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Abstract. We show that the finite volume method rigorously converges to the so-
lution of a conductive-radiative heat transfer problem with nonlocal and nonlinear
boundary conditions. To get this result, we start by proving existence of solutions
for a finite volume discretization of the original problem. Then, by obtaining uniform
boundedness of discrete solutions and their discrete gradients with respect to mesh
size, we finally get L2 type convergence of discrete solutions.
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1 Introduction

The main interest of the paper is the applicability of the finite volume method to
problems with nonlocal and nonlinear boundary conditions for a linear elliptic
equation of the divergence type. As a rule, given class of boundary value
problems arise in mathematical modeling of conductive-radiative heat transfer,
see, for instance, [1, 2, 3, 4, 8, 9].

The mathematical model, considered in this paper, involves a rectangular
parallelepiped Ω as a problem domain, a simple convection-diffusion equation
and nonlocal nonlinear boundary conditions of the type

∂u

∂n
(x) + κ

{∣∣u(x)
∣∣3u(x)−H

[∣∣u(·)
∣∣3u(·)

]}
= g(x), x ∈ Γ, (1.1)

on some part of the boundary Γ ⊂ ∂Ω (precise formulation of the problem is
given in Section 2). Here H ∈ L(L5/4(Γ )→ L5/4(Γ )) is a nonlocal contraction
operator of the following type:[
H(v)

]
(x)=

[(
(1− ε)I + εK

(
I − (1− ε)K

)−1
ε
)(v

0

)]
(x), v ∈ L5/4(Γ ), x ∈ Γ,
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where ε(x) ∈ (0, 1] is a function defined on Γ ∪Γh (Γh is some regular surface),
I is the identity operator and K ∈ L(L5/4(Γ ∪ Γh) → L5/4(Γ ∪ Γh)) is an
integral operator of type[

K

(
v1
v2

)](
x
y

)
=

(∫
Γ
k(x, t)v1(t) dS +

∫
Γh
k(x, z)v2(z) dS∫

Γ
k(y, t)v1(t) dS +

∫
Γh
k(y, z)v2(z) dS

)
,

v1 ∈ L5/4(Γ ), v2 ∈ L5/4(Γh), x, t ∈ Γ, y, z ∈ Γh,

where for arbitrary points r, s ∈ Γ ∪ Γh

k(r, s) =
cos(n(r), (s− r)) cos(n(s), (r − s))

π|r − s|2
θ(r, s).

Here θ(r, s) ∈ {0; 1} denotes visibility factor, n(r), n(s) are normal unit vectors
to Γ ∪ Γh.

A question about convergence of finite volume schemes is widely discussed in
literature. In [6,7] authors give complete framework for convergence analysis of
finite volume schemes applied for discretization of linear conductive-convective
problems with general boundary conditions. Even convergence analysis for pure
radiative, or conductive-convective problems with local Stefan–Boltzmann type
boundary conditions can be found (see [5]).

As it turns out, the framework provided by [6,7] can not be directly applied
to the boundary value problems having boundary conditions of type (1.1), since
convergence analysis for the problems having Neumann or Robin type bound-
ary conditions is heavily based on assumption about at least W 2

2 regularity
of solutions of the problem. In our case it is still not clear, if solutions of
the boundary value problem involving boundary conditions of type (1.1) have
W 2

2 (Ω) regularity.
Nevertheless, to perform convergence analysis, we took the framework pro-

vided by [6,7] and adapted it for our case, when we expect only W 1
2 (Ω)∩L∞(Ω)

type regularity for weak solutions of the boundary value problem.
Whereas standard finite volume schemes give weak convergence of dis-

cretized gradients and, as a consequence, strong convergence in spaces Lp(Ω),
the nonlinearity in (1.1) demands strong convergence of an equivalent of traces
on ∂Ω of solutions of discretized equations. Besides that, the non-locality of
the operator H demands specific methods to obtain uniform (with respect to
meshes) a priori estimates for solutions of discretized equations.

For continuous case these difficulties are tackled via embedding theorems in
Sobolev spaces, see, for instance [9], or specific trial functions, see, for instance
[1, 2, 3], which unlikely have discrete analogues.

Both problems for cases with rectangular geometry can be bypassed within
the framework of the finite volume method, especially to establish invertibility
of linearized operators for the discrete case.

The paper is organized as follows. In Section 2 we give the accurate descrip-
tion of the problem and main assumptions on data. After that we show how
to reduce the original problem to a more convenient one with linear growth
at infinity of the nonlinearity in Stefan–Boltzmann law. In Section 3 we show
that the linearized operators are uniformly invertible (for a fixed mesh), what
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276 K. Birgelis and U. Raitums

together with their Lipschitz continuity give unique solvability of discrete equa-
tions. Sections 4–6 are devoted to uniform estimates (independent from the
mesh) for discrete gradients and the proof that solutions of discrete equations
converge strongly in L2(Ω) and L2(∂Ω) (as the size of meshes goes to zero) to
the solution of the initial continuous problem.

2 Preliminaries

Let the problem domain Ω ⊂ R3 be rectangular parallelepiped Ω := (0, a1)×
(0, a2) × (0, a3) with boundary ∂Ω = Γ0 ∪ Γ1 ∪ Γ , Γ0 being the intersection
of Ω with the plane {x3 = 0}, Γ1 being the intersection of Ω with the plane
{x3 = a3} and Γ being the lateral boundary of Ω.

Let us consider the following conductive-radiative heat transfer problem

−4u+ γux3 = 0, x ∈ Ω,

u|Γ0
= u∗,

∂u

∂n

∣∣∣∣
Γ1

= 0,

∂u

∂n
+ κ
{
|u|3u−H

[∣∣u(·)
∣∣3u(·)

]}∣∣
Γ

= g

(2.1)

and suppose that the following assumptions hold on data:

H1. γ > 0, κ > 0, g ∈ L∞(Γ ), u∗ ∈ C2(R3) and u∗ does not depend on x3.
Moreover, we suppose that 0 ≤ g(x) ≤ d0 a.e. on x ∈ Γ and 0 ≤ u∗(x) ≤ d0
a.e. on x ∈ Γ0 for some constant d0;

It turns out, that under appropriate restrictions on geometry of Γh, the
nonlocal operator H will have the following properties (see, for instance [2,8]):

H2. H ∈ L(Lp(Γ )→ Lp(Γ )), ‖H‖ ≤ q < 1 for all 1 ≤ p ≤ ∞ and H maps
the nonnegative cone of Lp(Γ ) into itself, 1 ≤ p ≤ ∞.

Furthermore, if H1, H2 hold then for the problem (2.1) there exists one and
only one weak solution u in a Sobolev type space {v ∈ W 1

2 (Ω) : v|Γ ∈ L5(Γ )}
and 0 ≤ u(x) ≤ d1 a.e x ∈ Ω, where d1 := max{( d0

κ(1−q) )
1/4, d0} (see, for

instance [2, 8]). Therefore, by taking this into account, we can replace the
original problem with the equivalent one:

−4u+ γux3
= 0, x ∈ Ω,

u|Γ0
= u∗,

∂u

∂n

∣∣∣∣
Γ1

= 0,

∂u

∂n
+ κ
{
ψ(u)−H

[
ψ
(
u(·)

)]}∣∣
Γ

= g,

(2.2)

where original Stefan–Boltzmann type nonlinearity |t|3t is replaced with a new
one ψ(t), which coincide with Stefan–Boltzmann type nonlinearity only on
interval [−d1, d1], but at infinity has linear growth rate:

ψ(t) :=


|t|3t, |t| ≤ d1,
4d31t− 3d41, t > d1,

4d31t+ 3d41, t < −d1.
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It is easy to verify, that:

H3. ψ ∈ C1, 1(R) and there exist some constants µ > 0, L ≥ 0, ν > 0 such
that

0 ≤ ψ′(t) ≤ µ, t ∈ R;∣∣ψ′(t1)− ψ′(t2)
∣∣ ≤ L|t1 − t2|, t1 ∈ R, t2 ∈ R;

ψ(t)t ≥ νt2, |t| ≥ d1.

Let M denote a regular structured mesh on Ω (see, for instance, [6, 7])
with rectangular cells of type K = (a1K , b1K)× (a2K , b2K)× (a3K , b3K) ⊂ R3.
Let us assume, thatM satisfies the following regularity condition: there exists
there exists a positive constant c0 such that

c−10 (diamK)3 ≤ |K| ≤ c0(diamK)3 ∀K ∈M.

Here by |K| we denote the Lebesgue measure of K and

diamK := sup
x,y∈K

|x− y|.

Let us also define the following functional space:

L(M) :=
{
v ∈ L2(Ω)

∣∣ v is constant in every K ∈M
}
.

In what follows we will use the following notations (for v ∈ L(M)): dM – the
size of the meshM (dM := maxK∈M diamK); σ – one of six faces (façades) of
a cell K; EK - the collection of all six faces of a cell K; E – the union of all faces
σ ∈ EK , K ∈M; K|L – the face σ that is common to K and L; nKσ – the unit
normal to σ ∈ EK outward to K; n – unit normal to ∂Ω outward to Ω; ei –
unit vector aligned in direction of the axis of co-ordinates Oxi, i = 1, 2, 3; xK
– the barycenter of K; hKσ - size of K in the direction orthogonal to σ ∈ EK ;
|σ| – two-dimensional measure of σ ∈ E ; vK – value of v in the cell K. For
σ = K|L let us define:

vσ :=
hLσvK + hKσvL
hKσ + hLσ

.

For those σ ∈ EK that belong to ∂Ω we introduce ”artificial” cells K̂ as mirror
reflections ofK over the hyperplane, to which belongs the corresponding σ. The
corresponding values v̂K = vL for L = K̂ are defined specifically in accordance
to boundary conditions on the corresponding part of ∂Ω and then

vσ :=
(vK + v̂K)

2
.

In what follows we will also use the following notations: tr v – for an element
v the trace tr v as an element of Lp(∂Ω), 1 ≤ p ≤ ∞ is defined as

tr v(·) :=
∑
K∈M

∑
σ∈EK &σ⊂∂Ω

χσ(·)vσ,

Math. Model. Anal., 18(2):274–288, 2013.
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where χσ is the characteristic function of σ ⊂ ∂Ω; ∇v – for an element v the
discrete gradient ∇v ∈ (L(M))3 is defined as

∇v :=
1

|K|
∑
σ∈EK

|σ|nKσ(vσ − vK) in K, K ∈M;

σK+ and σK− – faces of K ∈ M that are orthogonal to the axis Ox3 of co-
ordinates, where σK+ corresponds to that face, points of which have greater
values of x3 than points of σK−; K+ and K− – cells that have with K common
face σK+ and σK− respectively; vK+ and vK− – values of v on the cells K+

and K− respectively; lσ – for a function l ∈ L1(σ) and σ ∈ E , σ ⊂ ∂Ω

lσ :=
1

|σ|

∫
σ

l(x) dS.

Here, if necessary to accent to which K the face σ corresponds, we write lKσ.
In accordance to boundary conditions in (2.2) for a cell K ∈M with a face

σ ∈ EK and σ ⊂ ∂Ω, we set (for v ∈ L(M))

v̂K := vK , if σ ∈ EK and σ ⊂ Γ1;

v̂K := 2u∗σ − vK , if σ ∈ EK and σ ⊂ Γ0;

v̂K := vK − hKσG(v)Kσ, if σ ∈ EK and σ ⊂ Γ ;

G(v)Kσ := κ

{
1

|σ|

∫
σ

ψ(vK) dS − 1

|σ|

∫
σ

H
[
ψ(v)

]
(x) dS

}
− 1

|σ|

∫
σ

g dS. (2.3)

Here the argument of the operator H is understood as ψ(v) := ψ(vK), if x ∈
Γ ∩K.

Now, by integrating the elliptic equation of (2.2) over each cell K ∈ M
and approximating resulting diffusive and convective fluxes with standard cen-
tral and upwind schemes, respectively (see [6, 7]), we will obtain the family of
equations

FK(w) := −
∑
σ∈EK

2
|σ|
hσ

(wσ − wK) + γ
(
|σK+|wK − |σK−|wK−

)
= 0, K ∈M,

(2.4)

where w ∈ L(M) is approximate solution of u and for each cell that have a
face on boundary ∂Ω the formulas (2.3) are used to calculate wσ.

The family of equations (2.4) we will denote shortly as

F (w)− f = 0,

where F : L(M) → L(M) and f incorporate the corresponding values of u∗σ
and gσ, which come from (2.3) for wσ with σ ∈ EK and σ ⊂ ∂Ω.

Along with the equation F (w) − f = 0 we will consider the linearized
equation

F ′(α)w̃ = f̃ ,

F ′(α) : L(M)→ L(M),
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with α ∈ L∞(Γ ), 0 ≤ α(x) ≤ µ a.e. x ∈ Γ , where

F ′K(α)w̃ := F ′(α)w̃|K (2.5)

:= −
∑
σ∈EK

2
|σ|
hσ

(w̃σ − w̃K) + γ
(
|σK |w̃K+ − |σK−|w̃K−

)
, K ∈M,

and for σ ∈ EK and σ ⊂ ∂Ω the corresponding values of ˆ̃w for σ are defined by
analogy to formulas (2.3):

ˆ̃wK := w̃K , if σ ⊂ Γ1, ˆ̃wK := −w̃K , if σ ⊂ Γ0,

ˆ̃wK := w̃K − hKσG′(αw̃)Kσ, if σ ⊂ Γ,

G′(αw̃)Kσ := κ

{
1

|σ|

∫
σ

α(x)w̃K dS −
1

|σ|

∫
σ

H
[
α(·)w̃

]
(x) dS

}
,

α(·)w̃ := α(x)w̃K , if x ∈ Γ ∩K.

3 Solvability of the Discretized Equation

We start with the following lemma.

Lemma 1. Let the hypotheses H1, H2, H3 hold and let α ∈ L∞(Γ ) be nonneg-
ative. Then the homogeneous linearized equation

F ′(α)w̃ = 0

with respect to w̃ ∈ L(M) has only trivial solution.

Proof. Let us multiply expressions (2.5) for the cell K by sign w̃K and sum
up. We have

0 = −
∑
K∈M

∑
σ∈EK

2
|σ|
hσ

(w̃σ − w̃K) sign w̃K

+ γ
∑
K∈M

(
|σK+|w̃K − |σK−|w̃K−

)
sign w̃K

=
∑

σ∈E &σ 6⊂∂Ω

2|σ|
hKσ + hLσ

|w̃L − w̃K | · |sign w̃L − sign w̃K |

+
∑
K∈M

∑
σ∈EK &σ⊂Γ0

|σ|
hσ
w̃K sign w̃K

+
∑
K∈M

∑
σ∈E &σ⊂Γ

|σ|G′(αw̃)Kσ sign w̃K

+ γ
∑
K∈M

|σK+| · |w̃K | · |sign w̃K − sign w̃K+|

+ γ
∑

K∈M&σK−⊂Γ0

|σK−| · |w̃K |. (3.1)

Math. Model. Anal., 18(2):274–288, 2013.
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From here it follows

κ

∫
Γ

G′(αw̃) sign w̃ dS = κ

∫
Γ

α|tr w̃| dS − κ
∫
Γ

H[αw̃] sign tr w̃ dS ≤ 0.

Since α(·) ≥ 0 then from hypothesis H2 it follows

‖αw̃‖L∞ ≤ q‖αw̃‖L∞ ,

i.e. αw̃ = 0 on Γ . After that, from (3.1) it follows immediately that w̃ ≡ 0. ut

Corollary 1. For any nonnegative α ∈ L∞(Γ ) the operator F ′(α) is invertible
and there exists a constant c1 = c1(M, µ) such that for all α ∈ L∞(Γ ), 0 ≤
α(x) ≤ µ, x ∈ Γ , there is ∥∥[F ′(α)

]−1∥∥ ≤ c1.
Proof. The proof immediately follows from the fact that the whole family
{F ′(α)} forms a compact set in L(L(M)→ L(M)). ut

Remark 1. Here and in what follows it is supposed that constants in hypotheses
H1, H2 and H3, and also the constant c0 are fixed once and for all.

Theorem 1. For every fixed regular mesh M and every fixed f ∈ L(M) (f
is defined by u∗ ∈ C2(R2), g ∈ L∞(Γ )) the equation F (w) = f is uniquely
solvable in L(M).

Proof. By virtue of hypotheses H1, H2 and H3 the operator F is Fréchet dif-
ferentiable and its Fréchet derivative on an element w ∈ L(M) has the repre-
sentation

F ′(w) = F ′(α), α(x) := ψ′(wK), x ∈ Γ ∩K,

with 0 ≤ α(x) ≤ µ. Further, again by virtue of H2 and H3 the mapping

L(M) 3 w → F ′(w) ∈ L
(
L(M)→ L(M)

)
is uniformly Lipschitz continuous and one can apply various damped Newton
methods (see, for instance, [3] for the continuous case) to obtain unique solv-
ability of the equation F (w) = f . ut

4 Boundedness of Solutions

To proceed further, we will need uniform (with respect to regular meshes M)
a priori estimates for solutions of (2.4).

Theorem 2. Let the hypotheses H1–H3 hold. Then there exists a constant c2
such that for all regular meshes M solutions w of (2.4) satisfy

‖w‖L∞(Ω) ≤ c2, ‖trw‖L∞(Γ ) ≤ c2.
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Proof. From the maximum principle it follows immediately that a solution w
of (2.4) can not achieve its strong local maximum on a cell K, which has no
common faces with ∂Ω. Therefore, it remains to investigate cases where w
attains its positive maximum a+ on a cell K, which has a face σ ⊂ ∂Ω.

If a+ ≤ ‖u∗‖L∞(Γ0), then we have our estimate.
If a+ > ‖u∗‖L∞(Γ0) and K has only one face σ ⊂ Γ1, then from (2.3) and

(2.4) it follows that w attains the same value a+ on neighborhoods of K. Hence,
it remains to investigate the case where K has a face σ ⊂ Γ .

If a+ ≤ d1, then we have our estimate.
If a+ > d1, then from (2.3) and (2.4) it follows

G(w)Kσ := κ

{
1

|σ|

∫
σ

ψ(wK) dS − 1

|σ|

∫
σ

H
[
ψ(w)

]
dS

}
− 1

|σ|

∫
σ

g dS ≤ 0.

(4.1)

For this case from H3 it it follows that for all cells L, which have a common
face with Γ ,

ψ(wL) ≤ ψ(wK).

From here, (4.1) and hypotheses H2 and H3 now it follows∫
σ

ψ(wK) dS ≤ |σ|
κ(1− q)

‖g‖L∞ ≤ d41|σ|.

Therefore, since ψ(a+) = 4d31a+−3d41 for a+ > d1, then the last inequality will
yield a+ ≤ d1, what contradicts with the starting assumption.

Therefore, finally we will have a+ ≤ d1. The case of negative minimum
a− of w is treated analogously. Moreover. it is possible to show that a− ≥ 0.
Obviously, these estimates for w imply the statement of the theorem. ut

We point out here that the assertion of Theorem 2 holds true uniformly
with respect to all regular meshes M.

5 Discrete Gradients and Their Convergence as dM → 0

To proceed further, we want to avoid nonzero boundary terms on Γ0. To this
end, we define u ∈ L(M) as

uK :=
1

|K|

∫
K

u∗ dx, K ∈M

(for mirror reflections L of cells K with common face σ ⊂ ∂Ω we use the values
of u∗ outside Ω). By virtue of H1 the function u as an element of L2(Ω) does
not depend on x3.

Then the function v ∈ L(M), v := u− u, will satisfy

−
∑
σ∈EK

2
|σ|
hKσ

(vσ − vK) + γ
(
|σK+|vK − |σK−|vK−

)
+ f̂K = 0,

f̂K := −
∑
σ∈EK

2
|σ|
hKσ

(uσ − uK), K ∈M, (5.1)

Math. Model. Anal., 18(2):274–288, 2013.
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and for mirror reflections L of cells K with some σ ⊂ ∂Ω

vL := v̂K := −vK , if σ ⊂ Γ0,

vL := v̂K := vK , if σ ⊂ Γ1,

vL := v̂K := vK − hKσG(v + u)Kσ + uK − ûK , if σ ⊂ Γ. (5.2)

Since u, u are bounded uniformly with respect to a regular mesh M, then
also values of v ∈ L(M) and values of tr v, G(v + u) are bounded by some
constant c3, which does not depend on the choice of a regular mesh M.

According to our notations, the discrete gradient ∇v ∈ L(M)3 of v is
defined as

∇v(x) := ∇vK :=
1

|K|
∑
σ∈EK

|σ|nKσ(vσ − vK), x ∈ K, K ∈M.

By construction,

1

2

∫
Ω

|∇v|2 dx ≤
∑
K∈M

∑
σ∈EK &σ=K|L

|σ|
hKσ + hLσ

|vK − vL|2 := ‖v‖21,M,

∥∥(ζv)
∥∥2
1,M ≤ 2‖ζ‖2C1 · ‖v‖21,M + 2(1 + dM)2c236|Ω| · ‖ζ‖2C1 (5.3)

for ζ ∈ C1(R3), where values of vL := v̂K for mirror reflections L of K over σ
are defined according to (5.2) and ζK are defined as mean values of ζ over K.

Lemma 2. If v ∈ L(M) satisfies equations (5.1)–(5.2), then there exists a
constant c4 = c4(Ω, d1, q, c0, κ, µ, ν) such that for all regular meshes M

‖v‖1,M ≤ c4.

Proof. The proof is standard: we multiply equations in (5.1) by corresponding
values vK and sum up. That gives

0 = −
∑
K∈M

∑
σ∈EK

2
|σ|
hKσ

(vσ − vK)vK

+ γ
∑
K∈M

∑
σ∈EK

(
|σK+|vK − |σK−|vK−

)
vK +

∫
Ω

vf̂ dx

= ‖v‖1,M +
∑
K∈M

∑
σ∈EK &σ⊂Γ

|σ|
2hKσ

(vK − v̂K)v̂K

+ γ
∑
K∈M

∑
σ∈EK

|σK+|(vK − vK−)vK +

∫
Ω

vf̂ dx. (5.4)

Since v̂k = −vK , if σ ∈ Γ0 and for an arbitrary vector (a1, . . . , am)∣∣(a1, . . . , am)
∣∣2 − 〈(a1, . . . , am), (−a1, a1, . . . , am−1)

〉
≥ 0,

then in the right-hand side of (5.4) the term with the coefficient γ is nonnega-
tive.
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Since values of vK , K ∈M (also values v̂K), are bounded by c3, then∫
Ω

f̂v dx =
∑
K∈M

∑
σ∈EK &σ=K|L

2|σ|
hKσ + hLσ

(uK − uL)(vK − vL)

−
∑
σ⊂∂Ω

∑
σ∈EK

2|σ|
2hKσ

(ûK − uK)v̂K ,

what gives ∣∣∣∣∫
Ω

f̂v dx

∣∣∣∣ ≤ 10|Ω|1/2d1‖v‖1,M + |Γ |d1c3.

Finally, due to (5.2),

|σ|
2hKσ

|vK − v̂K | ≤ 1/2|σ| ·
(∣∣G(v + u)Kσ

∣∣+ d1
)
≤ 1/2|σ|(c3 + d1),

|v̂K | ≤ (c3 + d1)(1 + dM).

Therefore∣∣∣∣ ∑
K∈M

∑
σ∈EK &σ⊂Γ

|σ|
2hKσ

(vK − v̂K)v̂K

∣∣∣∣ ≤ 1/2|Γ |(1 + dM)(c3 + d1)2.

From these estimates immediately follows the statement of the lemma. ut

Now, let {dNM} be sequence that converges to zero as N → ∞. To ev-
ery N we appoint vN as the solution of (5.1)–(5.2) for the mesh MN , which
corresponds to dNM.

By virtue of Theorem 2 and Lemma 2, without loss of generality, we can
assume that the sequences{

vN
}
⊂ L∞(Ω),

{
∇vN

}
⊂ L2(Ω; R3),

{
tr vN

}
⊂ L∞(∂Ω)

are uniformly bounded and weak-∗ converge to

v0 ∈ L∞(Ω), ρ ∈ L2(Ω;R3), ω ∈ L∞(∂Ω)

respectively.
We will say that a vector-function η ∈ L1(Ω; R3) is eligible, if the values

ηK :=
1

|K|

∫
K

η dx, ησ :=
1

|σ|

∫
σ

〈
η(·), nKσ

〉
dS σ ∈ EK ,

∫
K

div η(x) dx

are defined and finite (div η(·) is understood in the sense of distributions) and
the relationship ∫

K

div η(x) dx =
∑
σ∈EK

〈
|σ|ησ, nKσ

〉
holds for every K ∈M.
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Let η be an eligible vector-function. We multiply vectors ∇vNK by |K|ηK
and sum up. That give∫

Ω

〈
∇vN , η

〉
dx =

∑
K∈M

∑
σ∈EK

(
−vNK

)〈
|σ|ησ, nKσ

〉
+
∑
K∈M

∑
σ∈EK &σ⊂∂Ω

vNσ
〈
|σ|ησ, nKσ

〉
+R

(
vN , η

)
, (5.5)

where

R
(
vN , η

)
:=

∑
K∈M

∑
σ∈EK

〈
|σ|nKσ, ηK − ησ

〉(
vNσ − vNK

)
, (5.6)

∣∣R(vN , η)∣∣ ≤ ∥∥vN∥∥
1,M

( ∑
K∈M

∑
σ∈EK &σ=K|L

h2σ
hKσ + hLσ

〈nKσ, ηK − ησ〉2
)1/2

,

and for every eligible η = ∇ϕ

∣∣R(vN ,∇ϕ)∣∣ ≤ 2c4

3∑
i=1

(∫
Ω

(
δiϕ(x)

)2
dx

)1/2

,

δiϕ(x) := sup
{∣∣ϕxi(x+ tei)− ϕxi(x)

∣∣ : x+ tei ∈ Ω, |t| ≤ dM
}
,

x ∈ Ω, i = 1, 2, 3.

By virtue of (5.6), for every η ∈ C1(Ω; R3) R(vN , η)→ 0 as N →∞ and,
after passing to the limit N →∞ in (5.5),∫

Ω

〈ρ, η〉 dx =

∫
Ω

(−v0) div η dx+

∫
∂Ω

ω〈η, n〉 dS,

what gives
v0 ∈W 1

2 (Ω), ρ = ∇v0, ω = tr v0.

In turn, uniform boundedness of ‖vN‖1,M, ‖vN‖L∞(Ω), estimate (5.3) with
appropriate cut-off functions ζ and Lemma 5.5 of [6] give that the sequence
{vN} ⊂ L2(Ω) is precompact. Therefore, without loosing generality, we can
assume that the whole sequence {vN} converges strongly to v0 in L2(Ω) and
the whole sequence {∇vN} converges weakly to ∇v0 in L2(Ω; R3) as N →∞
(we will see later that v0 +u∗ gives the solution of (2.2) and as such is unique).

The space L2(Ω; R3) is the orthogonal sum

L2

(
Ω;R3

)
=
{
∇ϕ | ϕ ∈W 1

2 (Ω)
}
⊕N ,

N :=
{
ξ ∈ L2

(
Ω;R3

)
| div ξ = 0, 〈ξ, n〉 = 0 on ∂Ω

}
.

Hence, ∇vN has the representation

∇vN = ∇%N + ξN ,

%N ∈W 1
2 (Ω), ξN ∈ N , %N ⇀ v0 weakly in W 1

2 (Ω) as N →∞,
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and for every ϕ, for which η = ∇ϕ is eligible,∫
Ω

(
−%N

)
div∇ϕdx+

∫
∂Ω

tr %N
∂ϕ

∂n
dS

=

∫
Ω

〈
∇%N , ∇ϕ

〉
dx =

∫
Ω

〈∇vN , ∇ϕ〉 dx =

∫
Ω

(
−vN

)
div∇ϕdx

+

∫
∂Ω

tr vN
∂ϕ

∂n
dS +R

(
vN , ∇ϕ

)
. (5.7)

Let σ̃ ⊂ ∂Ω be a subset, which belongs to one face of Ω, and the distance
between σ̃ and other faces of Ω is positive. Define ϕN as

ϕN (x) :=
1

2π

∫
∂Ω

χσ̃(y) tr vN (y)
1

|x− y|
dSy, x ∈ R3.

Due to Theorem 2 and properties of the Poisson’s integrals, see, for instance,
I.M. Stein [10, Chapter III], all ϕN are harmonic in Ω, belong to a bounded

set in C2(D) for every fixed D ⊂ R3 with dist{D; σ̃} > 0, and near the
hyperplane E, to which belongs σ̃,∣∣∣∣∂ϕN∂l (x)

∣∣∣∣ ≤ c3, if l is orthogonal to E,∣∣∣∣∂ϕN∂l (x)

∣∣∣∣ ≤ c4(c3, Ω)
[
1 +

∣∣ln(dist{x;E}
)∣∣], if l is parallel to E.

These properties are sufficient for that η := ∇ϕN are eligible and that

R
(
vN ,∇ϕN

)
→ 0 as N →∞.

Hence, inserting ∇ϕN in (5.7) we have∫
σ̃

(
tr %N − tr vN

)
tr vN dS → 0 as N →∞,

and from embedding theorems for %N it follows that the sequence {tr vN} also
converges strongly in L2(σ̃) to tr v0.

Arbitrariness of σ̃ and the uniform boundedness of tr vN now imply that
the whole sequence {tr vN} converges to tr v0 strongly in L2(∂Ω).

6 Convergence to the Solution of the Boundary Value
Problem

Obtained in the previous sections properties of convergence for the sequence
{vN} are sufficient for that v0 gives the solution from W 1

2 (Ω) of the initial
boundary value problem (2.2).

To begin with, we point out that the family of functions {uN}, where uN

is defined for the corresponding mesh MN , converges strongly in L2(Ω) and
L2(∂Ω) to u∗.
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Let ϕ be sufficiently smooth function, say, ϕ ∈ C2(R3), which is equal to
zero near the boundary Γ0. Let, for a chosen mesh M,

ϕK := ϕ(xK), ϕσ :=
hLσϕK + hKσϕL

hLσ + hKσ
, if σ = K|L, K ∈M, σ ∈ EK ,

where xK is the barycenter of K and, if necessary, the mirror reflections over
σ ⊂ ∂Ω are used.

We multiply equations (5.1) by corresponding ϕK and sum up. We get

0 = −
∑
K∈M

∑
σ∈EK

2
|σ|
hσ

(vσ − vK)ϕK

+ γ
∑
K∈M

(
|σK+|vK − |σK−|vK−

)
ϕK +

∑
K∈M

ϕK f̂K

= −
∑
K∈M

∑
σ∈EK

2
|σ|
hσ

(ϕσ − ϕK)vK

− γ
∑
K∈M

(
|σK+|ϕK − |σK−|ϕK−

)
vK

+
∑
K∈M

∑
σ∈EK &σ⊂∂Ω

2
|σ|
hσ

(ϕσ − ϕK)vK

−
∑
K∈M

∑
σ∈EK &σ⊂∂Ω

|σ|
hσ

(vσ − vK)ϕK

− γ
[ ∑
K∈M

∑
σ∈EK &σ⊂Γ0

|σ|v̂KϕK −
∑
K∈M

∑
σ∈EK &σ⊂Γ1

|σ|ϕ̂KvK
]

+
∑
K∈M

ϕK f̂K

≡ −J1 − J2 + J3 − J4 − J5 + J6, (6.1)

where ϕ̂K is the value ϕ(x̂K) for the mirror image of K.
Since we have regular meshes and established in previous sections conver-

gence properties for the sequence {vN}, then (6.1) with vN , f̂N (defined by

(5.1) for the mesh MN ) instead v, f̂ gives

J1 →
∫
Ω

v04ϕdx as N →∞, J2 → γ

∫
Ω

ϕx3v0 dx as N →∞,

J3 →
∫
∂Ω

tr v0
∂ϕ

∂n
dS as N →∞,

J4 →
∫
Γ

(
G(v0 + u∗)−

∂u∗
∂n

)
ϕdS as N →∞,

J5 → γ

∫
Γ1

tr v0ϕdS as N →∞,

J6 → −
∫
Ω

u∗4ϕdx+

∫
∂Ω

u∗
∂ϕ

∂n
dS −

∫
Γ

∂u∗
∂n

ϕdS as N →∞.
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This way

−
∫
Ω

(v0 + u∗)4ϕdx− γ
∫
Ω

(v0 + u∗)ϕx3
dx+

∫
∂Ω

(v0 + u∗)
∂ϕ

∂n
dS

−
∫
Γ

G(v0 + u∗)ϕdS + γ

∫
Γ1

v0ϕdS = 0

for all ϕ ∈ C2(R3), which are zero in a neighborhood of Γ0.
Since v0 ∈ W 1

2 (Ω), u∗ ∈ C2(R3), u∗ does not depend on x3 and v0 = 0
on Γ0, then∫

Ω

[〈
∇(v0 + u∗), ∇ϕ

〉
+ γ(v0 + u∗)x3ϕ

]
dx

− κ
∫
Γ

{
ψ(v0 + u∗)−H

[
ψ(v0 + u∗)

]}
ϕdS +

∫
Γ

gϕ dS = 0

for all ϕ ∈W 1
2 (Ω) with ϕ = 0 on Γ0.

Therefore, v0 + u∗ is the solution of our initial problem (2.2).
By construction, for mesh MN the function wN := vN + uN (uN corre-

sponds to u∗ for the meshMN ) is the solution for the family of equations (2.4).
This way, we have the following result.

Theorem 3. Let the hypotheses H1–H3 hold and let {MN} be a sequence of
regular rectangular meshes, for which the size dMN → 0 as N →∞.

Then the discretized equations (2.4) of the finite volume method have unique
solutions wN for every N and the sequence {wN} converges strongly in L2(Ω)
and L2(∂Ω) to the solution u of the continuous boundary value problem (2.2).
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