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Abstract. In this paper sufficient conditions for a matrix M = (mnk) (mnk are
Cesàro numbers As

n−k, s ∈ C if k ≤ n and mnk = 0 if k > n) to be a transform from
the summability domain of the Cesàro method Cα into the summability domain of
another Cesàro method Cβ , where α, β ∈ C\{−1,−2, . . .}, are found.
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1 Introduction

Let Cα = (cnk), α ∈ C\{−1,−2, . . .}, be a series-to-sequence Cesàro method,
i.e. (see [4] or [5])

cnk =







Aα
n−k

Aα
n

(k ≤ n),

0 (k > n),

where Aα
n = (n+α

n ) are Cesàro numbers. Throughout this paper we assume that
summation indices run from 0 to ∞ unless otherwise specified. A series x :=
∑

xk is said to be Cα-summable if the sequence Cαx = (Cα
nx) is convergent,

where

Cα
nx =

n
∑

k=0

cnkxk.

We denote the domain of all Cα-summable series by cCα , i.e.

cCα :=
{

x = (xn)
∣

∣

∣
lim
n→∞

Cα
nx exists

}

.

In [1, 3, 10] necessary and sufficient conditions for a matrix M with real or
complex entries to be a transform from cCα into cCβ for α, β ∈ R or α, β ∈
C\{−1,−2, . . .} are described. The summability domains (and the subsets of
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summability domains) of different Cesàro methods are compared in several
papers (see, for example, [2, 7, 8]). For double Cesàro methods this problem
has in recent years been considered, for example, in [6, 9].

In the present paper the particular subcase of the above-described problem
is studied: sufficient conditions for a matrix M = (mnk), defined by the relation

mnk =

{

As
n−k (k ≤ n, s ∈ C),

0 (k > n),
(1.1)

to be a transform from cCα into cCβ , α, β ∈ C\{−1,−2, . . .} are found. It is
easy to see that this problem is equivalent to the problem of finding sufficient
conditions for cCα ⊂ cG, where G := CβM.

2 Auxiliary Results

For the proof of main results we need the following properties of Cesàro numbers
(see [4], p. 77–81):

n
∑

k=0

Aα
n−kA

β
k = Aα+β+1

n for every α, β ∈ C, (2.1)

|Aα
n | ≤ K1(n+ 1)Reα for every α ∈ C, K1 > 0, (2.2)

|Aα
n | ≥ K2(n+ 1)Reα for α ∈ C\{−1,−2, . . .}, K2 > 0. (2.3)

Further we also use the following lemma.

Lemma 1. Let α ∈ C, β ∈ C. The following assertions hold:

(A) If Reα 6= −1 and Reβ 6= −1, or α = β = −1, then

Dn:=
n
∑

k=0

∣

∣

∣
Aα

n−kA
β
k

∣

∣

∣
=O

[

(n+1)Reα
]

+O
[

(n+1)Reβ
]

+O
[

(n+ 1)Re (α+β)+1
]

.

(2.4)

(B) If Reβ = −1, then

Dn =







O
[

(n+ 1)Reα ln(n+ 1)
]

(Reα ≥ −1),

O
[

(n+ 1)−1
]

(Reα < −1).

(C) If Reα = −1, then

Dn =







O
[

(n+ 1)Reβ ln(n+ 1)
]

(Reβ ≥ −1),

O
[

(n+ 1)−1
]

(Reβ < −1).

Proof. First we note that for all α, β ∈ R relation (2.4) is proved, for example,
in [4], p. 79–81. Let now Reα 6= −1, Re β 6= −1. Then by (2.2) and (2.3) there
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exist K1
1 ,K

2
1 ,K

1
2 ,K

2
2 > 0 so that

Dn≤K1
1K

2
1

n
∑

k=0

(n−k+1)Reα(k+1)Reβ≤K1
1K

2
1K

1
2K

2
2

n
∑

k=0

∣

∣

∣
AReα

n−kA
Re β
k

∣

∣

∣
.

Hence relation (2.4) holds, since Reα,Reβ ∈ R. Thus assertion (A) is satisfied.
Let now Reβ = −1. Then with the help of relation (2.2) we have

Dn ≤ MVn, M > 0,

where

Vn :=

n
∑

k=0

vnk, vnk := (n− k + 1)Reα(k + 1)−1.

Further we can write

Vn =























n
2
−1
∑

k=0

vnk +
(

n
2 + 1

)Reα−1
+

n
∑

k= n
2
+1

vnk (n is even ),

n−1

2
∑

k=0

vnk +
n
∑

k=n+1

2

vnk (n is odd),

i.e.,

Vn = (n+ 1)Reα1−1 + nReα2−1 + · · ·+
(n

2
+ 3

)Reα (n

2
− 1

)

−1

+
(n

2
+ 2

)Reα (n

2

)

−1

+
(n

2
+ 1

)Reα−1

+
(n

2

)Reα (n

2
+ 2

)

−1

+ · · ·+ 2Reαn−1 + 1Reα(n+ 1)−1

for an even number n, and

Vn = (n+ 1)Reα1−1 + nReα2−1 + · · ·+

(

n+ 5

2

)Reα (

n− 1

2

)

−1

+

(

n+ 3

2

)Reα (

n+ 1

2

)

−1

+

(

n+ 1

2

)Reα (

n+ 3

2

)

−1

+

(

n− 1

2

)Reα (

n+ 1

2

)

−1

+ · · ·+ 2Reαn−1 + 1Reα(n+ 1)−1

for an odd number n. Let us suppose first that Reα ≥ −1. Then

(n+ 1)Reα1−1 ≥ 1Reα(n+ 1)−1,

nReα2−1 ≥ 2Reαn−1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(n

2
+ 2

)Reα (n

2

)

−1

≥
(n

2

)Reα (n

2
+ 2

)

−1

,
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if n is an even number, and

(n+ 1)Reα1−1 ≥ 1Reα(n+ 1)−1,

nReα2−1 ≥ 2Reαn−1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(

n+ 3

2

)Reα (

n+ 1

2

)

−1

≥

(

n+ 1

2

)Reα (

n+ 3

2

)

−1

,

if n is an odd number. Consequently

Vn ≤



















2

n
2
−1
∑

k=0

(n− k + 1)Reα(k + 1)−1 +
(

n
2 + 1

)Reα−1
(n is even),

2

n−1

2
∑

k=0

(n− k + 1)Reα(k + 1)−1 (n is odd).

Therefore

Vn ≤



















2
(

n
2 + 2

)Reα
n
2
−1
∑

k=0

(k + 1)−1 +
(

n
2 + 1

)Reα−1
(n is even),

2(n+3
2 )Reα

n−1

2
∑

k=0

(k + 1)−1 (n is odd)

if −1 ≤ Reα ≤ 0, and

Vn ≤



















2(n+ 1)Reα

n
2
−1
∑

k=0

(k + 1)−1 +
(

n
2 + 1

)Reα−1
(n is even),

2(n+ 1)Reα

n−1

2
∑

k=0

(k + 1)−1 (n is odd)

if Reα > 0. Hence

Dn = O
[

(n+ 1)Reα ln(n+ 1)
]

; Reα ≥ −1. (2.5)

We assume now that Reα < −1. Then

(n+ 1)Reα1−1 ≤ 1Reα(n+ 1)−1,

nReα2−1 ≤ 2Reαn−1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(n

2
+ 2

)Reα (n

2

)

−1

≤
(n

2

)Reα (n

2
+ 2

)

−1

,

if n is an even number, and

(n+ 1)Reα1−1 ≤ 1Reα(n+ 1)−1,

nReα2−1 ≤ 2Reαn−1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(

n+ 3

2

)Reα (

n+ 1

2

)

−1

≤

(

n+ 1

2

)Reα (

n+ 3

2

)

−1

,
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if n is an odd number. Consequently

Vn ≤



















2
n
∑

k=n
2
+1

(n− k + 1)Reα(k + 1)−1 +
(

n
2 + 1

)Reα−1
(n is even),

2
n
∑

k=n+1

2

(n− k + 1)Reα(k + 1)−1 (n is odd).

Therefore

Vn ≤



















4(n+ 4)−1
n
∑

k=n
2
+1

(n− k + 1)Reα +
(

n
2 + 1

)Reα−1
(n is even),

4(n+ 3)−1
n
∑

k=n+1

2

(n− k + 1)Reα (n is odd).

Hence
Dn = O

[

(n+ 1)−1
]

; Reα < −1). (2.6)

Consequently assertion (B) holds by (2.5) and (2.6). The proof of assertion (C)
is similar to the proof of assertion (B). So we omit it. ⊓⊔

3 Main Results

Now we are able to prove the main result of this paper.

Theorem 1. Let α, β ∈ C\{−1,−2, . . .} and s ∈ C. If Re s < −1 and Re s <
Reα ≤ Reβ, then the matrix M = (mnk) , defined by relation (1.1), transforms

cCα into cCβ .

Proof. It is sufficient to show that cCα ⊂ cG, where G = CβM := (gnk) .
Using equality (2.1), we get

gnl =
1

Aβ
n

n
∑

k=l

Aβ
n−kA

s
k−l =

1

Aβ
n

n−l
∑

k=0

Aβ
n−l−kA

s
k =

Aβ+s+1
n−l

Aβ
n

.

As the inverse matrix (ηlk) of Cα = (cnk) is defined by the equalities (see [4],
p. 86)

ηlk =

{

Aα
kA

−α−2
l−k (k ≤ l),

0 (k > l),

for every x = (xk) ∈ cCα we get

n
∑

k=0

gnkxk =

n
∑

k=0

γnkyk,

where yk := Cα
k x and γnk = Aβ+s−α

n−k Aα
k /A

β
n by equality (2.1). Consequently,

for cCα ⊂ cG it is sufficient to show by the well-known theorem of Kojima-Schur
that

there exists the finite limits lim nγnk, lim n

n
∑

k=0

γnk, (3.1)
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and
∑

k

|γnk| = O(1), (3.2)

since the sequence (yk) is convergent for every x ∈ cCα . Thus, with the help of
relations (2.1)–(2.3) we have

∣

∣

∣

n
∑

k=0

γnk

∣

∣

∣
=

∣

∣

∣

Aβ+s+1
n

Aβ
n

∣

∣

∣
= O(1)(n+ 1)Re s+1 = o(1)

(since Re s+ 1 < 0), and

|γnk| = O(1)
(n− k + 1)Re (β+s−α)

(n+ 1)Reβ

= O(1)

(

1−
k

n+ 1

)Reβ

(n− k + 1)Re (s−α) = o(1)

(since Re (s− α) < 0). Thus condition (3.1) is fulfilled.
The proof of validity of condition (3.2) we divide into three parts.
1) Let Re (β + s− α) 6= −1, Re α 6= −1, or β + s− α = α = −1. Then we

get

Sn:=

n
∑

k=0

∣

∣

∣
Aβ+s−α

n−k Aα
k

∣

∣

∣
= O

[

(n+ 1)Re (β+s−α)
]

+O
[

(n+1)Reα
]

+O
[

(n+1)Re (β+s)+1
]

by Lemma 1. If

L := max
{

Re (β + s− α), Re α,Re (β + s) + 1
}

= Re
(

β + s− α
)

,

then Sn = O
[

(n+ 1)Re (β+s−α)
]

, and consequently with the help of (2.3) we
have

Tn :=

n
∑

k=0

∣

∣

∣
γnk

∣

∣

∣
=

Sn

|Aβ
n|

= O
[

(n+ 1)Re (s−α)
]

= O(1).

If L = Re (β + s) + 1, then using (2.3) we can conclude that

Sn = O
[

(n+ 1)Re (β+s)+1
]

,

and therefore
Tn = O

[

(n+ 1)Re s+1
]

= O(1).

If L = Reα, then Sn = O
[

(n+ 1)Reα
]

, and hence

Tn = O
[

(n+ 1)Re (α−β)
]

= O(1),

i.e. condition (3.2) holds.
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2) Let Reα = −1. Then

Sn =

{

O
[

(n+ 1)Re (β+s−α) ln(n+ 1)
]

(Re (β + s− α) ≥ −1),

O
[

(n+ 1)−1
]

(Re (β + s− α) < −1),

and consequently

Tn =

{

O
[

(n+ 1)Re (s−α) ln(n+ 1)
]

(Re (β + s− α) ≥ −1),

O
[

(n+ 1)−Reβ−1
]

(Re (β + s− α) < −1).

Therefore Tn = O(1), because Re (s − α) < 0 and Reβ ≥ Reα = −1, i.e.
condition (3.2) holds.

3) Let Re (β + s− α) = −1. Then

Sn =

{

O
[

(n+ 1)Reα ln(n+ 1)
]

(Reα ≥ −1),

O
[

(n+ 1)−1
]

(Reα < −1),

and consequently

Tn =

{

O
[

(n+ 1)Re (α−β) ln(n+ 1)
]

(Reα ≥ −1),

O
[

(n+ 1)−Reβ−1
]

(Reα < −1).

Therefore Tn = O(1), because Re (α − β) = Re s + 1 < 0 and −Reβ − 1 =
Re (s− α) < 0, i.e. condition (3.2) holds. ⊓⊔

It is well known that Cβ includes Cα, i.e. cCβ ⊇ cCα , if Reβ > Reα > −1
(see [4], p. 87). Therefore for real numbers α, β we get

Corollary 1. Let α, β ∈ R, s ∈ C with α, β > −1, Re s < −1 and M be defined
by (1.1). If M transforms cCα into cCβ , then Cβ includes Cα.

Proof. We see from the proof of Theorem 1 that the validity of condition (3.2)
is necessary for M to be a transformation from cCα into cCβ . We prove that
condition (3.2) is not satisfied for β < α. Indeed, by (2.2) and (2.3) there exists
a number K > 0 so that

Tn=

n
∑

k=0

∣

∣

∣

Aβ+s−α
n−k Aα

k

Aβ
n

∣

∣

∣
=

n−1
∑

k=0

∣

∣

∣

Aβ+s−α
n−k Aα

k

Aβ
n

∣

∣

∣
+
∣

∣

∣

Aα
n

Aβ
n

∣

∣

∣
≥
∣

∣

∣

Aα
n

Aβ
n

∣

∣

∣
≥K

[

(n+ 1)Re (α−β)
]

.

As the sequence
(

(n+ 1)Re (α−β)
)

is not bounded for β < α, then also the
sequence (Tn) is not bounded for β < α. Consequently for the validity of
condition (3.2) it is necessary that β ≥ α. As α, β > −1, then Cβ includes Cα.
⊓⊔

References

[1] A. Aasma. Transformations of summability fields. Acta et Comment. Univ.

Tart., 770:38–51, 1987.

Math. Model. Anal., 15(2):153–160, 2010.



160 A. Aasma

[2] I. Albayrak and B.E. Rhoades. The question of equivalence for generalized Haus-
dorff matrices. J. Math. Anal. Appl., 328:414–428, 2007.

[3] L. Alpár. On the linear transformations of series summable in the sense of Cesàro.
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