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Abstract. We explore questions related to the aggregation operators and aggrega-
tion of fuzzy sets. No preliminary knowledge of the aggregation operators theory and
of the fuzzy sets theory are required, because all necessary information is given in
Section 2. Later we introduce a new class of γ-aggregation operators, which "ignore"
arguments less than γ. Due to this property γ-aggregation operators simplify the
aggregation process and extend the area of possible applications. The second part of
the paper is devoted to the generalized aggregation problem. We use the definition
of generalized aggregation operator, introduced by A. Takaci in [7], and study the
pointwise extension of a γ-agop.
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1 Introduction

We explore questions related to the aggregation operators and aggregation of
fuzzy sets, i.e. elements of the class F (R) = {P |P : R → [0, 1]}. No preliminary
knowledge of the aggregation operators theory and of the fuzzy sets theory are
required, because all necessary information is given in Section 2. Further the
paper is organized in the following way: Section 3 is devoted to a new class
of aggregation operators, so called γ-aggregation operators; Section 4 deals
with the aggregation of fuzzy sets w.r.t. different order relations and pointwise
extension is studied in details; Section 5 provides some guidelines on practical
application and we give conclusions in Section 6.
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2 Preliminaries

We provide basic knowledge of the aggregation operators (hereinafter for the
brevity–agop) and fuzzy sets theory necessary for understanding the materials
of the paper.

2.1 Fundamentals on aggregation operators

Aggregation of several input values into a single output value is an indispens-
able tool not only of mathematics or physics, but also when studying different
problems in engineering, economics and other fields of science. The problems
of aggregation are very broad in general. We give only definition, examples
and the main properties of agops which are needed for our work. For more
information an interested reader can refer to e.g. [8].

Definition 1. A mapping A : ∪n∈N[0, 1]
n → [0, 1] is an agop on the unit

interval if for every n ∈ N the following conditions hold:

(A1) A(0, . . . , 0) = 0, (A2) A(1, . . . , 1) = 1,

(A3) (∀i = 1, n) (xi ≤ yi) ⇒ A(x1, x2, . . . , xn) ≤ A(y1, y2, . . . , yn).

Conditions (A1) and (A2) are called boundary conditions, and they ensure
that aggregation of completely bad (good) results will give the completely bad
(good) output. Condition (A3) resembles the monotonicity property of A.

In general, the number of the input values to be aggregated is unknown,
and therefore an agop can be presented as a family A = (A(n))n∈N, where
A(n) = A|[0,1]n . Operators A(n) and A(m) for different n and m need not be
related, i.e. given an operator A(n) not always we can restore the form of A(m)

for an arbitrary n,m ∈ N.

Definition 2. An element x ∈ [0; 1] is called A-idempotent element whenever
A(n)(x, . . . , x) = x, ∀n ∈ N. A is called an idempotent agop if each x ∈ [0; 1] is
an idempotent element of A.

0 and 1 are trivial A-idempotent elements for an arbitrary agop.

Definition 3. An agop A is called a symmetric agop if

∀n ∈ N, ∀x1, . . . , xn ∈ [0; 1] : A(x1, . . . , xn) = A(xπ(1), . . . , xπ(n))

for all permutations π =
(

π(1), . . . , π(n)
)

of (1, . . . , n).

A weighted mean A(x1, . . . , xn) =
∑n

i=1 wixi, where
∑n

i=1 wi = 1 is an example
of a nonsymmetric agop.

Definition 4. An agop A is associative if

∀n,m ∈ N, ∀x1, . . . , xn, y1, . . . , ym ∈ [0; 1] :

A(x1, . . . , xn, y1, . . . , ym) = A(A(x1, . . . , xn), A(y1, . . . , yn)).
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The associativity of an agop allows to aggregate first some subsystems of all
inputs, and then the partial outputs. For practical purposes we can start with
aggregation procedure before knowing all inputs to be aggregated.

Definition 5. An agop A is bisymmetric if ∀n,m ∈ N, ∀x11, . . . , xmn ∈ [0; 1] :

A(mn)(x11, . . . , xmn) = A(m)(A(n)(x11, . . . , x1n), . . . , A(n)(xm1, . . . , xmn))

= A(n)(A(m)(x11, . . . , xm1), . . . , A(m)(x1n, . . . , xmn)).

The bisymmetry allows to aggregate first rows and then partial outputs or first
columns and then partial outputs if information is stored in the form of the
matrix. Bisymmetry is implied by associativity and symmetry.

Definition 6. An element e ∈ [0; 1] is called a neutral element of A

if ∀n ∈ N, ∀x1, . . . , xn,∈ [0; 1]

if xi=e for some i∈{1, . . . ,n} then A(x1, . . . ,xn)=A(x1, . . . ,xi−1, xi+1, . . ., xn).

So the neutral element can be omitted from aggregation inputs without influ-
encing the final output.

Definition 7. An element a ∈ [0; 1] is called an absorbing element or annihi-
lator of A if

∀n ∈ N, ∀x1, . . . , xn,∈ [0; 1] : a ∈ {x1, . . . , xn} ⇒ A(x1, . . . , xn) = a.

As the most popular examples of aggregation operators there can be men-
tioned the following:

1. The Arithmetic Mean: A(x1, . . . , xn) =
1
n

∑n

i=1 xi is a symmetric, bisym-
metric and idempotent agop with no neutral and absorbing elements and no
associativity.

2. The Weighted Mean: A(x1, . . . , xn) =
∑n

i=1 wixi, where ∀i wi ∈ [0; 1],
∑n

i=1 wi = 1 is a bisymmetric and idempotent agop with no neutral and ab-
sorbing elements and having no associativity and symmetry properties.

3. The Minimum: A(x1, . . . , xn) = min(x1, . . . , xn) is a symmetric, asso-
ciative, bisymmetric and idempotent agop with 1 being a neutral element and
0 being an absorbing element.

2.2 Fuzzy set theory: basic notions

The concept of the fuzzy sets was introduced by Zadeh in [10]. Now there
are published many fundamental works on fuzzy sets both on the theoretical
aspects and applications. An interested reader can find information on different
aspects of the fuzzy sets theory e.g. in monographs [1, 4] and others. Here we
restrict ourselves to the notions, which are needed for our work.

Definition 8. A mapping P : X→L, where L is an arbitrary complete lattice
is called a fuzzy subset of a set X .

Math. Model. Anal., 15(1):83–96, 2010.
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Further in the paper we will take the interval [0, 1] with natural order as the
lattice L and the set of real numbers R in the role of X . F (R) denotes the set
of all fuzzy subsets of R. Let’s fix α ∈ [0, 1]:

Definition 9. The set Pα={x : P (x)≥α} is called the α-cut of a fuzzy set P .

Definition 10. The set Pα = {x : P (x) > α} is called the strict α-cut of the
fuzzy set P .

Definition 11. The set P 0 is called the support of the fuzzy set P .

Although fuzzy sets conceptually are interpreted as generalized sets, P is often
called a membership function. The concept of a fuzzy number is very important
in the theory of fuzzy sets.

Definition 12. A fuzzy set P : R→[0, 1] is called a fuzzy number if the fol-
lowing holds:

1. There exists exactly one point xP ∈ R such that P (xP ) = 1 (xP is called
the vertex of P ).

2. All α-cuts α > 0 are closed, bounded intervals.

3. Function P is nondecreasing on the interval (−∞;xP ] and non-increasing
on the interval (xP ; +∞).

We define a triangle fuzzy number as a fuzzy number with the following mem-
bership function:

P (x) =



















0, if x < p1,

(x− p1)/(p2 − p1), x ∈ [p1; p2],

(x− p3)/(p2 − p3), x ∈ [p2; p3],

0, if x > p3

for some p1 ≤ p2 ≤ p3 and:

P (p1) =
p2 − p1
p2 − p1

= 1, when p1 = p2 < p3,

P (p3) =
p3 − p2
p3 − p2

= 1, when p1 < p2 = p3,

P (p1) =
p2 − p1
p2 − p1

= 1, when p1 = p2 = p3.

Fuzzy numbers P1, P2 are ordered by inclusion

P1 ≤F P2 if P1(x) ≤ P2(x), ∀x ∈ R.

Other order relations used in this paper are specified later in the corresponding
subsections.
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3 New Class of Aggregation Operators: γ-agops

3.1 Definition of γ-agop

We introduce the notion of γ-agop by means of additional property (Aγ). Let
γ ∈ [0; 1] and ϕγ : [0, 1] → {0} ∪ [γ, 1] is defined in the following way:

ϕγ(x) =

{

0, if x < γ,
x, if x ≥ γ.

Definition 13. A : ∪n∈N[0, 1]
n → [0, 1] is an γ-agop on the unit interval if the

following conditions hold:

(A1) A(0, . . . , 0) = 0, (A2) A(1, . . . , 1) = 1

(Aγ) (∀i = 1, n, γ ∈ [0, 1]) (ϕγ(xi) ≤ ϕγ(yi)) ⇒ A(x1, . . . xn) ≤ A(y1, . . . , yn).

Remark. In case γ = 0 and ϕ0(x) = x condition (Aγ) reduces to condition
(A3) in the Definition 1.

Proposition 1. If A satisfies (Aγ) and γ > γ
′

then A satisfies (Aγ
′ ).

Proof. Let’s take arbitrary (x1, . . . , xn), (y1, . . . , yn) satisfying the inequality
ϕγ

′ (xi) ≤ ϕγ
′ (yi), ∀i = 1, n. Since ϕγ

′ (xi) ≤ ϕγ
′ (yi) and γ > γ

′

from the
definition of ϕγ it follows that ϕγ(xi) ≤ ϕγ(yi). Therefore by condition (Aγ):

A(x1, . . . , xn) ≤ A(y1, . . . , yn)

and thus (Aγ
′ ) is satisfied. ⊓⊔

Corollary 1. Each γ-agop A satisfies properties (A1)–(A3), and hence is an
agop.

Assertion of Proposition 1 is not working in the opposite direction, i.e. when
γ

′

> γ. Examples of γ-agops given in the next section show this.

3.2 Examples of γ-agops

It is intuitively clear that the formula of γ-agop should neutralize all arguments
less than γ. Otherwise the left part of implication (Aγ) will be true, but due
to the monotonicity we will not receive the right part of implication.

Here are examples of γ-agops:

Example 1.

A1(x1, . . . , xn) =

n
∑

i=1

wixi,

where

wi =

{

0, if xi < γ,

1/n, if xi ≥ γ.

Math. Model. Anal., 15(1):83–96, 2010.
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Example 2.
A2(x1, . . . , xn) = min(w1x1, . . . , wnxn),

where

wi =

{

0, if xi < γ,

1, if xi ≥ γ.

The class of γ-agops is wider than the class of agops. As an example we can
mention usual arithmetic mean, which does not satisfy (Aγ) if γ > 0.

3.3 Equivalence relation induced by ϕγ

Let’s introduce relation ≡ϕγ
on [0, 1]n in the following way:

(x1, . . . ,xn) ≡ϕγ
(y1, . . . ,yn)⇔(ϕγ(x1), . . . , ϕγ(xn)) = (ϕγ(y1), . . . , ϕγ(yn)).

Further we show that ≡ϕγ
is an equivalence relation:

Reflexivity:

(ϕγ(x1), . . . , ϕγ(xn)) = (ϕγ(x1), . . . , ϕγ(xn) ⇒ (x1, . . . , xn) ≡ϕγ
(x1, . . . , xn).

Symmetry:

(x1, . . . , xn) ≡ϕγ
(y1, . . . , yn) ⇒ (ϕγ(x1), . . . , ϕγ(xn)) = (ϕγ(y1), . . . , ϕγ(yn))

⇒(ϕγ(y1), . . . ,ϕγ(yn))=(ϕγ(x1), . . . ,ϕγ(xn))⇒(y1, . . . ,yn) ≡ϕγ
(x1, . . . ,xn).

Transitivity:

(x1, . . . , xn) ≡ϕγ
(y1, . . . , yn) and (y1, . . . , yn) ≡ϕγ

(z1, . . . , zn)

⇒ (ϕγ(x1), . . . , ϕγ(xn)) = (ϕγ(y1), . . . , ϕγ(yn)) and

(ϕγ(y1), . . . , ϕγ(yn)) = (ϕγ(z1), . . . , ϕγ(zn)) ⇒ (ϕγ(x1), . . . , ϕγ(xn))

= (ϕγ(z1), . . . , ϕγ(zn)) ⇒ (x1, . . . , xn) ≡ϕγ
(z1, . . . , zn).

When γ < 1 the number of equivalence classes s is infinite. In the particular
case, when γ = 1, s is finite. We will denote equivalence classes Xk, k =
1, 2, . . . , s

Proposition 2. If (x1, . . . ,xn), (y1, . . . ,yn) ∈ Xk, A is a γ-agop then

A(x1, . . . ,xn) = A(y1, . . . ,yn)

Proof. Let’s take (x1, . . . , xn), (y1, . . . , yn) ∈ Xk, then according to the defi-
nition of ≡γ we can write: ϕγ(x1, . . . , xn) = ϕγ(y1, . . . , yn). Let’s assume that
A(x1, . . . , xn) 6= A(y1, . . . , yn). Then (Aγ) implies:

A(x1, . . . , xn) < A(y1, . . . , yn).

The same reasoning will lead us to the inequality:

A(y1, . . . , yn) < A(x1, . . . , xn).
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The above derived inequalities cannot be true at the same time, and this means
that our assumption on A(x1, . . . , xn) 6= A(y1, . . . , yn) is not true. ⊓⊔

As a corollary from Proposition 2 we obtain the following result:

Corollary 2. γ-agops for γ > 0 are not idempotent agops.

Proof. Proof immediately follows from the result of Proposition 2 and the
definition of ≡γ :

∀γ ∈ (0; 1], ∀(xk, . . . , xk) : xk < γ, A(xk, . . . , xk) = A(0, . . . , 0) = 0 6= xk.

⊓⊔

4 Generalized Aggregation

The problem of aggregation can be generalized if we use fuzzy subsets as input
information. Functions are aggregated in this case. We are further developing
this approach, which is initiated by Takaci in [7]. Other interesting, concep-
tually different methods of generalization can be found in literature, e.g. in
[5, 6, 9] and others.

4.1 Definition of generalized agop

We give the definition of a generalized agop ([7]). This notion is the base of
our further considerations.

Let F (R) = {P |P : R → [0, 1]} and ≺ is some order relation on F (R) with
minimal element 0̃ ∈ F (R) and maximal element 1̃ ∈ F (R) then:

Definition 14. A mapping Ã : ∪n∈NF (R)n → F (R) is called a generalized
agop w.r.t. the order relation ≺, if the following conditions hold:

(Ã1) Ã(0̃, . . . , 0̃) = 0̃, (Ã2) Ã(1̃, . . . , 1̃) = 1̃,

(Ã3) (∀i = 1, n) (Pi ≺ Qi) ⇒ Ã(P1, . . . , Pn) ≺ Ã(Q1, . . . , Qn),

where P1, . . . , Pn, Q1, . . . , Qn ∈ F (R).

Many questions related to generalized aggregation arise. The most important
of them are touched in the sequel.

4.2 Pointwise extension

We recall the definition of a pointwise extension:

Definition 15. Let P1, . . . , Pn ∈ F (R), Ã : ∪n∈NF (R)n → F (R) and A be an
ordinary agop on the unit interval, then Ã is a pointwise extension of A if the
following holds:

(Ẽ1) : (∀x ∈ R, Ã(P1, . . . , Pn)(x) = A(P1(x), . . . , Pn(x)),

where Ã(P1, . . . , Pn) is a resulting fuzzy set obtained by means of application
the operator Ã to the fuzzy subsets P1, . . . , Pn.

Math. Model. Anal., 15(1):83–96, 2010.
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We start the study of a pointwise extension in the next subsections. At the
beginning we review its properties and later we consider a pointwise extension
of a γ-agop.

4.2.1 Properties of pointwise extension of an agop

We consider properties of a pointwise extension of an arbitrary agop A in this
subsection.

Proposition 3. Let Ã be a pointwise extension of A, then the following state-
ments are true:

(1) if A is symmetric then Ã is symmetric,

(2) if A is associative then Ã is associative,

(3) if A is bisymmetric then Ã is bisymmetric,

(4) if A is idempotent then Ã is idempotent.

Proof. In order to prove (1) we need to show that

∀P1, . . . ,Pn ∈ F (R), ∀x∈R, ∀n∈N : Ã(P1, . . . , Pn)(x) = Ã(Pπ(1), . . . , Pπ(n))(x)

for all permutations π = (π(1), . . . , π(n)) of (1, . . . , n). Due to definition of Ã
and symmetry of A we can write:

Ã(P1, . . . ,Pn)(x) = A(P1(x), . . . ,Pn(x)) = A(Pπ(1)(x), . . . ,Pπ(n)(x)) (4.1)

for an arbitrary permutation π = (π(1), . . . , π(n)) of (1, . . . , n).
We recall definition of Ã again and continue (4.1):

A(Pπ(1)(x), . . . , Pπ(n)(x)) = Ã(Pπ(1), . . . , Pπ(n))(x).

Proof of (2) and (3) is analogous to (1). In order to prove (4) we need to show
that

∀Pi ∈ F (R), ∀x ∈ R, ∀n ∈ N : Ã(n)(Pi, . . . , Pi)(x) = Pi(x).

It immediately follows from the definition of Ã and idempotence of A:

Ã(n)(Pi, . . . , Pi)(x) = A(n)(Pi(x), . . . , Pi(x)) = Pi(x).

⊓⊔

Proposition 4. If Ã is a pointwise extension of A, a and e are correspondingly
an absorbing and a neutral elements of A, then the following statements are
true:

(1) element P ∗(x) ∈ F (R) defined by the equality P ∗(x) = a, ∀x ∈ R is an
absorbing element of Ã,

(2) element Q∗(x) ∈ F (R) defined by the equality Q∗(x) = e, ∀x ∈ R is a
neutral element of Ã.
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Proof. In order to prove (1) we need to show that ∀P1, . . . ,Pn∈F (R), ∀x∈R,
∀n∈N we have that Ã(P1, . . . ,Pn)(x) = P ∗(x), if P ∗ ∈ {P1, . . . ,Pn}. Let’s
consider an arbitrary x ∈ R then due to the definition of Ã we can write:

Ã(P1, . . . , Pn)(x) = A(P1(x), . . . , Pn(x)). (4.2)

P ∗ ∈ {P1, . . . , Pn} and P ∗(x) = a, ∀x ∈ R, therefore one of A(P1(x), . . . , Pn(x))
arguments is a. Since a is an absorbing element of A, the equality (4.2) can be
continued in the following way

A(P1(x), . . . , Pn(x)) = a

for an arbitrary chosen x ∈ R. Thus, we have received that

Ã(P1, . . . , Pn)(x) = a, ∀P1, . . . , Pn ∈ F (R), ∀x ∈ R.

If we assume that P ∗∗(x) 6= P ∗(x) for some x ∈ R and P ∗∗(x) is also an
absorbing element of Ã then Ã(P1, ..., Pn)(x) where vector (P1, . . . , Pn) is such
that P ∗, P ∗∗ ∈ {P1, . . . , Pn} on the one hand is equal to P ∗(x), but on the other
hand it is equal to P ∗∗(x). Thus we see that inequality is impossible, therefore
our assumption on existence of P ∗∗ different from P ∗ is not true and P ∗ is the
only absorbing element or equivalently all absorbing elements of Ã are equal.
In order to prove (2) we need to show that ∀P1, . . . , Pn ∈ F (R), ∀x ∈ R, ∀n ∈ N

Ã(P1, . . . , Pi, . . . , Pn)(x) = Ã(P1, . . . , Pi−1, Pi+1, . . . , Pn)(x)

if Pi = Q∗ for some i ∈ {1, . . . , n}. We consider an arbitrary x ∈ R and assume
that Pi(x) = Q∗(x) = e, ∀x for some i ∈ {1, . . . , n}, then exploiting Ã definition
we can write:

Ã(P1, . . . , Pi, . . . , Pn)(x) = A(P1(x), . . . , Pi(x), . . . , Pn(x)) (4.3)

i-th argument of A(P1(x), . . . , Pi(x), . . . , Pn(x)) is e and can be omitted as it
is a neutral element of A. Thus we continue (4.3) in the following way:

A(P1(x), . . . , Pi(x), . . . , Pn(x)) = A(P1(x), . . . , Pi−1(x), Pi+1(x), . . . , Pn(x))

= Ã(P1, . . . , Pi−1, Pi+1, . . . , Pn)(x).

We assume that a neutral element is not unique, i.e. ∃Q∗∗(x) 6= Q∗(x) for
some x ∈ R and Q∗∗(x) is also a neutral element of Ã and we consider a vector
(P1, . . . , Pn) s.t. P1 = Q∗ and Pi = Q∗∗, i = 2, . . . , n. Using neutrality of Ã
versus Q∗ we obtain:

Ã(P1, . . . , Pn) = Ã(n−1)(Q
∗∗, . . . , Q∗∗) (4.4)

now we apply neutrality versus Q∗∗, property Ã(1)(P ) = P and continue (4.4):

Ã(n−1)(Q
∗∗, . . . , Q∗∗) = Ã(n−2)(Q

∗∗, . . . , Q∗∗) = · · · = Ã(1)(Q
∗∗) = Q∗∗.

In the same way first employing neutrality of Q∗∗ and then property Ã(1)(P ) =
P we obtain:

Ã(P1, . . . , Pn) = Ã(1)(Q
∗) = Q∗.

Math. Model. Anal., 15(1):83–96, 2010.
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Thus we have

Ã(P1, . . . , Pn) = Q∗ and Ã(P1, . . . , Pn) = Q∗∗

but Q∗ 6= Q∗∗ and so, we have obtained contradiction. ⊓⊔

4.2.2 Pointwise extension of γ- agop w.r.t. order relation ⊆α
F1

The main subject of this subsection is a γ-agop, and we study its pointwise
extension w.r.t. to order relation ⊆α

F1
. If one considers order ⊆F1 defined on

F (R) in the following way:

P,Q ∈ F (R), P ⊆F1
Q ⇔ (∀x ∈ R)(P (x) ≤ Q(x)),

then in this case the minimal element 0̃ and the maximal element 1̃ are given
respectively by :

0̃(x) = 0, 1̃(x) = 1, ∀x ∈ R.

Then it is proved (see [7]) that pointwise extension is a generalized agop w.r.t.
order ⊆F1. Given α ∈ [0, 1] we introduce an order ⊆α

F1 on F (R) in the following
way:

P,Q ∈ F (R), P ⊆α
F1 Q ⇔ (∀x ∈ R)(P (x) ≥ α ⇒ P (x) ≤ Q(x)).

The minimal element 0̃ and the maximal element 1̃ are defined correspondingly:

0̃(x) = αx ≤ α, 1̃(x) = 1, ∀x ∈ R.

αx depends on x and it is clear that 0̃ defined in this way is not unique. E.g.

0̃(x) = α/2, ∀x and 0̃ =

{

0, if x < x0,

α/3, if x ≥ x0,

both represent the class of the minimal elements. Unless it is specified differ-
ently, we consider that 0̃ is defined in the general way. As one can see 1̃ for
both orders ⊆F1 and ⊆α

F1 are defined in the same manner. And 0̃ for ⊆F1 is
one particular case of 0̃ for ⊆α

F1. It immediately follows from order definitions
that ⊆F1 is a particular case of ⊆α

F1 (when α = 0). The result formulated
below, shows that under a special condition pointwise extension of a γ-agop
will be an object of the class of generalized agops introduced in Section 4.1.

Theorem 1. If Ã is a pointwise extension of a γ-agop A, and γ > α, then it
is generalized agop w.r.t. order relation ⊆α

F1.

Proof. We need to show Ã1–Ã3 from the Definition 14. Consider Ã1. Accord-
ing to definitions of pointwise extension and 0̃ for an arbitrary x ∈ R we can
write:

Ã(0̃, . . . , 0̃)(x) = A(0̃(x), . . . , 0̃(x)) = A(αx, . . . , αx), (4.5)
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where 0̃ is general representative of the class of minimal elements. αx ≤ α < γ
then according to the Proposition 2 we can continue (4.5):

A(αx, . . . , αx) = A(0, . . . , 0) = 0.

So, ∀x ∈ R Ã(0̃, . . . , 0̃)(x) = 0 ≤ α and this means that

Ã(0̃, . . . , 0̃)(x) = 0̃(x). (4.6)

Consider Ã2. According to definitions of pointwise extension and 1̃ for an
arbitrary x ∈ R we can write:

Ã(1̃, . . . , 1̃)(x) = A(1̃(x), . . . , 1̃(x)) = A(1, . . . , 1).

The equality A(1, . . . , 1) = 1 follows from the boundary condition for γ-agop.
Thus,

Ã(1̃, . . . , 1̃)(x) = 1 = 1̃(x), ∀x ∈ R.

Consider Ã3. It is given that (∀i = 1, n) (Pi ⊆
α
F1 Qi) and we need to show that

Ã(P1, . . . , Pn) ⊆
α
F1 Ã(Q1, . . . , Qn) (4.7)

According to definition of pointwise extension ∀x ∈ R we can write:

Ã(P1, . . . , Pn)(x) = A(P1(x), . . . , Pn(x)), (4.8)

Ã(Q1, . . . , Qn)(x) = A(Q1(x), . . . , Qn(x)).

If Pi(x) ≥ α then according to the inclusion Pi(x) ⊆
α
F1

Qi(x) Pi(x) ≤ Qi(x).
If Pi(x) < α and thus Pi(x) < γ then ϕγ(Pi(x)) = 0 and according to Propo-
sition 2 formula (4.8) can be continued in the following way:

Ã(P1, . . . , Pn)(x) = A(P1(x), . . . , 0, . . . , Pn(x)),

where 0 stands on the positions, which belong to the index set

I1 = {i1, . . . , ik} ⊆ {1, . . . , n} : Pi(x) < α, ∀i ∈ I1.

Anyhow for i ∈ I1 Qi(x) ≥ 0 and therefore Pi(x) ≤ Qi(x). Thus Pi(x) ≤ Qi(x)
∀i and thus monotonicity of A provides the following inequality:

A(P1(x), . . . , Pn(x)) ≤ A(Q1(x), . . . , Qn(x)).

So, we have shown (4.7). ⊓⊔

Remark. The correct way to write formula (4.6) would be Ã(0̃, . . . , 0̃)(x) =
0̃∗(x), where 0̃∗(x) = 0, ∀x ∈ R is just one particular representative of the
class of minimal elements. This means that any finite subset of elements from
the class of minimal elements will be aggregated into one particular element
from the same class. This obstacle modifies boundary condition (Ã1), but we
assume that all elements from the class of minimal elements are equivalent
(have the same properties), therefore we do not distinguish between them and
agree with such deviation of aggregated result from the input.

Math. Model. Anal., 15(1):83–96, 2010.
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4.2.3 Special class of horizontal orders

We study a special class of horizontal orders and pointwise extension of γ-agops
in the sequel. Further we take [a, b] ⊆ R in the role of X and consider

F ([a, b]) = {P |P : [a, b] → [0, 1]}.

Let’s observe an order relation ⊆α
F2

defined on F ([a, b]) in the following way:

P,Q ∈ F ([a, b]), α ∈ (0, 1], P ⊆α
F2

Q ⇔ P
α
≤ Qα,

where

Pα = {x : P (x) ≥ α}, minPα = Pα, maxPα = P
α
,

Qα = {x : Q(x) ≥ α}, minQα = Qα, maxQα = Q
α
.

It immediately follows from the properties of α-cuts that

P ⊆α1

F2
Q ⇒ P ⊆α2

F2
Q, ∀α2 > α1.

0̃ and 1̃ are defined in the following way:

0̃(x) =

{

1, if x = a,
αx < α, otherwise.

, 1̃(x) =

{

1, if x = b,
αx < α, otherwise.

Again definitions of 0̃ and 1̃ are not unique. But we assume that all repre-
sentatives from the class of the minimal (accordingly maximal) elements are
equivalent.

4.2.4 Pointwise extension of γ-agop w.r.t. ⊆α
F2

It is easy to construct examples showing that even if the input information by
pairs is ordered w.r.t. ⊆α

F2
(∀i = 1, n, Pi ⊆

α
F2

Qi) the aggregation result need

not be ordered in the same manner. As a result Ã is not a generalized agop
w.r.t. ⊆α

F2
for an arbitrary γ-agop.

Example 3. Let’s consider triangular numbers

P1 = (1, 2, 3), P2 = (5, 6, 7), Q1 = (3, 4, 5), Q2 = (7, 8, 9)

and pointwise extension of γ-agop Aγ = max(ω1x1, ω2x2), where

ωi =

{

0, if x < γ,
1, if x ≥ γ,

∀i = 1, 2, ∀α ∈ (0, 1] Pi ⊆
α
F2

Qi.

Ã(P1, P2)(x)=max(ω1P1(x), ω2P2(x))=































x−1, if x ∈ [1+γ; 2],

3−x, if x ∈ (2; 3−γ],

x−5, if x ∈ [5+γ; 6],

7−x, if x ∈ (6; 7−γ],

0, otherwise.

(4.9)
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Ã(Q1, Q2)(x)=max(ω1Q1(x), ω2Q2(x))=































x−3, if x ∈ [3+γ; 4],

5−x, if x ∈ (4; 5−γ],

x−7, if x ∈ [7+γ; 8],

9−x, if x ∈ (8; 9−γ],

0, otherwise.

(4.10)

According to formulas (4.9) and (4.10)

Ã(P1, P2)(6) = 1, Ã(Q1, Q2)(4) = 1

thus for an arbitrary α∗ ∈ (0, 1]

max
{

x : Ã(P1, P2) ≥ α∗
}

≥ 6, min
{

x : Ã(Q1, Q2) ≥ α∗
}

≤ 4

and therefore Ã(P1, P2)¬ ⊆α
F2

Ã(Q1, Q2), ∀α ∈ (0, 1].

Inconsistency between input information order and aggregated information
order comes from different approaches in definitions: pointwise extension is
defined pointwise for ∀x ∈ [a, b], but ⊆α

F2
is defined on a fixed level α.

5 Some Remarks on Practical Application

Agops include roughly all nondecreasing mappings with finite (sometimes in-
finite) number of arguments, preserving the boundaries. Such a large class of
mappings obviously has found a broad practical application in different areas.

Many real-world problems can be considered within the information aggre-
gation framework where separate information sources are combined to produce
more accurate and simpler evaluation. This final evaluation is a base for con-
clusion or decision, therefore agops are widely used in multi-criteria decision
making and multi-attributes classification. An example of application of in-
formation aggregation in financial decision making can be found in [5]. More
sophisticated decision and classification problems based on interacting criteria
or attributes can be solved by means of fuzzy integrals, which are special class
of agops ([2, 3]).

Aggregation of information represented by fuzzy sets plays the central role
in intelligent systems where fuzzy rule base and reasoning mechanism are ap-
plied. Pointwise extension (similarly to other approaches considered e.g. in [6])
observed in this paper can be successfully applied in this area.

Extension of the γ-agop can be used in this way as well. Additionally it
allows some pieces of information to be ignored and researcher can leverage the
amount of ignored information by choosing an appropriate γ. On the one hand
this obviously extends a range of problems solved by means of γ-agop extension
versus extension of usual agops, on the other hand the class of γ-agops is smaller
and therefore sometimes a more appropriate agop can be chosen from the bigger
class of all agops.

Math. Model. Anal., 15(1):83–96, 2010.
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6 Conclusion

The notion of γ-agop and its pointwise extension is central in this paper. We
have studied it in details and proved that γ-agop can be generalized w.r.t. the
special class of order relations. Practical value of information aggregation and
by means of γ-agops and generalized γ-agops in a particular case is a good
motivation to continue the study in this area.
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