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Abstract. The Gegenbauer reconstruction method, first proposed by Gottlieb et.
al. in 1992, has been considered a useful technique for re-expanding finite series
polynomial approximations while simultaneously avoiding Gibbs artifacts. Since its
introduction many studies have analyzed the method’s strengths and weaknesses as
well as suggesting several applications. However, until recently no attempts were
made to optimize the reconstruction parameters, whose careful selection can make
the difference between spectral accuracies and divergent error bounds.

In this paper we propose asymptotic analysis as a method for locating the optimal
Gegenbauer reconstruction parameters. Such parameters are useful to applications
of this reconstruction method that either seek to bound the number of Gegenbauer
expansion coefficients or to control compression ratios. We then illustrate the effec-
tiveness of our approach with the results from some numerical experiments.
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exponential convergence.
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1 Introduction

Reconstruction methods are judged primarily by the rate at which their error
approaches zero as the source resolution grows without bound. Since global re-
construction methods, in particular expansions of orthogonal polynomial basis
functions, offer the possibility of exponential convergence, they are routinely
chosen over local methods [12, 18]. The unfortunate reality is of course that
such accuracy can be degraded whenever there exist discontinuities in the source
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function we are trying to faithfully reconstruct. Indeed, the circumstances lead-
ing to so-called Gibbs artifacts are well understood and many strategies exist
to minimize or, in some cases, eliminate them [8, 18, 22, 23].

One reconstruction strategy that addresses the Gibbs phenomenon is the
Gegenbauer method described in [15, 16]. This method is based on a re-
projection of the source data, e.g. Chebyshev or Fourier coefficients, onto a
finite set of orthogonal Gegenbauer polynomials. This method then expands
the new coefficients on sub-domains of physical space segmented by presumed
jump discontinuities in the source data. The absence of jump discontinuities
within each sub-domain assures spectral convergence as long as reconstruction
parameters described in Section 2 are chosen carefully.

The explicit benefit of Gegenbauer method reconstruction to eliminate the
Gibbs artifacts has been understood for nearly two decades. However, there are
competing interests governing the selection of each reconstruction parameter.
On one hand the choice of these parameters is limited to domains of numer-
ical stability, but on the other hand we know that for analytical accuracy to
increase, these same parameters must tend toward the very regions of instabil-
ity we’d rather avoid. In fact, these numerical and analytical challenges have
prompted the consideration of Freud polynomials as a significant improvement
over Gegenbauer polynomials [11]. Freud polynomials are however not as well
known and will take time before they are more commonly used. In the mean
time, methods for optimizing Gegenbauer parameters, in particular those that
could also be applied to newer polynomial basis sets, are needed.

Our last study demonstrated how asymptotic analysis could be used to find
the Chebyshev-Gegenbauer reconstruction parameters best suited for avoiding
numerical instability [20]. In this paper we again use asymptotic analysis as
a method for locating optimal parameters for a Chebyshev-Gegenbauer recon-
struction. Here however we have modified the constraint so that the optimal
parameters will be useful to applications seeking to either bound the number
of Gegenbauer expansion coefficients or to control compression ratios. Also,
unlike the approach used in [20], which could only be determined numerically,
here we will be able to predict the solutions analytically prior to demonstrating
them numerically.

In Section 2 we provide a necessary backround and notation describing the
Chebyshev-Gegenbauer reconstruction method. Then in Section 3 we analyze
the behavior of error bounds for the truncation and regularization errors de-
pending on different smoothness characteristics of the underlying function. In
Section 4 we describe one-dimensional strategies for choosing the reconstruc-
tion parameter λ when given the resolution N and for choosing N when given
λ. This section also provides sufficient insight into determining λ and N si-
multaneously for a two-dimensional minimization strategy. These techniques
are then discussed in Section 5. Subsequently, in Section 6, we present the re-
sults of numerical experiments on both one and two-dimensional functions and
thus illustrate the effectiveness of the strategies proposed in Section 5. Then
in Section 7, we summarize the changes expected in the reconstruction error
upper bounds when our sample data comes from either a Fourier–Galerkin or
collocation expansion in contrast to the Gegenbauer, specifically Chebyshev,
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expansion we used in the current and preceding sections. Finally, Section 8
provides concluding remarks and plans for future research.

2 Background and Notation

Consider the truncated Chebyshev pseudo-spectral expansion fN (x) of the real
function f(x), f : [−1, 1] → R

fN(x) =

N
∑

n=0

anTn(x), (2.1)

where the coefficients an are computed from the formula

an =
2

Nc̃n

N
∑

j=0

1

c̃j
f(xj) cos

(πjn

N

)

, n = 0, 1, . . . , N.

Here, c̃0 = c̃N = 2, c̃n = 1, n = 1, 2, . . . , N − 1, Tn(x) = cos
(

n arccos(x)
)

are
Chebyshev orthogonal polynomials defined on the interval [−1, 1], and xj =
cos(πj/N), j = 0, 1, . . . , N , are the Chebyshev-Gauss-Lobatto points.

If the function f(x) is not analytic on the interval [−1, 1] then fN(x) shows
O(1) spurious oscillations near the boundaries of [a, b], the region of analyticity,
and only O(1/N) convergence within the same interval, the behavior known as
the Gibbs phenomenon. So, consider this subinterval [a, b] ⊂ [−1, 1] on which
the function f(x) is smooth, and denote by ξ the local variable defined by
x = x(ξ) = ǫξ + δ, where ǫ = (b − a)/2 and δ = (b + a)/2 which maps the
interval [−1, 1] onto [a, b]. Within the context of this localization, Gottlieb et al.

[13, 15, 16, 17] demonstrated that it is possible to overcome Gibbs behavior by
re-expanding fN (x) in the Gegenbauer basis, i.e. orthogonal polynomials Cλ

l (ξ)

on the interval [−1, 1] with the weight function w(ξ) = (1− ξ2)λ−
1
2 depending

on the parameter λ. Here, l stands for the degree of Cλ
l (ξ). We refer to [1, 7]

for the definition and properties of these polynomials. The resulting truncated
Gegenbauer series

fm,λ
g (ǫξ + δ) =

m
∑

l=0

ĝλl C
λ
l (ξ), (2.2)

with the coefficients ĝλl given by

ĝλl =
1

hλ
l

∫ 1

−1

(1 − ξ2)λ−
1
2 fN (ǫξ + δ)Cλ

l (ξ)dξ (2.3)

then provides an exponentially convergent approximation to the point values of
the function f(x) on the interval of smoothness [a, b] including the boundaries
a and b. Many edge detection techniques have been suggested as a means of
identifying a and b, but they are not the focus of this current study. The
novelty of computing Gegenbauer coefficients as shown in equation (2.3) is due
first to the fact that ĝλl can actually be computed since fN(x) is defined as
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in (2.1) and the appropriate scaling factor, hλ
l , is defined in [13]. Second, we

recall from [17] that if λ and m are defined as

λ = ⌈αǫN⌉, m = ⌈βǫN⌉, (2.4)

with carefully chosen constants α and β, the values of ĝλl are exponentially
accurate approximations of the exact Gegenbauer coefficients,

f̂λ
l =

1

hλ
l

∫ 1

−1

(1− ξ2)λ−
1
2 f(ǫξ + δ)Cλ

l (ξ)dξ, (2.5)

as N → ∞, and correspond to the exact truncated Gegenbauer series

fm,λ(ǫξ + δ) =

m
∑

l=0

f̂λ
l C

λ
l (ξ).

Denote by ‖f‖∞ the supremum norm defined by ‖f‖∞ := supx∈[a,b] |f(x)| on

the interval of smoothness. The total error ‖f − fm,λ
g ‖∞ can be bounded by

‖f − fm,λ
g ‖∞ ≤ ‖f − fm,λ‖∞ + ‖fm,λ − fm,λ

g ‖∞.

The first term on the right hand side of the above inequality is the regularization
error and the second is the truncation error. It was proved in [13, 15] that these
errors can be bounded by

TE := ‖fm,λ − fm,λ
g ‖∞ =

∣

∣

∣

∣

∣

∣

m
∑

l=0

(

f̂λ
l − ĝλl

)

Cλ
l

∣

∣

∣

∣

∣

∣

∞

≤ A(N)qǫNT , (2.6)

RE := ‖f − fm,λ‖∞ =
∣

∣

∣

∣

∣

∣
f −

m
∑

l=0

f̂λ
l C

λ
l

∣

∣

∣

∣

∣

∣

∞

≤ Ã(N)qǫNR , (2.7)

where A(N) and Ã(N) grow at most as polynomials in N , and the ratios qT
and qR are less than one for some range of the parameters α and β. The bounds
(2.6) and (2.7) imply spectral convergence of fm,λ

g (x) to f(x) as N → ∞ on
the interval [a, b].

The ratio qT corresponding to the truncation error TE takes the form

qT = (β + 2α)β+2α/(2αααββ), (2.8)

as shown in [15]. The ratio qR corresponding to the regularization error RE
can be defined in different ways depending on the smoothness characteristics
of the function f(x). If there exists a constant 0 ≤ r0 < 1 and an analytic
extension of f(x) onto the elliptic domain

Dǫ,δ =
{

z : z =
ǫ

2

(

reiθ +
1

r
e−iθ

)

+ δ, 0 ≤ θ ≤ 2π, r0 ≤ r < 1
}

,

then the regularization ratio qR is defined by

qR = qR,1 =
(β + 2α)

β+2α
2

(2α)αβ
β

2

(ǫr0)
β , (2.9)
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as shown in [15]. These elliptic regions Dǫ,δ are displayed in Fig. 1 for [a, b] =
[−1, 1] which corresponds to ǫ = 1, δ = 0, and for the parameter r0 =
0.1, 0.12, . . . , 0.5, where the largest ellipse corresponds to r0 = 0.1 and the
smallest to r0 = 0.5. We have also displayed on this figure the interval [−1, 1]
by the thick line. Alternatively, if there exist constants ρ ≥ 1 and C(ρ) ≥ 0

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 1. The elliptic regions D1,0 for r0 = 0.1, 0.12, . . . , 0.5; the interval [−1, 1] is displayed
by the thick line.

such that the kth derivative f (k)(x) can be bounded by

‖f (k)‖∞ ≤ C(ρ)
k!

ρk
, k ≥ 0, (2.10)

then the regularization ratio qR is defined by

qR = qR,2 =
(β + 2α)β+2αǫβ

2β+2ααα(α+ β)α+βρβ
, (2.11)

as shown in [15]. Here, ρ is the distance from [a, b] to the nearest singularity
of f(x) in the complex plane. The bound (2.7) may still be useful for ρ < 1 as
long as qR,2 < 1. The relationship between r0 and ρ is discussed in [10]. The
parameters α and β appearing in (2.9) and (2.11) are defined by (2.5).

Clearly, the convergence rate of fm,λ
g (x) to f(x) on the interval [a, b] depends

critically on the choice of α and β. A strategy for choosing optimal parameters
α and β for given values of N was first investigated in [9]. A refinement
of this strategy, where α and β were chosen independently of N , was then
presented in [10] and [19]. In [10] we also described a strategy for the automatic
determination of smoothness parameters r0 and ρ.

Subsequent to choosing α and β as directed from any one of the strategies
above, the parameters λ and m, subject to equation (2.4), tend to infinity
as N → ∞. There are however applications of Gegenbauer reconstruction
which require that the parameter m be bounded, such as those cases where
compression must be controlled or even maximized. In this paper we will
demonstrate that for such circumstances the truncation error tends to zero
as N → ∞ while the regularization error simultaneously diverges to infinity
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or converges to a constant different from zero as N → ∞. As a result, the
approaches taken in [9, 10, 19] for choosing α and β are no longer applicable
and a different tact is required.

We will then describe how the results of an asymptotic analysis help to frame
subsequent, and very revealing, one and two-dimensional optimization results.
These results, realized via numerical minimization, identify optimal values of
α and N for use in Gegenbauer reconstructions that require the number of
terms, m, to be bounded or fixed. Granted, for a fixed m, the Gegenbauer
reconstruction’s error bound still diverges to infinity or tends to a nonzero
constant as N grows without bound, it will nevertheless be shown to reach quite
small minimal values for appropriately chosen α and N . As we shall see, such
minimal values of error will likely be acceptable for many practical applications.
Finally, we recognize that there are a significant number of symbols in this study
and thus refer the reader to the symbol table in our last paper, [20].

3 Behavior of Error Bounds for the Gegenbauer Method

in Applications to Compression

To simplify the presentation in this section we will write N , r0 and ρ instead
of ǫN , ǫr0 and ρ/ǫ. Also, we will always assume that the number of terms
m in the truncated Gegenbauer series (2.2) is fixed. As already mentioned in
Section 2 such situations occur in the application of Gegenbauer reconstruction
to compression. We consider first the behavior of qT and qNT as N → ∞.
Substituting β = m/N into qT defined by (2.8) we obtain

qT = qT (α,N,m) =
(

1 +
2αN

m

)
m
N
(m

N
+ 2α

)2α
(

2α
)−α

. (3.1)

For given N and m consider the one-dimensional minimization problem

qT (α,N,m) → min .

The solution αopt = αopt(N,m) to this problem is plotted in Fig. 2 ver-
sus the number N . We have also plotted in the middle graph of this figure
the corresponding ratio qT (αopt, N,m) and in the bottom graph the quantity
qT (αopt, N,m)N which indicates the exponential decay of the truncation errors
TE as N → ∞. All these graphs correspond to the values of m = 3, 6, 9, 12, 15
and 18. It can be verified that

αopt(N,m) → ᾱopt =
1

2e
≈ 0.1839 as N → ∞

for any m, where ᾱopt corresponds to the minimum of the objective function

q̄T (α) := lim
N→∞

qT (α,N,m) = (2α)α

which is independent of m. Here, qT (α,N,m) is defined by (3.1) and we have
used the relation limN→∞(1+aN)1/N = 1, where a is an arbitrary real number.
Therefore, this minimum value is q̄T (ᾱopt) ≈ 0.8320. Observe also that

q̄T (α) < 1 for α <
1

2
.
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Figure 2. The quantities αopt,
qT (αopt, N,m) and qT (αopt, N,m)N

versus N for m = 3, 6, 9, 12, 15 and
18.
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Figure 3. Contour plots of
qT (α,N,m)N given by (3.2) for m =
6.

We have

qNT = qT (α,N,m)N =
(

1 +
2αN

m

)m(m

N
+ 2α

)2αN
(

2α
)−αN

, (3.2)

which for large N is asymptotic to

qT (α,N,m)N ∼
(

1 +
2αN

m

)m

(2α)αN .

Hence,
lim

N→∞

qT (α,N,m)N = 0

for any m and α < 1/2. The rate of convergence is very fast which is also
illustrated in Fig. 3 by contour plots of qT (α,N,m)N given by (3.2) for m = 6.
Here we note that the analytical determination of αopt, which in turn success-
fully predicted the corresponding numerical results, is a welcome improvement
over the nature of the problem in [20] where βopt could only be determined
numerically.

We consider next the behavior of qR and qNR as N → ∞. Substituting
β = m/N into qR = qR,1 defined by (2.9) we obtain

qR,1 = qR,1(α,N,m, r0) =
(

1 +
2αN

m

)
m
2N

(

1 +
m

2αN

)α

r
m
N

0 , (3.3)

and it follows that
lim

N→∞

qR,1(α,N,m, r0) = 1

for any α, m, and r0. We have also

qNR,1 = qR,1(α,N,m, r0)
N =

(

1 +
2αN

m

)
m
2
(

1 +
m

2αN

)αN

rm0 (3.4)

and it follows that
lim

N→∞

qR,1(α,N,m, r0)
N = ∞
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for any α, m, and r0, where the divergence is of polynomial rate.
The situation is somewhat more favorable for the regularization ratio qR =

qR,2. Substituting β = m/N into (2.11) we obtain

qR,2 = qR,2(α,N,m, ρ) =

(

α+
m

2N

)
m
N

+2α

αα
(

α+
m

N

)
m
N

+α

ρ
m
N

(3.5)

and it follows that

lim
N→∞

qR,2(α,N,m, ρ) = 1

for any α, m and ρ, the same limit as that for qR,1 defined by (3.3). We have
also

qNR,2 = qR,2(α,N,m, ρ)N =

(

α+
m

2N

)m(

1 +
m

2αN

)2αN

(

α+
m

N

)m(

1 +
m

αN

)αN

ρm

and passing with N to infinity we obtain

lim
N→∞

qR,2(α,N,m, ρ)N = 1/ρm

for any α. This differs from the behavior observed for qNR,1 given by (3.4) for

which limN→∞ qNR,1 → ∞ at polynomial rate. However, both error bounds

in (2.6) and (2.7) tend to infinity as N → ∞ since A(N) and Ã(N) have a
polynomial growth with respect to N .

4 Strategies for Choosing Optimal Parameters Based on

One-Dimensional Minimization

We first consider the case when qR = qR,1 is defined by (3.3). To obtain
additional insight into the behavior of error bounds (2.6) and (2.7) for a fixed
value of the parameter m, we have plotted in Fig. 4 the contour plots of qNT +qNR,1

for m = 6 and r0 = 0.1, where qNT is given by (3.2) and qNR,1 is given by (3.4).
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Figure 4. Contour plots of qT (α,N,m)N + qR,1(α,N,m, r0)N for m = 6 and r0 = 0.1.
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We have also plotted in Fig. 5 the cross-section of qNT + qNR,1 for fixed N =

400 and in Fig. 6 the cross-section of qNT + qNR,1 for fixed α = 0.1 and for
m = 3, 6, 9, 12, 15 and 18.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

−10

10
−5

10
0

10
5

α

q TN
+

q R
,1

N

m=3

m=18

Figure 5. Cross-sections of
qT (α,N,m)N + qR,1(α,N,m, r0)N for
N = 400, r0 = 0.1 and m = 3, 6, 9, 12, 15
and 18.
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α = 0.1, r0 = 0.1 and m = 3, 6, 9, 12, 15
and 18.
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Figure 7. αopt versus N (left graph) and
qN
T

+ qN
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versus N (right graph) for r0 =
0.1 and m = 3, 6, 9, 12, 15 and 18.
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Figure 8. Nopt versus α (left graph) and
qN
T

+ qN
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versus α (right graph) for r0 =
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The solutions obtained for αopt are plotted on the left graph of Fig. 7 versus
N and the corresponding quantities qNT + qNR,1 are plotted on the right graph
of this figure for 200 ≤ N ≤ 600. This figure corresponds to r0 = 0.1 and
m = 3, 6, 9, 12, 15 and 18. The solutions obtained for Nopt are plotted on the
left graph of Fig. 8 versus α and the quantities qNT + qNR,1 are plotted on the
right graph of this figure for 0 ≤ α ≤ 0.4. Again, this figure corresponds to
r0 = 0.1 and m = 3, 6, 9, 12, 15 and 18. For example, if r0 = 0.1, N = 400 and
m = 3 or m = 18 then it follows from Fig. 7 that αopt ≈ 0.007 or αopt ≈ 0.1
and qNT + qNR,1 ≈ 1.8 · 10−2 or qNT + qNR,1 ≈ 3.5 · 10−8. Similarly, if r0 = 0.1,
α = 0.2 and m = 3 or m = 18 then it follows from Fig. 8 that Nopt ≈ 76 or
Nopt ≈ 400 and qNT + qNR,1 ≈ 1.8 · 10−1 or qNT + qNR,1 ≈ 4.8 · 10−6.

These plots indicate that although the qNT + qNR,1 → ∞ as N → ∞, it will
reach quite small values before diverging to infinity. Hence, the Gegenbauer
reconstruction is still of practical use. Our strategies for choosing optimal α
for given N or choosing optimal N for given α are based on exploiting this
behavior. For fixed m and r0 , we consider the minimization problem

qT (α,N,m)N + qR,1(α,N,m, r0)
N → min, (4.1)

Math. Model. Anal., 15(2):199–222, 2010.



208 Z. Jackiewicz and R. Park

which we solve with respect to α if N is given, or with respect to N if α is
given.
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Figure 9. Cross-sections of
qT (α,N,m)N + qR,2(α,N,m, ρ)N for
N = 400, ρ = 2 and m = 3, 6, 9, 12, 15 and
18.
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Figure 10. Cross-sections of
qT (α,N,m)N + qR,2(α,N,m, ρ)N for
α = 0.1, ρ = 2 and m = 3, 6, 9, 12, 15 and
18.

We consider next the case when qT = qR,2 is defined by (3.5). Fig. 9 displays
the cross-sections of qNT +qNR,2 for fixed N = 400 and in Fig. 10 the cross-sections

of qNT + qNR,2 for fixed α = 0.1 and for m = 3, 6, 9, 12, 15 and 18. Both figures

correspond to ρ = 2. We can observe that the minimum of qNT + qNR,2 for fixed
N is quite flat for a large range of the parameter α and that the minimum
of qNT + qNR,2 for fixed α is flat for N ∈ [N0,∞], where N0 = N0(α) is some
constant depending on α. Moreover, this minimum is only slightly smaller than
the limit

lim
N→∞

(

qNT + qNR,2

)

=

(

1

ρ

)m

computed in Section 3.
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Figure 11. αopt versus N (left graph) and
qNT + qNR,2 versus N (right graph) for ρ = 2
and m = 3, 6, 9, 12, 15 and 18.
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Figure 12. Nopt versus α (left graph) and
qNT + qNR,2 versus α (right graph) for ρ = 2
and m = 3, 6, 9, 12, 15 and 18.

The strategy based on the one-dimensional minimization problem

qT (α,N,m)N + qR,2(α,N,m, ρ)N → min (4.2)

still works and the solution of (4.2) for αopt versus N is plotted in Fig. 11
and for Nopt versus α in Fig. 12. These figures correspond to ρ = 2 and
m = 3,6, 9, 12, 15 and 18. For example, if ρ = 2, N = 400 and m = 3 or
m = 18 then it follows from Fig. 11 that αopt ≈ 0.006 or αopt ≈ 0.09 and
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qNT + qNR,2 ≈ 7.4 ·10−2 or qNT + qNR,2 ≈ 6.7 ·10−7. Similarly, if ρ = 2, α = 0.2 and
m = 3 or m = 18 then it follows from Fig. 12 that Nopt ≈ 99 or Nopt ≈ 420
and qNT + qNR,2 ≈ 1.1 · 10−1 or qNT + qNR,2 ≈ 1.6 · 10−6.

5 Strategies for Choosing Optimal Parameters Based on

Two-Dimensional Minimization

In this section we describe a strategy for choosing optimal parameters α and N
for given r0 and m. This strategy is an adaptation of the one developed in [10]
and [19] for choosing optimal parameters α and β, λ = αN , m = βN , where λ
as well as m were allowed to grow proportionally with the number of Fourier
modes N.

Consider first the case where qR = qR,1 is given by (3.3). Similarly, as in
[10, 19], our strategy is based on minimizing the objective function defined by

φ1(α,N,m, r0) := qT (α,N,m) +K
(

qT (α,N,m) − qR,1(α,N,m, r0)
)2

, (5.1)

where m and r0 are given parameters, and K > 0 is a penalty constant. Solving
the two-dimensional minimization problem

φ1(α,N,m, r0) → min (5.2)

for given m and r0 with respect to α and N for large penalty constant K
(we have chosen K = 100 in our numerical experiments) amounts to enforcing
approximately equal contributions to the global error bound of Gegenbauer
reconstruction from the truncation error TE in (2.6) and represented by the
ratio qT (α,N,m), and regularization error RE in (2.7) represented by the ratio
qR,1(α,N,m, r0).
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Figure 13. Contour plots of qT (α, N,m)
given by (3.1) and qR,1(α,N,m, r0) given
by (3.3) for r0 = 0.1 and m = 6.
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Figure 14. Contour plots of the objective
function φ1(α,N,m, r0) given by (5.1) for
r0 = 0.1, m = 6 and K = 100.

One may suspect that the minimization problem (5.2) will lead only to the
‘singular solution’ α = 0 and N = ∞. This is not the case. It turns out
that the problem (5.2) has a local minimum. This is illustrated by contour
plots of qT (α,N,m) and qR,1(α,N,m, r0) displayed in Fig. 13 and contour
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plots of objective function φ1(α,N,m, r0) defined by (5.1) displayed in Fig. 14.
These contour plots correspond to r0 = 0.1 and m = 6. Observe that the
local minimum corresponds to the point on Fig. 13 where the contour lines for
qT (α,N,m) and qR,1(α,N,m, r0) are tangent for the same value of qT = qR,1.
Note also that the local minimum of the objective function φ1(α,N,m, r0) for
m = 6 and r0 = 0.1 corresponds to a point in Fig. 14 inside of the contour line
with the value of 0.96.

We have solved the minimization problem (5.2) for m = 3, 6, 9, 12, 15 and
18 and the parameter r0 ∈ [0, 0.5]. The graph of αopt versus r0 is displayed in
the top left graph of Fig. 15 and Nopt versus r0 in the bottom left graph of this
figure. It is interesting to note that αopt is nearly independent of m. We have
also plotted qT = qR,1 in the top right graph of Fig. 15 and qNT + qNR,1 in the
bottom right graph of this figure. Observe that the error bound for Gegenbauer
reconstruction for fixed m deteriorates rapidly as the smoothness parameter r0
becomes larger.

The values of the optimal parameters αopt and Nopt obtained by the solution
to the minimization problem (5.2) are consistent with the values obtained by
the one-dimensional minimization discussed in Section 4. For example, for
r0 = 0.1 and m = 18 the solution to (5.2) is αopt ≈ 0.0943 and Nopt ≈ 401 with
the corresponding values of qT = qR,1 ≈ 0.9579 and qNT + qNR,1 ≈ 4.51 · 10−8.
Solving instead the problem (4.1) for r0 = 0.1, m = 18 and N = 401 we obtain
αopt ≈ 0.1017 with corresponding values of qT ≈ 0.9564, qR,1 ≈ 0.9563, and
qNT + qNR,1 ≈ 3.34 · 10−8 which are nearly equivalent to the values obtained by
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Figure 16. Contour plots of the objective function φ2(α,N,m, ρ) given by (5.3) for ρ = 2,
m = 6 and K = 100.

the solution to (5.2). Solving (4.1) for r0 = 0.1, m = 18, and α = 0.0943, we
obtain Nopt ≈ 423 with corresponding values of qT ≈ 0.9541, qR,1 ≈ 0.9582,
and qNT + qNR,1 ≈ 1.61 · 10−8 which are again quite close to the values obtained
by the solution to (5.2).

Consider next the case where qT = qR,2 given by (3.5). We define the
objective function

φ2(α,N,m, ρ) := qT (α,N,m) +K
(

qT (α,N,m) − qR,2(α,N,m, ρ)
)2

, (5.3)

where m and ρ are given parameters and K > 0 is a penalty constant. The
level curves of φ2(α,N,m, ρ) defined by (5.3) are plotted on Fig. 16 for ρ = 2
and m = 6. This figure illustrates that φ2(α,N,m, ρ) has a local minimum.
We then consider the two-dimensional minimization problem

φ2(α,N,m, ρ) → min . (5.4)

We solve (5.4) with respect to α and N for given m and ρ, specifically, for
m = 3, 6, 9, 12, 15 and 18 and the parameter ρ ∈ [1, 6]. The graph of αopt

versus ρ is displayed in the top left graph of Fig. 17 and Nopt versus ρ in
the bottom left graph of this figure. As before we observe that αopt is nearly
independent of m. We have also plotted qT = qR,2 in the top right graph of
Fig. 17 and qNT + qNR,2 in the bottom right graph of this figure. We can observe
that the error bound for Gegenbauer reconstruction for fixed m improves as
the parameter ρ becomes larger.

Similarly, as in the case of (5.2), the values of the optimal parameters
αopt and Nopt obtained by the solution to the minimization problem (5.4)
are consistent with the values obtained by the one-dimensional minimization
discussed in Section 4. For example, for ρ = 2 and m = 18 the solution
to (5.4) is αopt ≈ 0.1170 and Nopt ≈ 359 with the corresponding values of
qT = qR,2 ≈ 0.9632 and qNT + qNR,2 ≈ 2.20 · 10−6. Solving instead the problem
(4.2) for ρ = 2, m = 18 and N = 359 we obtain αopt ≈ 0.1253 with correspond-
ing values of qT ≈ 0.9628, qR,2 ≈ 0.9618, and qNT + qNR,2 ≈ 2.01 · 10−6 which are
nearly equivalent to the values obtained by the solution to (5.4). Solving (4.2)
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for ρ = 2, m = 18 and α = 0.1170 we obtain Nopt ≈ 392 with corresponding
values of qT ≈ 0.9560, qR,2 ≈ 0.9550, and qNT + qNR,2 ≈ 8.94 · 10−7 which are
again close to the values obtained by the solution to (5.4).

6 Numerical Experiments

6.1 One-dimensional test functions

In this section we numerically test the effectiveness of our strategies for de-
termining the optimal parameters αopt and Nopt. For this purpose we will use
functions which have singularities on the imaginary and on the real axis. These
functions are defined by

f(x) =







ex

x2 + ρ2
, − 1

2 ≤ x ≤ 1
2 ,

0, otherwise,
(6.1)

with singularities on the imaginary axis at x = ±ρi, and

f(x) =







ex

x2 − (1 + ρ)2
, − 1

2 ≤ x ≤ 1
2 ,

0, otherwise,
(6.2)

with singularities on the real axis at x = ±(1 + ρ). It is easy to verify that
these functions satisfy the condition (2.10), and that ρ is the distance from the
interval [−1, 1] to the nearest singularity of f(x) in the complex plane.
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We compute αopt and Nopt by solving the problem (5.2) or (5.4) for given m
and r0 or m or ρ, respectively. It was demonstrated in [10] that the relationships
between the parameter r0 appearing in (2.9) and ρ are

ρ =
1

2

(

1

r0
− r0

)

or r0 =
√

1 + ρ2 − ρ

if f(x) is defined by (6.1), and

ρ =
(r0 − 1)2

2r0
or r0 = 1 + ρ−

√

ρ2 + 2ρ

if f(x) is defined by (6.2). The optimal values of the parameters α and N
obtained by the minimization of (5.2) with f(x) defined by (6.1) are denoted
by αopt,I and Nopt,I , and the values obtained by the solution of (5.2) with
f(x) defined by (6.2) are denoted by αopt,R and Nopt,R. Here, I and R signify
imaginary and real. Similarly, the corresponding values of α and N obtained
by the minimization of (5.4) for f(x) defined by (6.1) or (6.2) are denoted by
αopt,ρ and Nopt,ρ. The values of αopt,ρ, αopt,I and αopt,R are listed in Table 1 for
ρ = 1, 2, 3, 4, 5 and 6 together with the corresponding values of the parameter r0
which are denoted by r0,I if f(x) is given by (6.1) and r0,R if f(x) is defined by
(6.2). It is interesting that αopt,ρ, αopt,I and αopt,R are all nearly independent
of the parameter m.

Table 1. Optimal parameters αopt,ρ, αopt,I and αopt,R corresponding to ρ and r0.

ρ 1 2 3 4 5 6

r0,I 0.4142 0.2361 0.1623 0.1231 0.0990 0.0828
r0,R 0.2679 0.1716 0.1270 0.1010 0.0839 0.0718
αopt,ρ 0.0406 0.1170 0.1303 0.1363 0.1399 0.1423
αopt,I 0.0171 0.0506 0.0726 0.0862 0.0954 0.1019
αopt,R 0.0426 0.0696 0.0848 0.0946 0.1014 0.1065

Table 2. Optimal parameters Nopt,ρ, Nopt,I and Nopt,R corresponding to ρ and r0.

ρ 1 2 3 4 5 6

Nopt,ρ 109 120 136 148 157 164
m = 6 Nopt,I 152 122 124 129 134 139

Nopt,R 124 123 128 134 139 143

Nopt,ρ 218 239 273 296 314 328
m = 12 Nopt,I 304 245 248 258 269 278

Nopt,R 249 247 257 268 278 286

Nopt,ρ 327 359 409 444 471 493
m = 18 Nopt,I 457 367 372 387 403 417

Nopt,R 373 370 385 401 416 430
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The corresponding values of Nopt,ρ, Nopt,I and Nopt,R depend on m and
are listed in Table 2 for m = 6, 12 and 18. The errors of the Gegenbauer
reconstruction of the function f(x) defined by (6.1) are displayed in Fig. 18
for ρ = 1, 2, and 4, and m = 6, 12, and 18, with parameters αopt,I , Nopt,I

(solid lines) and αopt,ρ, Nopt,ρ (dashed lines). The corresponding errors for
f(x) defined by (6.2) are displayed in Fig. 19.
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Figure 18. Errors for the Gegenbauer reconstruction of the function f(x) defined
by (6.1) for ρ = 1, 2, and 4 and m = 6, 12, and 18, with parameters αopt,I , Nopt,I

(solid lines) and αopt,ρ, Nopt,ρ (dashed lines). These parameters are listed in Table 1
and Table 2.
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Figure 19. Errors for the Gegenbauer reconstruction of the function f(x) defined
by (6.2) for ρ = 1, 2, and 4 and m = 6, 12, and 18, with parameters αopt,R, Nopt,R

(solid lines) and αopt,ρ, Nopt,ρ (dashed lines); these parameters are listed in Table 1
and Table 2.

These errors are also listed in Table 3 and Table 4, identified as E(N), for
f(x) defined by (6.1) and for the parameters αopt,I , Nopt,I and αopt,ρ, Nopt,ρ,
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respectively. In these tables we have also listed the quantities B(N) and C(N)
such that

E(N) := ‖f − fm,λ
g ‖∞ ≤ C(N)B(N), (6.3)

where

B(N) = qNT + qNR,i, i = 1, 2, C(N) = max
{

A(N), Ã(N)
}

,

with A(N) and Ã(N) defined in (2.6) and (2.7).

Table 3. E(N), B(N) and C(N) corresponding to αopt,I , Nopt,I for f(x) from (6.1).

ρ 1 2 4

E(N) 7.75 · 10−4 1.27 · 10−5 2.92 · 10−8

m = 6 B(N) 5.92 · 10−1 1.36 · 10−1 1.22 · 10−2

C(N) 1.31 · 10−3 9.34 · 10−5 2.39 · 10−6

E(N) 2.46 · 10−5 1.85 · 10−8 2.87 · 10−11

m = 12 B(N) 1.81 · 10−1 9.08 · 10−3 7.67 · 10−5

C(N) 1.34 · 10−4 2.04 · 10−6 3.74 · 10−7

E(N) 5.57 · 10−6 4.08 · 10−9 1.50 · 10−7

m = 18 B(N) 5.71 · 10−2 6.28 · 10−4 4.91 · 10−7

C(N) 9.75 · 10−5 6.50 · 10−6 3.05 · 10−1

Table 4. E(N), B(N) and C(N) corresponding to αopt,ρ, Nopt,ρ for f(x) from (6.1).

ρ 1 2 4

E(N) 1.86 · 10−3 7.79 · 10−6 2.73 · 10−8

m = 6 B(N) 6.21 · 10−1 2.04 · 10−2 3.96 · 10−4

C(N) 3.00 · 10−3 3.82 · 10−4 6.89 · 10−5

E(N) 1.84 · 10−5 1.18 · 10−9 4.90 · 10−10

m = 12 B(N) 1.94 · 10−1 2.11 · 10−4 8.06 · 10−8

C(N) 9.48 · 10−5 5.59 · 10−6 6.08 · 10−3

E(N) 6.17 · 10−8 2.95 · 10−6 1.50 · 10−7

m = 18 B(N) 6.10 · 10−2 2.20 · 10−6 1.68 · 10−11

C(N) 1.01 · 10−6 1.34 · 100 8.93 · 103

The errors corresponding to f(x) defined by (6.2) are listed in Table 5 and
Table 6 for the parameters αopt,R, Nopt,R and αopt,ρ, Nopt,ρ, respectively. As
before, we have also listed the quantities B(N) and C(N), and have computed
C(N) as the ratio of E(N) to B(N).

Analyzing the results presented in Figs. 18–19, and in the Tables 3–6, we
observe that the Gegenbauer reconstruction with the parameters αopt,I , Nopt,I

or αopt,R, Nopt,R obtained by minimization of (5.2) leads, in most cases, to
somewhat more accurate results than the reconstruction with the parameters
αopt,ρ, Nopt,ρ obtained by minimization of (5.4). On the other hand, the errors
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Table 5. E(N), B(N) and C(N) corresponding to αopt,R, Nopt,R for f(x) from (6.2).

ρ 1 2 4

E(N) 3.77 · 10−5 1.96 · 10−6 1.58 · 10−7

m = 6 B(N) 1.96 · 10−1 4.47 · 10−2 5.33 · 10−3

C(N) 1.92 · 10−4 4.38 · 10−5 2.96 · 10−5

E(N) 8.38 · 10−8 8.02 · 10−11 2.90 · 10−11

m = 12 B(N) 1.97 · 10−2 1.02 · 10−3 1.46 · 10−5

C(N) 4.25 · 10−6 7.86 · 10−8 1.99 · 10−6

E(N) 2.61 · 10−9 3.02 · 10−8 2.01 · 10−7

m = 18 B(N) 2.00 · 10−3 2.37 · 10−5 4.08 · 10−8

C(N) 1.31 · 10−6 1.27 · 10−3 4.93 · 100

Table 6. E(N), B(N) and C(N) corresponding to αopt,ρ, Nopt,ρ for f(x) from (6.2).

ρ 1 2 4

E(N) 2.29 · 10−4 2.63 · 10−6 1.94 · 10−7

m = 6 B(N) 6.21 · 10−1 2.04 · 10−2 3.96 · 10−4

C(N) 3.69 · 10−4 1.29 · 10−4 4.90 · 10−4

E(N) 5.15 · 10−8 8.77 · 10−11 1.59 · 10−10

m = 12 B(N) 1.94 · 10−1 2.11 · 10−4 8.06 · 10−8

C(N) 2.65 · 10−7 4.16 · 10−7 1.97 · 10−3

E(N) 1.63 · 10−8 1.32 · 10−6 2.01 · 10−6

m = 18 B(N) 6.10 · 10−2 2.20 · 10−6 1.68 · 10−11

C(N) 2.67 · 10−7 6.00 · 10−1 1.19 · 105

corresponding to reconstruction with αopt,ρ, Nopt,ρ are, in general, somewhat
smaller in the middle of the interval [−1, 1] than the errors corresponding to
reconstruction with αopt,I , Nopt,I or αopt,R, Nopt,R. We can also observe that
the actual errors of the Gegenbauer reconstruction, E(N), are only a fraction
of the quantities B(N) appearing in the error bound (6.3). This is signified by
the values of C(N) = E(N)/B(N) in Tables 3–6.

Tables 3–6 also indicate somewhat irregular behavior in the errors of the
Gegenbauer reconstruction for m = 18. We can observe that, contrary to the
cases of m = 6 and m = 12, the errors corresponding to ρ = 4 are larger
than the errors corresponding to ρ = 2. This is due to the influence of round-
off errors which become dominant for large values of the parameter λopt =
αoptNopt. This parameter for m = 18 and ρ = 4 has the values λopt,I =
αopt,INopt,I = 33.36 and λopt,ρ = αopt,ρNopt,ρ = 60.52 if the function f(x) is
defined by (6.1) and λopt,R = αopt,RNopt,R = 37.93 and λopt,ρ = αopt,ρNopt,ρ =
60.52 if f(x) is defined by (6.2), compare Tables 1– 2.

The influence of round-off errors for the Gegenbauer reconstruction was
investigated in [4, 9, 11] and helps to explain the above results. Although
the Gegenbauer reconstruction method provides a means to avoid Gibbs phe-
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nomenon, its use is not without cost. As described in the Section 2, spectral
convergence of a Gegenbauer reconstruction requires that λ and m depend lin-
early on N . But as N , and thus λ, grows, round-off error encroaches upon the
reconstruction error described above.

At first glance, an increase in λ appears to offer positive benefits. After
all, higher powers on the weight function in (2.3) and (2.4) lead to smoother
connections between periodic extensions of the original function and likewise
between periodic extensions of the higher derivatives. Such periodicity explains
the spectral accuracy of the Fourier coefficients from a periodic function as
shown in [5, 12, 18]. Similarly this would appear to result in Gegenbauer
coefficients that decay more quickly than those computed with lower values
of λ. However, it was pointed out in [4, 11] that as λ increases, the weight
function narrows and the reconstruction becomes more extrapolatory. That is,
it depends more on the behavior of the original function central to the sampled
interval to predict what it will do closer to the boundaries. At the same time,
the narrowing weight function is also responsible for the significant increase
in magnitude for all associated orders of Gegenbauer polynomials. Naturally
the coefficients corresponding to such large polynomial basis functions must
now carry their valued information at very small magnitudes. Then during
reconstruction, multiplication of the very large with the very small leads to
round-off error as shown in [9, 11].

In Section 7 we will explore these same parameter selection strategies given
sample data taken from Fourier-Galerkin and collocation expansions.

6.2 Two-dimensional reconstruction

Previous studies, such as [2, 3, 20] have shown the effectiveness of performing
Gegenbauer reconstructions on two-dimensional images, defined, of course, on
evenly spaced grid points. In such cases the source data was understood to be
from frequency space and hence, one- dimensional Fourier-Gegenbauer recon-
structions were performed on each vertical column, or horizontal row, of data.
This paper has, however, focused on Chebyshev-Gegenbauer reconstructions
whose source data is understood to be defined on Gauss-Lobatto quadrature
points, not a common image format. Nevertheless, we recognize the ability of a
two-dimensional image to immediately convey a visceral sense of effectiveness
for a given method of reconstruction. For this reason, and in the interest of con-
tinuity between studies, we also present a two-dimensional image reconstructed
by the Chebyshev-Gegenbauer method.

As in prior studies, we chose to reconstruct the Shepp-Logan brain phan-
tom, which is commonly used to compare the relative merits of medical image
processing algorithms. This phantom is comprised of piecewise-smooth seg-
ments intended to model regions of similar tissue types whose densities are
discontinuous with those in adjacent regions. Since it is defined algebraically,
we sampled it on vertical, or horizontal, lines at Gauss-Lobatto quadrature
points and subsequently projected this physical data into Chebyshev space. It
was then a simple matter to re-expand the image as a finite Chebyshev series
on equidistant grid points. The result is shown in Fig. 20 with, as expected,

Math. Model. Anal., 15(2):199–222, 2010.



218 Z. Jackiewicz and R. Park

Gibbs artifacts.
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Figure 20. Chebyshev reconstruction of
the Shepp-Logan brain phantom on [128 ×
128] uniformly spaced grid points.
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Figure 21. Gegenbauer reconstruction of
the Shepp-Logan brain phantom on [128 ×
128] uniformly spaced grid points using a
dynamic selection of the reconstruction pa-
rameters and resulting in an 89% reduction
in size over the original image.

We pause to note here that Section 5 in this paper assumed analyticity
measure, ρ or r0, and the number of Gegenbauer coefficients m to be among
a preselected set of discrete convenient numbers. We then sought the optimal
values of parameters α and N yielding the lowest apriori upper error bound.
Using this approach we were able to find and present the correspondingly rec-
ommended, but still discrete, parameters αopt and Nopt. There are however,
times when, as in Section 4, we presuppose, or are given, a measure of analyt-
icity in the form of ρ or r0, as well as the value of N while we seek optimum
values of both α and m to yield the lowest apriori upper error bound. Fur-
thermore, the given parameters may fall between the discrete values selected
in Section 4. Fortunately, [21] used the same ideas presented herein to develop
closed form functions with which to treat such cases.

Returning now to the unmodified reconstruction of the Shepp-Logan phan-
tom shown in Fig. 20, we seek not just a way to avoid Gibbs artifacts, but
also a way to minimize the value of m, i.e. maximal compression, during a
reconstruction where both analyticity and N are given. To achieve this we
chose to perform a Chebyshev-Gegenbauer reconstruction on each vertical, or
horizontal, line of Chebyshev coefficients used to recreate Fig. 20. But in
order to do this, we first need to know the locations of the discontinuities in
each line of data. Since we are not aware of a method to locate the physi-
cal discontinuities from the Chebyshev coefficients, we used the concentration
edge detector in Fourier space, as described in [3, 6], to locate the intervals
of smoothness. Subsequently we applied the Chebyshev-Gegenbauer method,
dynamically choosing optimal parameters as described in the paragraph above,
and also by [21]. In this way the value of N could be a variable integer based
on the length of each smooth sub-domain.

The result, shown in Fig. 21, is clearly a significant improvement over
the Chebyshev reconstruction shown in Fig. 20. By itself, this result does
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not obviate the value of other reconstruction methods, such as total value
regularization (TVR), which do not require an edge detection step and thus
appear computationally cheaper. However, unlike the Chebyshev-Gegenbauer
method, TVR requires an iterative minimization step. Moreover, unlike a TVR,
this Gegenbauer reconstruction was able to compress the Chebyshev data to
11% of it’s original size prior to reconstruction.

7 Gegenbauer Method Error Bounds Given Fourier or

Pseudospectral Data

In Section 2 we pointed out that given the necessary relationship between α, β
and N , both truncation and regularization errors tend to zero as the number
of Chebyshev modes N tends to infinity. Subsequent sections then described
strategies for selecting optimum parameters used to reconstruct a function from
its Chebyshev series expansion. If, however, the source of fN in (2.3) is a Fourier
partial expansion such that

fN (x) =

N
∑

n=−N

f̂ne
inπx, (7.1)

where the exact Fourier coefficients f̂n are defined as

f̂n =
1

2

∫ 1

−1

f(x)e−inπxdx, n = −N,−N + 1, . . . , N, (7.2)

then qT , originally defined in (2.8), was instead shown in [15] to be

qT = qTF :=
(β + 2α)β+2α

(2πeα)αββ
. (7.3)

Alternatively, if the data we possess for fN came from a collocation expansion
in either a Fourier or a general Gegenbauer spectral series, the ratio qT was
shown in [14, 15] to be

qT = qTC :=
(β + 2α)β+2α

(eα)αββ

(

1

2
+

1

4ρ

)

, (7.4)

where ρ is the same measure of analyticity defined in (2.10).
Since a source for fN other than the Chebyshev expansion considered in

Sections 2–6 does not change the regularization error, analysis of the recon-
struction error for these two additional circumstances can rely upon the same
expressions for qR presented in Sections 2 and 3. Then following the same ana-
lytical optimization described in Section 3, we find the expressions of optimum
α given either of the two new expressions of qT and any value of m as summa-
rized, with the results from Section 3, in Table 7. Note also that analyticity
parameters r0,I and r0,R in Table 7 are defined in Section 2.

The analytical results predicted in Table 7 indicate that when qT = qTC , we
expect αopt to be roughly twice the value of αopt when qT = qTG. Table 7 also
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Table 7. Comparison of ᾱopt, q̄T (α) and q̄T (ᾱopt) corresponding to expressions for qT .

qT (eqn) ρ r0,I r0,R ᾱopt q̄T (α) q̄T (ᾱopt)

qTG (2.8) - - -
1

2e
(2α)α 0.8320

qTF (7.3) - - -
π

2

(

2α

πe

)α

0.2079

1

2

√
5− 1

2

3−
√
5

2

1

4
0.7788

qTC (7.4) 1
√
2− 1 2−

√
3

ρ

2ρ+ 1
=

1

3

(

α(2ρ+1)

eρ

)α

0.7165

2
√
5− 2 3− 2

√
2

2

5
0.6703

4
√
17− 4 5−

√
24

4

9
0.6412

shows that when qT = qTF , we expect αopt to be roughly one order of magnitude
larger than αopt when qT = qTG. The numerical experiments performed in [21]
confirm these expectations. When qT = qTC , αopt was found to be roughly
twice the size, and Nopt to be roughly half the size of the same values when
qT = qTG. Likewise, when qT = qTF , αopt was found to be roughly one order
of magnitude larger, and Nopt to be roughly one order of magnitude smaller
than the same values when qT = qTG.

These results provide helpful insight into the design of a Gegenbauer recon-
struction process. Although the total number of data points we require from
the expanded partial sum, when qT = qTC or qTF , is Mopt = 2Nopt + 1, the
value of Mopt when qT = qTG will still be one to five times larger than when
qT = qTC or qTF . Subsequently, a Gegenbauer reconstruction process, when
qT = qTG, is likely to require more memory and computational bandwidth
than required when qT = qTC or qTF . A broader comparison between the
reconstruction errors realized from different expressions of qT can be found in
[21].

8 Concluding Remarks

We have described a new strategy for choosing optimal values of parameters α
and N in Gegenbauer reconstruction applications whose number of expansion
terms, m, is fixed. These strategies work very well provided the polynomial
weighting parameter, λ = αN , is not too large. The new techniques developed
in this paper are equally applicable to reduce the influence of round-off errors
by keeping the parameter λ fixed and allowing m to vary with N . Alternatively,
they could also be used when both λ and m are fixed and only N is allowed
to vary. Techniques for choosing the Gegenbauer reconstruction parameters in
these circumstances are described in [20, 21].

Furthermore, although we have described using asymptotic analysis to op-
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timize Gegenbauer reconstruction parameters, we also point out that these
methods could be used to optimize the parameters of newer reconstruction
basis sets. Finally, the techniques described in this paper all assume the un-
derlying function analyticity, ρ or r0, to be known. Of course, when they are
not, or are known to be unfavorable, that is, indicate complex plane poles too
close to the real axis, Runge phenomenon will be inescapable. Clearly there
remains the need for a method of identifying any given function’s analyticity.
Nevertheless, until such a method is successfully developed, the methods de-
scribed in this paper can still remain a model for optimizing the parameters of
mainstream reconstruction methods.
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