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Abstract. The Foldy–Lax self-consistent system has been widely used as an efficient
numerical approximation of multiple scattering of time harmonic wave through a
medium with many scatterers when the relative radius of each scatterer is small and
the distribution of scatterers is sparse. In this paper, an “extended” Foldy–Lax self-
consistent system including both source and dipole effects as well as corrections due
to the self-interacting effects will be introduced, in which the scattering amplitudes
and the corrections are determined as powers of the small scaled radius. This new
approach substantially improves the accuracy of the approximation of the original
Foldy–Lax approach.
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1 Introduction

The multiple scattering by finite-size inhomogeneities has attracted interests of
many researchers and the finite-size effect has been treated in different aspects.
For instance, the multiple scattering has been used in time-reversal imaging [4]
on reflecting more signals towards the aperture thus virtually increasing the
aperture size, which is called super-resolution [2], and beyond. In the real
computation, since the number of scatterers is large, proper approximating
method is necessary for multiple scattering modelling.

In this paper, we consider the multiple scattering by many small scatterers
in the low frequency regime. Here low frequency means low relative frequency,
i.e., the situation when the wave length is large relatively to the radii of the
scatterers. Without lose of generality, we assume all the scatterers are identical
spheres for simplicity. This is reasonable when we concern small size point-like
scatterers, instead of extended scatterer or target, otherwise we may adapt the
generalized Foldy–Lax formulation devised in [9] via the coupling of a boundary
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integral equation and the Foldy–Lax system. Take k as the wave number of the
incident wave and R as the radius of each scatterer, then low relative frequency
means kR small.

We restrict our analysis on the time harmonic case. The multiple scattering
problem can be written by standard inhomogeneous Helmholtz equation and
the solution is represented by the well-known Lippmann–Schwinger integral
equation [3], which can be solved exactly by separation of variables and using
spherical harmonics, or, high-accuracy numerical techniques have also been
developed to address this problem, for example [1]. All of these methods can be
theoretically used to solve the multiple scattering problem accurately. These
techniques have large computational time and memory overheads, and thus,
in practice, have been used to model only moderate sections of the complete
problem. In reality, it is necessary to model large-scale distributed scatterers
by appropriate semi-analytical approximations, such as the widely accepted
Foldy–Lax approximation [5,6,10,12,13,14,17]. In this approach, the free space
propagator, which is the Green’s function of Helmholtz equation, is inevitably
used to simulate the wave propagation. Specifically, write the total field as

u = ui +

M∑
j=1

ujsc,

where ui is the given incident field and ujsc is the field scattered by the j-th
scatterer, M is the number of scatterers. Define the effective field

un ≡ u− unsc = ui +

M∑
j=1,j 6=n

ujsc,

which is the ‘radiation incident on the n-th scatterer’ in the presence of all the
other scatterers. Now the problem is written as

ujsc = Tjuj ,

where Tj is an operator relating the field incident on the j-th scatterer, uj , to
the field scattered by the j-th scatterer, ujsc, hence

un = ui +

M∑
j=1,j 6=n

Tjuj . (1.1)

This is the so-called Foldy–Lax self-consistent system, or simply Foldy’s system.
If one could solve un, the scattered field unsc and the total field u would be easily
arrived.

The Foldy–Lax method considers only the first order approximation, in
which the dipole-effects and self-interaction effects are neglected. Actually, the
dipole-effects (without error estimates) has been considered by Lax [10] and
also the the book of Martin [12]. However, in this paper, we will show more
precisely the dipole-effect, and further, we will show how to include the self-
interaction effect in an extended Foldy–Lax approximation, thus substantially
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improve the approximation accuracy. In this approach, the total field in free
space will be written by

u(x) ≈ ui(x) +

M∑
j=1

[
αj Ḡ(x− ξj)uj + βj g(x− ξj) · vj)

]
,

here αj and βj are the scattering amplitudes of the j-th scatterer, Ḡ and vector
g are free space ‘propagator’ (which will be specified later), ‘effective’ wave uj
and vector vj will be solved by the extended Foldy–Lax system in the form

(1− ηl)ul = uil +
∑
j 6=l

[
αjḠ(ξjl)uj + βj

(
g(ξjl) · vj

)]
,

(1− θl)vl = vil +
∑
j 6=l

[
αjg(ξjl)uj + βj

(
1

k
∇
)
g(ξjl) vj

]
.

(1.2)

Here the first term in the summation is the source while the second term en-
close the dipole effect. Furthermore, ηl and θl are correction terms due to the
self-interacting effect. The extended Foldy–Lax system (1.2) is an extension of
Foldy–Lax system (1.1), since (1.1) can be derived by taken ηl’s and βj ’s be
zeros in the first equation of (1.2). With both the self-interaction effect and
dipole effect being included in this new approach, the accuracy of the approxi-
mation is substantially improved. We also note that, this new formulation can
be used to real application as mentioned in [7, 8, 9].

The paper is organized as following. In the next section, we will specify
the multiple scattering problem and write the exact solution. Then we will
consider the approximation of the exact solution in Section 3, and derive the
extended Foldy–Lax system in Section 4. Finally the accuracy of the extended
Foldy–Lax system will be given in Section 5.

2 Multiple Scattering Problem

The propagation of time harmonic waves in inhomogeneous medium is governed
by Helmholtz equation

4u+ k2n2(x)u = 0, (2.1)

where k is the wave number, n(x) = c0/c(x) is the index of refraction, which
is the ratio of the wave speed in the homogeneous background to that in the
inhomogeneous medium with scatterers. It will be convenient to define the
scattering potential q(x) := n2(x) − 1, then the Helmholtz equation can be
rewritten as

4u+ k2u = −k2qu. (2.2)

Considering that the inhomogeneities consist of M disjoint identical spher-
ical scatterers located in a bounded domain Ω ⊂ R3, each scatterer centered
at ξj with radius R, |ξl − ξj | > γR for any l 6= j, l, j = 1, . . . ,M , γ > 2 is a
constant due to the problem considered, which characterize the sparsity of the
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scatterers. Thus the scattering potential can be taken as piecewise constant

q(x) =

M∑
j=1

τjχR(x− ξj), (2.3)

where τj is a given constant for each j and χR is the characteristic function
with radius R.

It is well known that the outgoing Green’s function of Helmholtz equation
G(r) satisfying

−(4+ k2)G(r) = δ(r)

with Summerfeld radiation condition

lim
|r|→∞

(
∂

∂|r|
− ik

)
G(r) = o

(
|r|−1

)
is given by

G(r) =
eik|r|

4π|r|
, (2.4)

and the solution can be written as [3, 12]

u = ui +G ∗
(
k2qu

)
, (2.5)

where the incident wave ui is an entire solution of the Helmholtz equation
(4+ k2)ui = 0.

Using the scattering potential q in the summation form (2.3), we can ac-
cordingly write the solution (2.5) as

u(x) = ui(x) + k2
M∑
j=1

τj

∫
B

G(x− ξj − y)u(ξj + y) dy, (2.6)

where B = {y | |y| < R}. This equation is the well-known Lippmann–
Schwinger integral equation [3] and holds for all x ∈ R3. One can firstly solve
the Fredholm type integral equation inside each Bi := {y | |y − ξi| < R} and
then evaluate the field in the free space when the field inside each scatterer is
known. The equation (2.6) is defined in the whole space and the solution u is
analytic in each scatterer and the free space, continuous across the boundary
of each scatterer, see [15,16].

The accurate solution of this approach for large problem is formidable thus
we turn to an appropriate semi-analytical approximation called Foldy–Lax ap-
proximation. However, the Foldy–Lax method considered only the first order
approximation, in which the dipole-effects and self-interaction effects are ne-
glected. The newly introduced extended Foldy–Lax method will include both
the dipole-effects and self-interaction effects.

For further use, we take the gradient on both sides of (2.6) to get the
gradient of u away from the boundary of each scatterer as

1

k
∇u(x) =

1

k
∇ui(x) + k2

M∑
j=1

τj

∫
B

1

k
∇G(x− ξj − y)u(ξj + y) dy
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for x∈̄∂Bi, 1 ≤ i ≤ M . Notice that the Green’s function has only weakly
singularity, it is easy to see that the integrations above are well-defined. Note
also that we always put a scaling factor 1

k in front of the gradient operator here
and hereafter. Particularly, we evaluate u and 1

k∇u at each ξl thus

u(ξl) = ui(ξl) + k2
M∑
j=1

τj

∫
B

G(ξjl − y)u(ξj + y) dy,

1

k
∇u(ξl) =

1

k
∇ui(ξl) + k2

M∑
j=1

τj

∫
B

1

k
∇G(ξjl − y)u(ξj + y) dy, (2.7)

where we have used the notation ξjl = ξl − ξj .
Starting from the above integral system, we will derive an extended Foldy–

Lax system when the scaled radius of each scatterer kR is small and determines
the scattering amplitudes in the extended Foldy–Lax self-consistent system.

3 Approximation of the Solution u(x) in Free Space

For the wave field outside scatterers, by the Lippmann–Schwinger equation
(2.6), we have

u(x) = ui(x) + k2
M∑
j=1

τj

∫
B

G(x− ξj − y)u(ξj + y) dy, x ∈ R3 \
M⋃
j=1

B(ξi, R).

Since u is regular in each scatterer, we will derive the asymptotic expansion
of each integral in terms of the power series of the scaled radius kR. For

x ∈ R3 \
⋃M

j=1B(ξi, R) and |ky| ≤ kR, by Taylor expansion,

G(x− ξj − y) = G(x− ξj)−
1

k
∇G(x− ξj) · ky +

1

2
kyT

1

k2
∇2G(x− ξj) ky

+O
(
|ky|3

)
,

u(ξj + y) = u(ξj) +
1

k
∇u(ξj) · ky +

1

2
kyT

1

k2
∇2u(ξj) ky +O

(
|ky|3

)
,

thus

G(x− ξj − y)u(ξj + y)

= G(x− ξj)u(ξj) +G(x− ξj)
1

k
∇u(ξj) · ky − u(ξj)

1

k
∇G(x− ξj) · ky

+
1

2
u(ξj) ky

T 1

k2
∇2G(x− ξj) ky +

1

2
G(x− ξj) kyT

1

k2
∇2u(ξj) ky

−
(

1

k
∇u(ξj) · ky

)(
1

k
∇G(x− ξj) · ky

)
+O

(
|ky|3

)
.

For the spherical scatterers, due to the symmetrical property, it is easy to check∫
B

yi dy = 0,

∫
B

yiyj dy =
4π

15
R5δij ,

Math. Model. Anal., 19(1):85–98, 2014.



90 J. Liao and C. Ji

where δij is the Kronecker delta function, thus

k2τj

∫
B

G(x− ξj − y)u(ξj + y) dy =
4

3
πτj

1

k
G(x− ξj)u(ξj)(kR)3

+
4π

15
τj(kR)5 × 1

k

(
1

2
G(x− ξj)

1

k2
4u(ξj) +

1

2
u(ξj)

1

k2
4G(x− ξj)

− 1

k
∇G(x− ξj) ·

1

k
∇u(ξj)

)
+O

(
(kR)7

)
. (3.1)

Note that(
4+ k2

)
u(ξj) = −k2τju(ξj),

(
4+ k2

)
G(x− ξj) = 0 for x 6= ξj ,

which yields

1

k2
4u(ξj) = −(1 + τj)u(ξj),

1

k2
4G(x− ξj) = −G(x− ξj),

substitute the above into (3.1) then we get

k2τj

∫
B

G(x− ξj − y)u(ξj + y) dy = αj ·
1

k
G(x− ξj)u(ξj)

+ βj ·
1

k

(
1

k
∇G(x− ξj) ·

1

k
∇u(ξj)

)
+O

(
(kR)7

)
, (3.2)

where

αj =
4

3
πτj(kR)3 − 4π

15
τj

(
1 +

1

2
τj

)
(kR)5, βj = −4π

15
τj(kR)5, (3.3)

thus we have the formula for x ∈ R3 \
⋃M

j=1B(ξi, R) that

u(x) = ui(x) +

M∑
j=1

[
αj ·

1

k
G(x− ξj)u(ξj)

+ βj ·
1

k

(
1

k
∇G(x− ξj) ·

1

k
∇u(ξj)

)
+O

(
(kR)7

)]
. (3.4)

One can use this formula to evaluate the wave field in the free space when u(ξj)
and 1

k∇u(ξj) are known for each j, which will be given by solving extended
Foldy–Lax system derived in the next section.

4 Derivation of Extended Foldy–Lax System

4.1 Reformulation of u(ξl), l = 1, . . . ,M

Recall the solution formula at ξl in the first equation of (2.7), which can be
rewritten as

u(ξl) = ui(ξl) + k2
∑
j 6=l

τj

∫
B

G(ξjl − y)u(ξj + y) dy + k2τl

∫
B

G(y)u(ξl + y) dy,

(4.1)
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in which the last term distinguishes the self-interacting term.

1. Evaluation of the integral term for each j 6= l.
By Taylor expansion, for |ky| ≤ kR,

G(ξjl − y) = G(ξjl)−
1

k
∇G(ξjl) · ky +

1

2
kyT

1

k2
∇2G(ξjl) ky +O

(
|ky|3

)
,

u(ξj + y) = u(ξj) +
1

k
∇u(ξj) · ky +

1

2
kyT

1

k2
∇2u(ξj) ky +O

(
|ky|3

)
,

thus

G(ξjl − y)u(ξj + y) = G(ξjl)u(ξj) +G(ξl, ξj)
1

k
∇u(ξj) · ky

+
1

2
u(ξj) ky

T 1

k2
∇2G(ξjl) ky +

1

2
G(ξl, ξj) ky

T 1

k2
∇2u(ξj) ky

− u(ξj)
1

k
∇G(ξjl) · ky −

(
1

k
∇u(ξj) · ky

)(
1

k
∇G(ξjl) · ky

)
+O

(
|ky|3

)
.

Similar calculation as in last section yields

k2τj

∫
B

G(ξjl − y)u(ξj + y) dy

= αj ·
1

k
G(ξjl)u(ξj) + βj ·

1

k

(
1

k
∇G(ξjl) ·

1

k
∇u(ξj)

)
+O

(
(kR)7

)
, (4.2)

where αj , βj are defined by (3.3).

2. Evaluation of the integral term with ξl.
When |ky| ≤ kR, we use

u(ξl + y) = u(ξl) +
1

k
∇u(ξl) · ky +

1

2
kyT

1

k2
∇2u(ξl) ky +O

(
|ky|3

)
to get

k2τl

∫
B

G(y)u(ξl + y) dy

= k3τl

∫
B

eik|y|

4πk|y|

(
u(ξl) +

1

k
∇u(ξl) · ky+

1

2
kyT

1

k2
∇2u(ξl) ky+O

(
|ky|3

))
dy

= k3τl

∫
B

eik|y|

4πk|y|
dy · u(ξl)+k

3τl

∫
B

eik|y|

4πk|y|
1

2
kyT

1

k2
∇2u(ξl) ky dy+O

(
(kR)6

)
.

After direct calculation we find

k2τl

∫
B

G(y)u(ξl + y) dy = ηl · u(ξl) +O
(
(kR)6

)
, (4.3)

with

ηl = τl

(
1

2
(kR)2 +

i

3
(kR)3 − 1

6

(
1 +

τl
4

)
(kR)4 − i

15

(
1 +

τl
2

)
(kR)5

)
. (4.4)
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Now, substitute (4.2) and (4.3) into (4.1) we have:

u(ξl) = ui(ξl) +
∑
j 6=l

[
αj ·

1

k
G(ξjl)u(ξj) + βj ·

1

k

(
1

k
∇G(ξjl) ·

1

k
∇u(ξj)

)]
+ ηl · u(ξl) +O

(
(kR)6

)
+M ·O

(
(kR)7

)
, (4.5)

where αj , βj and ηl are defined by (3.3) and (4.4) respectively.
The value of u(ξl) evolves 1

k∇u(ξj), we still need to evaluate the gradients
of the field at each scatterer.

4.2 Evaluation of the gradient of the solution

Rewrite the gradient of the solution at ξl in the second equation of (2.7) as

1

k
∇u(ξl) =

1

k
∇ui(ξl) + k2

∑
j 6=l

τj

∫
B

1

k
∇G(ξjl − y)u(ξj + y) dy

+ k2τl

∫
B

1

k
∇G(y)u(ξl + y) dy, (4.6)

we then derive the asymptotic expansion of each term above. For the integral
term of each j 6= l, similar calculation like the one in last subsection yields

k2τj

∫
B

1

k
∇G(ξjl − y)u(ξj + y) dy = αj ·

1

k

(
1

k
∇
)
G(ξjl)u(ξj)

+ βj ·
1

k

((
1

k
∇
)2

G(ξjl) ·
1

k
∇u(ξj)

)
+O

(
(kR)7

)
, (4.7)

where the coefficients αj and βj are defined by (3.3).
The integral term with ξl in (4.6) is a little bit different from the corre-

sponding term in (4.1), since the integration here involves the gradient of the
Green’s function but the original integration deals only G. The gradient of
Green’s function is

1

k
∇G(y) =

(
i− 1

k|y|

)
G(y)

ky

k|y|
,

thus

k2τl

∫
B

1

k
∇G(y)u(ξl + y) dy

= k3τl

∫
B

(
i− 1

k|y|

)
eik|y|

4πk|y|
ky

k|y|

(
u(ξl) +

1

k
∇u(ξl) · ky +O

(
|ky|2

))
dy,

by direct calculation we find

k2τl

∫
B

1

k
∇G(y)u(ξl + y) dy = θl ·

1

k
∇u(ξl) +O

(
(kR)6

)
(4.8)

with

θl =
τl
3

(
1

2
(kR)2 +

1

8
(kR)4 − i

15
(kR)5

)
. (4.9)
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Next, substitute (4.7) and (4.8) into (4.6):

1

k
∇u(ξl) =

1

k
∇ui(ξl) +

∑
j 6=l

[
αj ·

1

k

(
1

k
∇
)
G(ξjl)u(ξj) (4.10)

+ βj
1

k

((
1

k
∇
)2

G(ξjl) ·
1

k
∇u(ξj)

)]
+θl

1

k
∇u(ξl)+O

(
(kR)6

)
+MO

(
(kR)7

)
,

where αj , βj and θl are defined by (3.3) and (4.9) respectively.

4.3 The extended Foldy–Lax system

Combining (4.5) and (4.10) together we have

u(ξl) = ui(ξl) +
∑
j 6=l

[
αj ·

1

k
G(ξjl)u(ξj) + βj ·

1

k

(
1

k
∇G(ξjl) ·

1

k
∇u(ξj)

)]
+ ηl · u(ξl) +O

(
(kR)6

)
+M ·O

(
(kR)7

)
,

1

k
∇u(ξl) =

1

k
∇ui(ξl) +

∑
j 6=l

[
αj ·

1

k

(
1

k
∇
)
G(ξjl)u(ξj)

+ βj
1

k

((
1

k
∇
)2

G(ξjl) ·
1

k
∇u(ξj)

)]
+θl

1

k
∇u(ξl)+O

(
(kR)6

)
+MO

(
(kR)7

)
.

It is obvious that the number of scatterers M is no more than the order of
( 1
kR )3, then the higher order term in above system is of O((kR)6). Omitting

the higher order term, we have

(1− ηl)u(ξl) = ui(ξl) +
∑
j 6=l

[
αj

1

k
G(ξjl)u(ξj)

+ βj

((
1

k
∇
)

1

k
G(ξjl) ·

1

k
∇u(ξj)

)]
,

(1− θl)
(

1

k
∇
)
u(ξl) =

1

k
∇ui(ξl) +

∑
j 6=l

[
αj

(
1

k
∇
)

1

k
G(ξjl)u(ξj)

+ βj

((
1

k
∇
)2

1

k
G(ξjl) ·

1

k
∇u(ξj)

)]
,

denote

ul=u(ξl), uil=u
i(ξl), vil =

1

k
∇ui(ξl), vl =

1

k
∇u(ξl), Ḡ =

1

k
G, g =

1

k
∇Ḡ,

then we have
(1− ηl)ul = uil +

∑
j 6=l

[
αj Ḡ(ξjl)uj + βj

(
g(ξjl) · vj

)]
,

(1− θl)vl = vil +
∑
j 6=l

[
αj g(ξjl)uj + βj

(
1

k
∇
)
g(ξjl) vj

]
,

(4.11)
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this is a self-consistent system, which is called extended Foldy–Lax system.
Here αj and βj , defined in (3.3), are the scattering amplitudes of the j-th
scatterer, the first term in the summation is the source while the second term
enclose the dipole effect. Furthermore, ηl and θl, defined in (4.4) and (4.9), are
correction terms due to the self-interacting effect. Recall the field outside the
scatterers is given by (3.4), which can be approximated as

u(x) ≈ ui(x) +

M∑
j=1

[
αj Ḡ(x− ξj)uj + βj g(x− ξj) · vj)

]
(4.12)

for x ∈ R3 \
⋃M

j=1B(ξi, R), one can evaluate u in the free space once the
extended Foldy–Lax system (4.11) has been solved. Note that the linear system
(4.11) can be rewritten in matrix form, with coefficient matrix being diagonal
dominant when kR is sufficiently small thus uniquely solvable.

Foldy [5] and Lax [10] assume that βj = 0, ηl = 0 and θl = 0 in (4.11)–(4.12).
The main feature of this approach is that the extended system includes the self-
interaction effect and dipole effect. We further note that, although the above
computation is derived for spherical scatterers, theoretically it can be directly
generalized to more general shape of scatterers, by adapting the computation in
Section 3 with B replaced accordingly. However the computation will depend
on the configuration of different shapes, and may only be very much practical
for simple geometry.

5 Accuracy Check

In this section, we will check the accuracy of the the approximation given by
extended Foldy–Lax self-consistent system. To achieve this purpose, we com-
pare the difference from exact wave field at each scatter given by Lippmann–
Schwinger integral equation to the approximate field derived from the extended
Foldy–Lax self-consistent system [11]. Our main result in this section is the
following theorem.

Theorem 1. Give a bounded domain Ω ⊂ R3 enclosing M disjoint identical
spherical scatterers, each one centered at ξj with radius R, |ξl − ξj | > γR for
l 6= j, l, j = 1, . . . ,M and γ > 2. Assume kR be small and kR ·M ∼ 1. Let
u(ξl) and 1

k∇u(ξl) be the exact wave field and its gradient at ξl given by (2.7),
ul and vl be the approximate field defined recursively by (4.11). Then we have

M∑
l=1

∣∣u(ξl)− ul
∣∣2 + (kR)2

M∑
l=1

∣∣∣∣1k∇u(ξl)− vl
∣∣∣∣2 ≤ O(kR)11. (5.1)

Proof. The theorem can be proved by the method used in [11]. First, we
introduce the intermediate quantities

ūl = uil +
∑
j 6=l

[
αj Ḡ(ξjl)u(ξj) + βj g(ξjl) ·

1

k
∇u(ξj)

]
+ ηl · u(ξl), (5.2)
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v̄l = vil +
∑
j 6=l

[
αj g(ξjl)u(ξj) + βj

(
1

k
∇
)
g(ξjl)

1

k
∇u(ξj)

]
+ θl

1

k
∇u(ξl),

then from (4.5) and (4.10) we readily know that

∣∣u(ξl)− ūl
∣∣ = O(kR)6,

∣∣∣∣1k∇u(ξl)− v̄l
∣∣∣∣ = O(kR)6. (5.3)

Next, we calculate that

|ūl − ul| =
∣∣∣∣∑
j 6=l

[
αj Ḡ(ξjl)

(
u(ξj)− uj

)
+ βj g(ξjl) ·

(
1

k
∇u(ξj)− vj

)]

+ ηl
(
u(ξl)− ul

)∣∣∣∣
≤
∑
j 6=l

[∣∣αj Ḡ(ξjl)(u(ξj)− uj)
∣∣+
∣∣∣βj g(ξjl) ·

(1

k
∇u(ξj)− vj

)∣∣∣]
+
∣∣ηl(u(ξl)− ul)

∣∣
≤ O(kR)2

∑
j 6=l

∣∣u(ξj)− uj
∣∣+O(kR)3

∑
j 6=l

∣∣∣∣1k∇u(ξj)− vj
∣∣∣∣

+O(kR)2
∣∣u(ξl)− ul

∣∣
≤ O(kR)2

M∑
j=1

∣∣u(ξj)− uj
∣∣+O(kR)3

M∑
j=1

∣∣∣∣1k∇u(ξj)− vj
∣∣∣∣.

We note that M ∼ (kR)−1, which will be used repeatedly in the following
derivation, thus

|ūl − ul|2 ≤ O(kR)3
M∑
j=1

∣∣u(ξj)− uj
∣∣2 +O(kR)5

M∑
j=1

∣∣∣∣1k∇u(ξj)− vj
∣∣∣∣2. (5.4)

Similarly we have

|v̄l − vl| =
∣∣∣∣∑
j 6=l

[
αj g(ξjl)

(
u(ξj)− uj

)
+ βj

(
1

k
∇
)
g(ξjl)

(
1

k
∇u(ξj)− vj

)]

+ θl

(
1

k
∇u(ξl)− vl

)∣∣∣∣
≤ O(kR)

M∑
j=1

∣∣u(ξj)− uj
∣∣+O(kR)2

M∑
j=1

∣∣∣∣1k∇u(ξj)− vj
∣∣∣∣,

thus

|v̄l − vl|2 ≤ O(kR)

M∑
j=1

∣∣u(ξj)− uj
∣∣2 +O(kR)3

M∑
j=1

∣∣∣∣1k∇u(ξj)− vj
∣∣∣∣2. (5.5)
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With above inequalities, we have∣∣u(ξl)− ul
∣∣2 ≤ ∣∣u(ξl)− ūl

∣∣2 + |ūl − ul|2

≤ O(kR)12 +O(kR)3
M∑
j=1

∣∣u(ξj)− uj
∣∣2 +O(kR)5

M∑
j=1

∣∣∣∣1k∇u(ξj)− vj
∣∣∣∣2,∣∣∣∣1k∇u(ξl)− vl

∣∣∣∣2 ≤ ∣∣∣∣1k∇u(ξl)− v̄l
∣∣∣∣2 + |v̄l − vl|2

≤ O(kR)12 +O(kR)

M∑
j=1

∣∣u(ξj)− uj
∣∣2 +O(kR)3

M∑
j=1

∣∣∣∣1k∇u(ξj)− vj
∣∣∣∣2,

take summation over l of the above to get

M∑
l=1

∣∣u(ξl)− ul
∣∣2

≤ O(kR)11 +O(kR)2
M∑
j=1

∣∣u(ξj)− uj
∣∣2 +O(kR)4

M∑
j=1

∣∣∣∣1k∇u(ξj)− vj
∣∣∣∣2,

(kR)2
M∑
l=1

∣∣∣∣1k∇u(ξl)− vl
∣∣∣∣2

≤ O(kR)13 +O(kR)2
M∑
j=1

∣∣u(ξj)− uj
∣∣2 +O(kR)4

M∑
j=1

∣∣∣∣1k∇u(ξj)− vj
∣∣∣∣2,

thus

M∑
l=1

∣∣u(ξl)− ul
∣∣2 + (kR)2

M∑
l=1

∣∣∣∣1k∇u(ξl)− vl
∣∣∣∣2

≤ O(kR)11 +O(kR)2
( M∑

j=1

∣∣u(ξj)− uj
∣∣2 + (kR)2

M∑
j=1

∣∣∣∣1k∇u(ξj)− vj
∣∣∣∣2),

and further

M∑
l=1

∣∣u(ξl)− ul
∣∣2 + (kR)2

M∑
l=1

∣∣∣∣1k∇u(ξl)− vl
∣∣∣∣2 ≤ O(kR)11,

which is the result of Theorem 1. ut

6 Concluding Remarks

Comparing with the accuracy analysis of Foldy–Lax approximation derived
in [11], we see from the above analysis that the accuracy of extended Foldy–Lax
self-consistency system on approximating multiple scattering in low frequency
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regime is much better than the original Foldy–Lax approach. Recall that in
the same setting of Theorem 1, the result in [11] is

M∑
l=1

∣∣u(ξl)− ul
∣∣2 ≤ O(kR)1+

4
5 /γ2

for the original Foldy–Lax approach, where γ > 2 characterize sparsity of
distribution of scatterers. In the present analysis, we don’t ask the sparsity
but included the dipole effects and the self-interaction corrections, which give
an upper bound of the error as order O(kR)11. This suggest that the dipole-
effects and self-interaction effects are essential on improving the accuracy of
multiple scattering approximation, despite they have been neglected in the
original Foldy–Lax approach which has been widely used. This new formulation
is expected to be used in [7,8,9] or other applications, to improve the numerical
accuracy of small scatterer multiple scattering in wave simulation.
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