 a4 dT<Ck( — ™} | neN
T—oo 1" Jo sEKk| ( i3 t) ";J(m-f-oéj)z”’“

(1.8)

with some C), > 0 and o}, > % Here K'k and K} are compact sets from the
definition of the metric p,.
We set

(& em))? SR
Rk:ck(Zmz&k C B=G 2 T |

m=1 m=0

Then, taking M, = Rp2*t1e~! and M1 = Rj2"7tE+1e=1 where k € N and
€ > 0 is an arbitrary number, we obtain by (1.7) and (1.8) that

limsupIP’<< sup |XTn(§)| > Mk) V35,1 ( sup ‘XT’n,j’l(s)| > Mjlk))

T—00 €Ky, SEK)

< llmsupP< sup |XTn )| > Mk)
T—o0 €Ky,

+ZZl1msup]P’( sup ’Xngl( )’ > Mjlk)

jlllT—mo

1 . 1/T (o3 + ir, F)| d
< = — sup |pn (s + T, T
Mk neN T—oo T 0 seKy

1 T
+ suplimsup—/ sup |Cu(s +ir, a5 a,;) | dr
ZZMlk neN T—oo 1 Jo [6n 53 9it)|

J=11=1 sEKy
Rj L& _ &
. ik 2k:+1 2k+1 Qk'
j=

Using (1.4), hence, we deduce that, for all n € N,
. - . €
IE”(( sup | Xn(8)| > Mk> V35,1 ( sup | Xn,j(s)| > Mjlk>> < ok (1.9)
§€Kk seKy
Define a set
H;] = {(gaglh e 91ty 5901y - - 7g'rl1v) S Hv(DN7D): SHP ’g(§)
SEKy,

sup |gjl(s)| <M, j=1,...,r, I=1,...,1;, kGN}.
sEK}

Then HY is a compact subset of the space HY(D,, D). Moreover, in view

of (1.9),

P(X,(5,5) € HY) > 1—522%21—5
k=1
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for all n € N. Thus, by the definition of the random element X, (3, s),
P, (H N>1-c¢

for all n € N. This means that the family of probability measures {P,, : n € N}
is tight, and, by the Prokhorov theorem, it is relatively compact. Therefore,
there exists a subsequence {P,, } C {P,} such that P,, converges weakly to a
certain probability measure P on (HY(D,, D), B(H" (D, D))) as k — oo. This
can be written in the form

. D
X, (8,5) — P. (1.10)

k—o0

Define one more H"(D,;, D)-valued random element X (8, s) by the formula

Xr(8,8) =C(84+i0T,s+i0T,a;0a, F).

Then Lemma 3 shows that, for every ¢ > 0,
lim limsup P (p, (X1 (3,5), X1,(3,5)) > ¢)
n—=00 T 500 ’

= lim limsupVT(pv(£(§+iT,5+’L'T,Q;Q,F),£ (§+i7’,s+i7’,g;g)) ZE)

n—00 T_s~ n

n—00 T_y~o E

1 /7

< lim limsupT—/ pv(C(§+iT7s+iT,g;g,F),
0

gn(§+i7,s+i7,g;g7F)) dr =0.

This, (1.4), (1.10) and Theorem 4.2 of [1] imply the relation

X, (5,5 = P (1.11)

T—00

and thus, Pr converges weakly to P as T — oo. The relation (1.11) also shows
that the measure P is independent of the choice of the sequence {P,, }, and
this yields the relation

X, (3,5) = P. (1.12)

n— oo

It remains to show that the measure Pr also converges weakly to P as
T — oco. We set

X, (3,8) = (§+1i0T, s +i0T, o, w; g, F),
Xp(5,5) = ((5+i0T, s + 0T, 0, w; g, F).

Then the above arguments together with Lemmas 2 and 4, and relation (1.12)
applied for the random elements X (3, s) and X1 (3, s) show that the measure

]3T also converges weakly to P as T — oo. 0O

In order to prove Theorem 4, it suffices to show that the limit measure P
in Lemma 5 is the distribution of the random element ((5, s, a,w; a, F'). Define

b (W) =a,w,w€ R, wherea, ={(p™:peP),(m+a1)"7:meNy),...,

Math. Model. Anal., 19(1):52-65, 2014.
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((m+a,)"": m € Ng)} for 7 € R. Then {@_: 7 € R} is a one-parameter group
of measurable measure preserving transformations on £2. A set A € B(£2) is
called invariant with respect to this group if, for every 7 € R, the sets A
and @_(A) may differ one from another only by m;-measure zero. The group
{®,: 7 € R} is ergodic if its o-field of invariant sets consists only of the sets
having m-measure zero or one.

Lemma 6. Suppose that the numbers aq, ..., q, are algebraically independent
over Q. Then the group {@,: 7 € R} is ergodic.

Proof of the lemma is given in [7, Lemma 7).

Proof of Theorem 4. We fix a continuity set A of the limit measure P in
Lemma 5. Then, using an equivalent of the weak convergence of probability
measures in terms of continuity sets, Theorem 2.1 of [1], we have by Lemma 5
that

lim vy (((5+iT, s+ iT,a,w;a, F) € A) = P(A). (1.13)
T—o0 =

On the probability space (£2,B(£2), my), define the random variable £(w) by
the formula

aw):{l if {(5,5,0,w50, F) € 4,

0 otherwise.

Then the expectation

E¢ =my (w e 2:((3,5,a,w;a,F) € A) = P(A), (1.14)

where Pg is the distribution of the random element ((3, s, a,w; a, F'). Lemma 6
implies the ergodicity of the process £(@,(w)). Therefore, by the Birkhoff-
Khintchine theorem, see, for example, [2], for almost all w € 2,

T—oo 1

. _
lim —/0 £(2,(w)) dr = E&. (1.15)

However, by the the definitions of £ and @, we have that

1 T
[ @) ar—vr (gs+ins+inawaF) e 4).
T 0 -

Therefore, taking into account (1.14) and (1.15), we obtain that

lim vy (C(8+i7,s +iT,a,w; 0, F) € A) = P:(A).

T—o0 =
This and (1.13) show that P(A) = P¢(A). Since A is an arbitrary continuity
set A of P, hence, P(A) = P;(A) for all continuity sets of P. Therefore,
P(A) = P;(A) for all A € B(H"(D,, D)) because all continuity sets form a
determininTg, class, see [1]. This completes the proof of Theorem 4. O
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2 The Support of the Measure

For the proof of the Theorem 3, we need the support of the measure P. Since
the space HY(D,, D) is separable, the support of Fcis a minimal closed set
Sp. of H'(Dy;, D) such that P;(Sp.) = 1. The set Sp, consists of all points
g € H"(D,, D) such that P-(G) > 0 for every open neighbourhood G of g.
Let a a
Sk ={g9€ H(Dx): g(s) # 0 or g(s) = 0}.
Theorem 5. Suppose that aq, . . ., «, are algebraically independent over Q, and

that rank(B;) =1, j = 1...,7. Then the support of P is the set Sy, x H"(D).

Proof. By the definition,

HY(D.,D)=H(D,) x H"*(D).
Since the spaces H(D,;) and H"*(D) are separable, it suffices [1] to consider
Pc(A) for A= B x C, where B € B(H(Dy)) and C € B(H"(D)). The Haar

measure m; is the product of the Haar measures 7y and mj; on (£2,B8(12))
and (21 x -+ X 2,,B(£2; x -+ x 2,.)), respectively. Therefore, we have that,
for A= B x C € B(H"(Dx, D)),

PQ(A) =my (ge 2:(¢(3,5,,w;a, F) € A)
=my(we 2: (5,0, F) € B, ({(s,a1,wi;a11), . . .,
C(s,al,wl;alll),...,((s,ar,wr;arl),...,C(s,ahwr;arlr)) € C’)
= 1w (0 € 2: p(3,0, F) € B)
xmly ((wi,...,wp) € 21 X - X 21 (C(s,00,w13011), .. -,
C(s,ar,wiian, ), C(s, ap wrsar1), ., C(s, o, wrs apy, ) € C).

(2.1)

In [5], it was obtained that the support of the random element ¢(8,w, F) is
the set Sy, i.e., Sy is a minimal closed subset of H(D,) such that

g (@€ 2: (3,0, F) € S,) = 1. (2.2)
Also, in [6], it was proved that H"*(D) is the support of the random element

(C(Svalawl; a11)7 s ,C(S,Oq,(dl; alll)’ e .7C(S,Oér,w7-; a?“l)a ey

C(Sa Qs W3 arlr))a

i.e., H"*(D) is a minimal closed set of H"* (D) such that

mi (Wi, wr) € 21 X oo x 200 (((s, a1, w5 a11), ..., C(s, 01, w15 a11,),
. 'aC(S7aT7wT';a7‘1)7 .. '7<(37a7'7w7”;a7'l7~)) € H™ (D)) =1 (23)

Therefore, the theorem is a result of (2.1)-(2.3). O

Math. Model. Anal., 19(1):52-65, 2014.
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3 Proof of Theorem 3

We start with the Mergelyan theorem on the approximation of analytic func-
tions by polynomials.

Lemma 7. Let K be a compact subset of the complex plane with connected
complement, and let f(s) be a continuous function on K which is analytic in
the interior of K. Then, for every e > 0, there exists a polynomial p(s) such
that

sup}f(s) —p(s)| <e.
seK

Proof is given in [8], [9].

Proof of Theorem 3. By Lemma 7, there exist polynomials p(s) and pj;(s)
such that

€
sup| £(5) ~ p(s)] < = (3.1)
seK
and c
Ssup sup sup |fjl(s) —pﬂ(s)’ < 7 (3.2)
1<5<r 1<I<l; s€K;,

Since f(s) # 0 on K, p(s) # 0 on K as well if ¢ is small enough. Thus, on
K we can define a continuous branch of log p(s) which will be analytic in the
interior of K. Therefore, by Lemma 7, there exists a polynomial ¢(s) such that

sup [p(s) — eq(s)} <<
seK 4
This together with (3.1) shows that

sup’f(s) - eq(s)‘ << (3.3)
seK 2

Define

G= {(979117"'791117'"agrla"'agrl,.) S HU(DN7D>:

€ €
sup|g(s) — e(l(s)| < oL sup sup sup }gjl(s) —pjl(s)| < 2}.
seK 1<j<r1<I<l; s€K;,

In view of Theorem 5, (e9*),p11(s), ..., 1 (), .-, pr1(8),...,Pr,(5)) is an
element of the support of the measure P;. Since the set G is open, hence, we
have that P(G) > 0. Therefore, by Theorem 4 and an equivalent of the weak
convergence of probability measures in terms of open sets (Theorem 2.1 of [1]),
we obtain that

lim inf vp ( sup |<p(s +ir, F) — eq(s)‘ < E,
T—o0 seK 2

) €
sup sup sup ’((s—!—m’, a5 aj) —pﬂ(s)’ < 2) > 0.
1<j<r 1<I<l; s€K;,

Combining this with (3.2) and (3.3) completes the proof of the theorem. O



A Mixed Joint Universality Theorem for Zeta-Functions. I 65
References

[1] P. Billingsley. Convergence of Probability Measures. John Wiley & Sons, New
York, 1968.

[2] H. Cramér and M.R. Leadbetter. Stationary and Related Stochastic Processes.
Willey, New York, 1967.

[3] P. Deligne. La conjecture de Weil. Inst. Hautes Etudes Sci. Publ. Math., 43:273~
307, 1974.

[4] J. Genys, R. Macaitiené, S. Rackauskiené¢ and D. Siaucitinas. A mixed joint
universality theorem for zeta-functions. Math. Model. Anal., 15(4):431-446, 2010.
http://dx.doi.org/10.3846,/1392-6292.2010.15.431-446.

[5] A. Lauriné¢ikas and K. Matsumoto. The universality of zeta-functions attached to
certain cusp forms. Acta Arith., 98:345-359, 2001.
http://dx.doi.org/10.4064/2a98-4-2.

[6] A. Laurincikas and S. Skerstonaité. Joint universality for periodic Hurwitz zeta-
functions. II. In R. Steuding and J. Steuding(Eds.), New Dirrections in Value
Distribution Theory of Zeta and L-Functions, pp. 161-170, Aachen, 2009. Shaker
Verlag.

[7] A. Laurinc¢ikas. Joint universality of zeta-functions with periodic coefficients. Izv.
RAN, Ser. Matem., 74(3):79-102, 2010. http://dx.doi.org/10.4213/im2771. (In
Russian)

[8] S.N. Mergelyan. Uniform approximations to functions of complex variable. Usp.
Mat. Nauk, 7:31-122, 1952. (In Russian)

[9] J.L. Walsh. Interpolation and Approzimation by Rational Functions in the Com-
plex Domain, vol. 20. Amer. Math. Soc. Coll. Publ., 1960.

Math. Model. Anal., 19(1):52-65, 2014.


http://dx.doi.org/10.3846/1392-6292.2010.15.431-446
http://dx.doi.org/10.4064/aa98-4-2
http://dx.doi.org/10.4213/im2771

	Functional Limit Theorems
	The Support of the Measure P
	Proof of Theorem 3
	References

