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Abstract. In this study, non-symmetric flow problems are modeled by selecting
subdomains and shifting them in such a way that the symmetry is recovered. As
a result, the domains are made of simple grid structures and re-generation of mesh
is avoided. Three test problems with various decomposition characteristics, namely,
translation, rotation and deformation are selected, and they are analyzed in different
flow regimes. To study the internal flow between eccentric cylinders, two cylindrical
concentric subdomains are considered, one translated relative to the other. Hence, a
simple polar-coordinates mesh can be utilized instead of generating a mesh for the
solution domain between the eccentric cylinders of the original problem. External
flow around a curvature tube is studied shifting the subdomain around the object in
rotation, relative to the outer domain thus avoiding a re-generation of the mesh as the
angle-of-attack changes. A third example involves deformation of an object exposed to
natural convection, and the shifting of the domain facilitates the iteration process as
the object deflects. Systems of nonlinear equations are solved within Newton-Krylov
framework using the matrix-free approach. Geometrical and physical parameters
are used to improve the solution process. Several results are provided to show the
applicability of proposed method.

Keywords: Newton-Krylov, matrix-free, translation, rotation, deformation.

AMS Subject Classification: 76M25.

1 Introduction
Symmetry is a crucial criterion in investigating physical phenomena. Scien-
tists exploit the symmetry of a problem as much as they can whether they are
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using analytical or computational tools. From a numerical point of view, the
physics can be examined using the same number of unknowns but with higher
accuracy, when the symmetric model is compared with the full model. Unfor-
tunately, such a simplification cannot be attained in general. In fact, most of
the problems that we are dealing with are non-symmetric, especially in fluid
mechanics.

In this study, flow within or around geometric shapes is studied. In order to
solve such problems, several approaches can be utilized. If the domain is simple
in shape, like a rectangle or a circle, then cartesian and polar coordinates can be
used with ease, respectively. If the geometry of the object is more complicated,
then the domain can either be mapped into a computational domain in which
the problem is again structured or one can use an unstructured mesh around
the obstacle. If the domain is mapped, then the computations are involved with
calculations regarding the Jacobian of the transformations. If an unstructured
grid is generated, then special care should be taken during the discretization
of the governing equations. In both cases, the mesh generation process will
take some additional time which increases the computational overhead. This
is especially significant if more objects are studied or objects are in motion
relative to each other. A good alternative to solve this problem is the Domain
Decomposition Method (DDM).

Although DDM was first used by Schwarz [25] in the late 1800’s to prove
the existence of solution to elliptic equations in complex geometries, nothing
significant was done on DDM until early 1980’s besides the studies of Kron [16]
and Przemieniecki [20]. In 1986, Bjorstad and Windlund [3] studied solutions of
elliptic partial differential equation on decomposed domains. Smith et al. [26]
presented a comprehensive study of DDM and provided several algorithms in
terms of parallel multilevel methods. A comprehensive analysis of the applica-
tion DDM to partial differential equations is given in Quarteroni and Valli[22].
Cai et al. [5, 6] investigated use of Additive Schwarz techniques to accelerate
the solution of incompressible flow problems.

Houzeaux and Codina [12] proposed a solution algorithm based on Dirich-
let/Robin interface conditions for of chimera grids. Presented technique is
tested for various advection problems on simple square grids. An attempt to
analyze domain decomposition in terms of the shapes of the subdomains is real-
ized by Yang and Du [30]. They investigated the Alternating Schwarz method
to model geometries with concave angle.

In fluid-structure problems, use of Arbitrary Lagrangian-Eulerian formula-
tion can be applied with the use of dynamic mesh that is allowed to change with
deforming solid bodies as investigated by Felippa et al. [11]. Later, Wall et al.
[28] used overlapping domain decomposition to model fluid-structure problems.
ALE formulation is used to investigate the flow field around a vertical beam
where a subdomain in the flow geometry deforms with the elastic strip. A more
recent study on overlapping domain decomposition is performed by Landmann
and Montagnac [17]. They stated an algorithm to automate the selection of
overlapping grids where subdomains can be in arbitrary shapes depending on
the geometry of the model.

Even though domain decomposition has other applications like the decom-



Resolving Non-Symmetry in Flows 351

position of a mesh for parallelization purposes (particularly in finite element
analysis) or accommodation of different physics (Navier-Stokes Equations in
the vicinity of the boundary matched with Euler Equations for the far field),
it is primarily used to divide complicated domains into many simple domains.
Sub-domains may represent some portion of the boundary of the global domain
or they may not, however they all possess the so called artificial boundaries
which are composed of nodes along fictitious curves (or surfaces in 3D) used
to carry values from neighboring domains to the domain in concern. Values
are transferred either directly if the domains are conforming or interpolated
if non-conforming. Conforming domains share common nodes whereas non-
conforming domains do not have matching vertices. Procedures in DDM can
be simplified for conforming domains using the so-called additive and multi-
plicative procedures [26]. In the additive approach, all sub-domains are solved
simultaneously (useful in parallel processing) and the values are interchanged
at the end of the computations. In the multiplicative version, on the other
hand, values are interchanged as soon as they are calculated. In this case,
convergence can be achieved with less number of iterations, however, parallel
implementation is not trivial and coloring of domains might be necessary. In
terms of stationary iterative methods, additive and multiplicative versions are
analogous to Jacobi and Gauss-Seidel methods, respectively.

Overlap is also important in the Domain Decomposition Method. No-
overlap is the case in which the global domain is divided into distinct pieces. If
overlap is utilized, the convergence is improved with the degree of overlap. On
the other hand, it is shown in [26] that overlap is more effective on Alternating
Schwarz algorithm rather then Additive and Multiplicative versions. A discus-
sion on overlap is also presented in [3]. DDM can also be used to solve simple
domains; in that respect, it can act as a preconditioner to linear problems as
well as to nonlinear problems [5].

The methodology followed in this study does not fit into a multiplicative
framework as in [26] — since no commons nodes are present — the updates
between domains can still be thought as Jacobi and GS analogs. Different
domains can be either be solved at the same time or domains can wait their
turn and then proceed with recently updated boundaries. More on domain
decomposition can also be found in different books [18, 27, 29|.

Parallelization, in general, is an important issue in scientific computing and
that reflects to recent publications [8, 9] in mathematical analysis.

The structure of the paper is as follows. In Section 2, essentials of subdo-
main shifting is presented. Later, test problems will be introduced along with
the formulation used to simulate the flow field. The paper will continue with the
details of implementation of domain decomposition and numerical techniques.
In Section 6, results for all three model problems are given. The discussion on
the proposed idea will be followed by conclusion and further remarks for future
work.

Math. Model. Anal., 15(3):349-370, 2010.
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2 Subdomain Shifts

In Domain Decomposition Method, selection of the sub-domains is straight-
forward for a model with simple geometry (Figure la). If the shape of the
domain is much more complicated, then the division can still be made with
simple cuts, yet sub-problems will vary in size since the distribution of the un-
knowns is virtually ignored (see Figure 1. In addition, data exchange between
the subdomains should also be reduced (this condition is especially important
in parallel processing). In that respect, a more elegant solution to determine
the decomposition might be to use spectral partitioning strategies like Metis
[15] which is based on multilevel techniques to generate sub-domains for irreg-
ular geometries. A downside of this method is that, the procedure should be
repeated if the mesh is modified, i.e. if the domain is changed. When the prob-
lem in concern is to be analyzed in different parameter spaces that depends
on the geometry like the eccentric cylinders problem in Section 3.1, a direct
correlation cannot be done with the subdomains.

| I

Figure 1. Decomposed domains for two different geometries.

In this study, an idea is proposed to select the subdomains in such a way that
separate problem resembles with each other and has a physical significance. The
method is applied on non-symmetric problems which means that the geometry
cannot be reduced into a smaller model using symmetry boundary conditions.
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Figure 2. Eccentric cylinders problem.
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In Figure 2 the geometry of a eccentric cylinder problem is given (Sec-
tion 3.1). If the setup were concentric, then the centers of the outer and inner
cylinder would coincide. However, the center is shifted in an arbitrary direction
(which occurs in journal bearing when operated under load) so a computational
grid should be generated to comply with the spacing between the cylinders. In-
stead, the problem can be solved with overlapping domain decomposition in
such a way that the subdomains are formed like concentric cylinder using arti-
ficial boundary conditions. Domain I, {2;, excludes the inner cylinder (denoted
by dots) and includes a new boundary denoted by I'y whose values are inter-
polated from Domain II, £2;;. Similarly, {2;; excludes the outer domain and
works with artificial boundary I'7;. This time, values are interpolated from (2;.

If the eccentricity is changing, i.e. inner cylinder is moving, then only the
points that are used for interpolation will be changed. Hence, symmetry is
preserved even if the domains are in motion. The geometric definitions of the
subdomains will remain the same. Since the domains are now concentric, simple
polar grids would be used with ease. If additional division are necessary, then
decompositions can be performed on those two subdomains separately. Also, a
recursive approach can be performed for example, if four domains to be used,
than four concentric cylinders can be generated.

In this study, three different configurations are presented to demonstrate
subdomain shifts. Although any restriction that applies on domain decomposi-
tion method also applies to this idea, main concern is geometric complications.
Depending on the selected parameter, the geometry itself can be a constrained
not to employ proposed method. In eccentric cylinder problems, the epsilon
has a limit — which is also complication for domain decomposition technique,
as well.

3 Mathematical Modeling

In this study, three model problems are selected to test the performance of
the subdomain shifting method (SSM) in three different scenarios. In the first
case, translation of subdomains are to be examined. For this purpose, an inter-
nal flow problem is selected where two cylinders are placed eccentrically (see
Figure 3). The eccentricity, ¢, is used as a geometric continuation parameter.

Figure 3. Subdomains of the first model problem.

Math. Model. Anal., 15(3):349-370, 2010.
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In the second problem, rotation of subdomains is investigated. This time
an external flow is studied at which flow around a curvature tube is to be found
(Figure 4). Different values of the angle of attack, «, are investigated by just
rotating the inner domain.

leading edge

/ — —eanj
chord line \ trailing edge Q2
5 ~ =,
flow direction o X / 2

Figure 4. Parameters (left) and domain (right) of the second model.

In the last situation, deformation of boundaries is examined. In this free
convection problem, a strip is to be bent in the presence of a temperature
difference (Figure 5). The radius of curvature, pg, acts as the continuation pa-
rameter which defines the deflection of the beam. These problems are selected
is such a way that they are mathematically simple yet related to engineering
applications.

Domain 1

Q

Figure 5. Subdomains of the third model problem.

Test problems are incompressible flow problems. The main difficulty in
solving incompressible Navier Stokes equation is treatment of the pressure.
The continuity equation lacks pressure terms so it behaves like a constraint to
be fulfilled by the velocity field. To date, numerous methodologies are proposed
to analyze incompressible flows, e.g. SIMPLE [19] or Artificial Compressibility
[7].

In this study, however, stream function - vorticity formulation is selected
which avoids the solution of pressure equation and reduces the numbers of
unknowns to 2 (¢, §2) rather than 3 (u, v, p). Before giving the details of the
models, it is useful to introduce the velocity and vorticity in both Cartesian
and polar coordinate systems (see, Table 1). Stream functions are selected is
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Table 1. Velocity and vorticity definitions.

. _ oy __ o — 9v _ Ou
cartesian Uz = Gy Uy =~ 3z =% dy
10 o) 19 10u
polar Up = ;—15 uez_a_lf = ;W(rug)—; 50

such a way that the continuity is satisfied is respective coordinate systems. As
seen from the table, velocities are defined as the derivative of stream function.
Details of the models are given as follows.

3.1 Translation of subdomains — flow between eccentric cylinders

Analysis of flows between eccentric cylinders is significant in a wide range of
problems in the field of engineering. The lubrication of bearings and shafts,
viscosity measurements in torsional viscometer etc. are some of the basic ex-
amples. The flow is dependent on the velocities of the boundaries as well as
the eccentricity of the geometry.

In the literature, most of the studies for eccentric cylinders are presented
only for one moving cylinder [10]. Using the idea introduced in Section 2,
rotation of both cylinders at the same time can be investigated. In this study
computations are carried out for eccentricities up to 0.3 where the eccentricity,
€, denotes the amount of shift of the center of the inner cylinder off the outer
cylinder. The analysis starts with concentric case where ¢ = 0. This is useful
in different aspects. First, it has an analytic solution. Second, it will help us to
provide a good initial guess while varying the eccentricity of problems. In this
way, the problem is converted into a continuation problem over the parameter
€, in addition to the Re number which is the key physical non-dimensional
parameter.

Geometry of eccentric cylinders can easily be modelled in polar coordinates.
It can be seen from Figure 3 that the domain is divided into two overlapping
parts. Domain 1, {21, is used to model the outer wall and excludes the inner
cylinder. Its inner boundary is artificial and denoted by I';. On the other hand,
domain 2, {25, includes the inner wall and exchanges data with (2, over I%.

As shown in Figure 3, the subdomains are very similar in shape, in fact with
the use of SSM, the whole domain is reduced into two concentric problems with
artificial boundaries. Consequently, the number of nodes on both domains
can be arranged to be the same, which simplifies load balancing of parallel
processing where domains can be solved on different processors and exchange
data at the end of each iteration (Jacobi Analogy). In this approach, load
balancing is not a big issue since the dimensions of the nonlinear systems will
be the same.

Throughout this study, incompressible flow problems are considered. Main
issue in the analysis of incompressible flow problems is the treatment of the
continuity equation which is related to the computation of the pressure field.
Stream function (¢) — vorticity ({2) approach is selected to analyze the model
problems although several other methodologies are available in the literature
like SIMPLE [19] or Artificial Compressibility [7]. This approach reduces the

Math. Model. Anal., 15(3):349-370, 2010.
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number of unknowns and eliminates numerical complications arising because
of the incompressibility constraint that is related to the lack of a pressure term
in the continuity equation.

The non-dimensional form of the governing equations in polar coordinates
is given by

0% 10y 1 0%y
oz e T = 3.1)
[82!2 100 iam} - @[aw 00 00 81/)}

or? r Or  r2 002

a9 or agorl =" (3.2)

r
where the Reynolds number, Re, is defined as Re = pugD/p, where p is the
density, uy is the tangential velocity and D is the diameter of the rotating
cylinder. On the wall of outer domain, (£21), stream function is set to be zero
whereas the vorticity is calculated as

9(32w+ 13‘”). (3.3)

a2t rar

Different boundary conditions can also be found in [23].

The same equation is also used for inner domain, (£21), however the stream
function is evaluated in such a way, that the tangential velocity ug, related to
the rotation of the cylinder, is equal to 1:

oy _

5, = L (3.4)

Artificial boundaries, I'; and I are treated as non-homogeneous Dirichlet data,
and calculated with bilinear interpolation as explained in Section 4.

3.2 Rotation of subdomains — flow around a curvature tube

Our next model is an external flow problem at which the flow around a curved
geometry is analyzed. This problem is a simple 2D model of a paraglider wing.
Paragliders are composed of a wing called a canopy which deforms during flight
since unlike a conventional aircraft wing, it does not have a rigid structure [1].
The canopy takes the form of a wing by the pressure of the air entering in
through the openings at the leading edge. When the airfoil is moved at the
allowed angle of attack range, lift and drag are created which counterbalance
the gravitational force. Hence numerical analysis of paragliders is important
in terms of performance related issues [1]. Additionally, the flexible nature
of paragliders make them an excellent example of fluid-structure interaction
problems.

Like the first problem, the whole domain is divided into two overlapping
subdomains. Domain 1, 21, is used to model the far field conditions and keeps
the curvature tube out while domain 2, {25, carries information to the first
domain about the object. (2, has an artificial boundary, Iy and studied in
cartesian coordinates. On the other hand, {25, with interface I is examined in
polar coordinates. When the global domain is considered alone, then a mesh
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generation operation will be needed if SSM is not utilized. However, with the
selection of those overlapping domains, the problem is split into two simple
subproblems which have to be solved iteratively. The angle of attack (see,
Figure 4) is set by just rotating 2.

In this model, the domain decomposition is used with two coordinate sys-
tems, polar and cartesian, so governing equations for both are needed. For the
polar setup i.e. for {25, equations (3.1) and (3.2) are reconsidered. Cartesian
equations for 21 are given as

0%y 0%

o2 Tor =Y 39
020 9% oY o2 o of

5 5] Rel5y 5 e ay) = (3.6)

The boundary conditions for polar domain ({22) are the same as those used
in model 1 (Section 3.1). In cartesian domain, inflow condition is specified
properly with the stream function:

—=u=U), ——=v=0. (3.7)

Vorticity at the inlet and the far field is set to be zero, at the outflow equation

(3.8) is used:

oy a0
5 =0 5-=0. (3.8)

3.3 Deformation of subdomains — natural convection around a strip

In this last problem, deflection of a bimetallic strip is considered. It is composed
of two metals, which differ in their coefficients of thermal expansion. If the strip
gets heated, then two materials will elongate in some amounts, however their
elongations will be different. Since they are also bonded together, the beam
will deflect. The deflection of the solid will change the boundaries of the fluid
domain. Normally, such a process needs a re-meshing if a single fluid domain
is used, however, with the help of the domain decomposition regeneration of
the grid is avoided. In fact, by using SSM the deformation is reflected only to
the inner domain, {25, as observed in Figure 5.

In this model, the solid analysis is kept simple, i.e. the use of finite element
method is avoided. The curvature, K, is calculated using equation (3.9), which
is a formula introduced by Timoshenko. Hence, no real computations are per-
formed to calculate the deflection of the strip and the curvature is found by
analytical means. One can also consider this model as an introductory step to
a more complex analysis in fluid-structure interaction where the deformation
is calculated with thermoelasticity rather than analytic means. In this study,
only an analytic methodology is followed in terms of the deformation mainly
because we are interested in investigating subdomain shifting method on flow
problems rather than the changes inside of the solid part. Since the deforma-
tion is not complicated, grid generation process is simplified. In fact, the shape
of the grid is straight forward, i.e. it is also in polar coordinates since the

Math. Model. Anal., 15(3):349-370, 2010.
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bending can be determined by calculating the curvature of the final form in
linear elastic theory. If elastic moduli of both metals are the same, Ey = Ej,
and the parts have the same thickness then the curvature K can be found using
equation

3(Aa)AT 1

K = —.
2h PK

(3.9)
Parameter px given in equation (3.9) is the radius of curvature and this param-
eter is used to generate the inner domain which is proportional to the thickness
of the beam, h, and inversely proportional to the difference of the temperature
and the thermal coefficient of expansion. A« is the difference of thermal ex-
pansion coefficients (aa — o) and is used to adjust the deformed geometry for
numerical tests. Deformed shape is used to perform a continuation strategy
in such a way that it acts as an initial guess to another problem with a large
temperature difference between the strip and the environment. So for differ-
ent configurations, the analysis will not start from scratch, but from the last
configuration.

The governing equations of natural convection are different from those of
forced convection model problems introduced before. In natural convection,
density changes are the main driving force of the flow in the presence of the
body forces - which is the gravity in current study. Although the flow is incom-
pressible, density changes can be analyzed using the Boussinesq approximation
[13], where § is the coefficient of thermal expansion of fluid:

(pfpoo)zpﬁ(TfToo)

In a natural convection problem, the energy equation should also be added
to governing equations to solve for the temperature, T". The non-dimensional
form of the governing equations are slightly different, and are given by equations
(3.10)-(3.15):

oo f’%ﬁ _ 0o (3.10)
PT{ZQTZZ + 8;722} + RaPrg—z — [?)_Z)a@_f - g—f%} =0, (3.11)
+ Rapr[%g—:gcos(a) + g—fsm(a)} =0, (3.14)
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Rayleigh number, Ra, and Prandtl number, Pr, are defined as

3
Ra = M’ pr—2 (3.16)
aTv (0%
Here, ¢ is the gravity, H is the height of the solution domain and ar is the
thermal diffusivity. The stream function is zero on the boundary (¢ = 0) all
over the domain. Vorticity conditions for polar domain are as in equation (3.3).
For the cartesian domain, vorticity at the walls are defined by

2 (Ywatt — Ywail—1)
An?2 '

In this equation, wall — 1 denotes the first interior node from the wall into the
domain in the normal direction, n. An is the spacing between the interior and
boundary nodes.

Now we have to introduce boundary conditions for the dimensionless tem-
perature. In this problem, top and bottom walls are insulated whereas tem-
perature on the left wall, T}, is zero. At the initial configuration, when the
strip is straight, temperature at the right wall and the strip, Trp=1. As the Ty
increases, the strip bends and a new problem should be solved. It is assumed
that an external heat source acts on the right of the domain and keeps the right
wall and the strip at the same temperature during the analysis. When T}y is
varied, the desired curved geometry can be specified by changing with A« as
a computational parameter.

Qan = (3.17)

4 Domain Decomposition

Domain decomposition is a division of a global solution domain to some num-
ber of sub-domains. In overlapping domain decomposition, sub-domains share
common regions. On the contrary, in non-overlapping domain decomposition,
each sub-domain represent a distinct and unique part of the global problem.
Non-overlapping version is generally preferred in decomposing the domain for
parallel processing especially in finite element analysis. In this study we have
used non-conforming sub-domains.

Domain decomposition of overlapping type is also can be split into two
types: the domains are either conforming or non-conforming. In conforming
decompositions, some nodes belong to multiple subdomains. In non-conforming
problems however, nodes are not necessarily on top of each other. Analysis on
conforming domain decomposition can be simplified by additive and multiplica-
tive versions as explained in [26]. In this study, one sub-domain is kept fixed
while the other is allowed to be in motion either in terms of translation, ro-
tation or deformation - so are the nodes that belong to those moving regions.
Consequently a non-conforming domain decomposition is suitable to analyze
the models hence nodes of different domains do not have to match.

In domain decomposition, data are exchanged through artificial boundaries.
This exchange is mostly done with non-homogeneous Dirichlet boundary con-
ditions. The Robin type boundary condition, as a combination of Dirichlet
and Neumann type boundary conditions is also possible [26]. Data transfer is

Math. Model. Anal., 15(3):349-370, 2010.
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achieved through bilinear interpolations. Interpolation on cartesian coordinates
is calculated using equation

wp — (1 _ Q?Ed—x-’lfA) (1 _ yEd—yyA)uA n <xEd;xA) (1 _ yEd—yyA)uB

N (:rEd;xA) (yEC;yyA)uC + (1 _ xEC;JxA) (yEC;yyA)UD, (4.1)

whereas that on the polar coordinates is handled with equation

e = (1= P ) (1 k(B (1 P Y

_ (QEGTQQA)(TEC;ATA)UC* (170EC;99A)(TEC;ATA)UD- (42)

See also Figure 6). High order interpolation schemes are also possible, however,
successful computations are performed with bilinear operators.

oF

a) b)

Figure 6. Interpolation: a) on Cartesian, b) polar coordinate systems.

5 Numerical Methods

To simulate the models given in Section 3, the governing equations should
be discretized and for that finite differences with second order accuracy is
used. First order derivatives are also computed with central differences. Final
form of the algebraic equations after the discretization are coupled and nonlin-
ear, so proper solution approaches should be employed. The Newton-Krylov
techniques are used to deal with the resulting nonlinear system of equations.
Newton-Krylov methods allow the analyst to perform matrix-free computa-
tions. While the Newton method deals with the update of the solution vector,
Krylov methods seek a solution of linearized equations by avoiding the forma-
tion of the Jacobian. Preconditioning is also utilized during the computations
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to enhance the convergence of the system of linear equations since the conver-
gence of Krylov solver is limited without the implementation of a precondi-
tioner. After discretization of governing equations and implementation of the
boundary conditions the resulting system of equations can be written as

f(x) = 0. (5.1)

Starting from a initial guess x°, the iterates can be found by the iterative
process
xFH = xF 4 AAx, (5.2)

where A\ is the damping parameter. In Newton’s method the update Ax is
found using
JAx = —f, (5.3)

where J is the Jacobian Matrix such that J;; = gg’; In solving equation
(5.3) a Krylov method is preferred. In Krylov methods, like GMRES [24], only
matrix-vector products (J v) are needed rather than the matrix J itself (except
in preconditioning). This multiplication can be approximately evaluated using
equation (5.1) through the following formulation

f(x + ev) — f(x) .

€

Jv =~ (5.4)
Equation (5.4) is called the Fréchet derivative. Matrix-vector product is com-
puted by perturbing x by an amount of ev. Accuracy of the differencing is
dependent on the selection of the e [4, 21]. In this study, we take e = le — 7,
which is accurate enough to proceed with the calculations.

During the numerical tests, Jacobi preconditioning (namely diagonal scal-
ing) is used primarily. This is the simplest preconditioner and the reason for
its use is that the computations can still be treated in a matrix-free setting.
For improved convergence properties, LU-SGS is used (in second test problem)
which is also handled in a matrix-free fashion [14]. This is a variant of LU de-
composition. Another variant is the incomplete LU (ILU). ILU(0) is utilized in
the second test case, where the Jacobian is stored in compressed column storage
to speed up the computations [2]. Here, the computations are not matrix-free
anymore but can be treated as jacobian free because the preconditioner could
be selected from a low order problem (first order accuracy rather than second
order).

6 Results & Discussion

In this section, results for all model problems are presented separately in dif-
ferent aspects. In all three tests Newton’s Method is utilized as in equation
(5.2). GMRES is used to solve equation (5.3) for Ax in a matrix-free con-
text. Stopping criteria for nonlinear iterations was le — 6 in the absolute norm
(IIfll2 < le — 6) and for linear iterations it was le — 5 in the relative norm
(Ilrnll2/|lroll2 < 1e —5). For the convergence of the domain decomposition the
criteria given in [3] is used, i.e. subdomain visits are stopped if ||x* — x*71 ||

Math. Model. Anal., 15(3):349-370, 2010.
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is reasonably small. In the third model problem a parametric study in terms
of the radius of curvature, p, is performed and subdomain convergence limit is
set to le — 8.

6.1 Translation of subdomains

In this internal flow problem, cases with varying Reynolds number, Re, and
eccentricity, €, are considered.

Figure 7. Stream function (left) and ug (right) results for Re=100 and € = 0.3. Outer wall
is stationary.

Figure 8. Stream function (left) and vorticity (right) results for Re=100 and ¢ = 0.3. Outer
wall rotates with ug=-0.5.

Figure 7 shows the contours of the stream function and wug for Re = 100 and
€ = 0.3. As shown in this figure, the streamlines are shifted with the geometry.
For the case when outer cylinder is rotating with -0.5, the stream function plot
is completely different as observed from Figure 8. Here, a cell is formed at the
left of the inner cylinder. This solution is achieved using continuation on £ and
the computations are started with concentric case.

In Figure 9, nonlinear residual history for both inner and outer cylinders
are showed for Re = 100 and e = 0.2 (inner cylinder rotating with ug = 1
and outer cylinder rotating with ug = —0.5). It can be seen that, the nonlinear
norm at the beginning of each subdomain visit is reduced, generally. The graph
is noisier for the inner cylinder especially for the first couple of visits.

6.2 Rotation of subdomains

This second problem is the first model where external flow is examined and two
sets of coordinate systems are used. In this part, flow around of a curvature
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Figure 9. Nonlinear residual for Re = 100 € = 0.2. Outer cylinder on the left and inner
cylinder on the right.

tube at Re = 160 is studied for two different angle of attack, a, values. Outcome
of the analysis with a = 0° is given in figure 10.

Figure 10. Stream function and vorticity for Re = 160 and a = 0°.

On the left, stream function is given whereas vorticity is on the right. We
should pay attention to the fact that although this is a zero angle of attack
problem, the contours are not symmetric since the geometry is curved. A
symmetric case might be generated with a = 90°.

To fit into the context of non-symmetric flows, another case with a = 42°
is investigated instead of this symmetric case. Results are given in Figure 11
at which wakes are observed easily downstream of the curvature tube. Rotated
sub-domain is also apparent in this second instance.

In this model, effect of different preconditioners on linear solves is also inves-
tigated. As seen in Figure 12, LU-SGS is competitive to ILU(0) in cylindrical
domain however in all domains ILU is superior to all other preconditioners.
Not much improvement is attained with Jacobi preconditioner on GMRES.

A note on LU-SGS should be said before proceeding, although LU-SGS is as
successful as ILU(0), the calculations take a lot of time since matrix-free com-
putations are done for 2N times for N number of unknowns. This is because

Math. Model. Anal., 15(3):349-370, 2010.
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Figure 11. Stream function and vorticity for Re = 160 and o = 42°.

log(norm of linear residual) vs. Number of iterations at a Newton step - cartesian domain log(norm of inear residual) vs. Number of terations at a Newton step - cylindrical domain
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Figure 12. Linear convergence histories of various preconditioners for Re = 160. Cartesian
on the left, Polar on the right.

both forward and backward substitutions are needed in incomplete decompo-
sition preconditioning, respectively. On the other hand, if we compensate on
matrix-free methodology, the evaluations can be accelerated with the use of
compressed storage schemes. In this study, compressed row storage (crs) is
applied and overhead of preconditioning is reduced. However, at this point it
can be said that one is free to decide either on ILU or LU-SGS since both need
storage for acceptable computational performance.

To test the performance of different solver combination, Jacobi, LU-SGS
and ILU(0) preconditioner are used with CGS, BiCGStab and GMRES(100).
Table 2 gives the results for one typical visit of the interior domain (i.e. polar
domain) for Re = 160, where NS denotes the number of Newton steps, T de-
notes the total linear iterations and LI linear iterations per Newton step. Num-
ber of subspaces for GMRES is fixed at 100, that is why Jacobi-GMRES(100)
fail to converge for a given amount of maximum linear steps (500) per Newton
iteration. When the chart is examined, SGS and ILU(0) are superior to Jacobi
preconditioning, where ILU(0) is slightly faster than LU-SGS. Among different
combinations, ILU(0)-BiCGStab is the fastest solver. In this model problem,
solvers fail to converge w/o a preconditioner.
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Table 2. Comparison of linear solvers and preconditioners.

Linear Solver NS TI LI Time(s.)
Jacobi - CGS 6 1290 215 17.9
SGS - CGS 6 316 52.7 8.0
ILU(0) - CGS 6 257 428 7.1
Jacobi - BiCGStab 6 1122 187 16
SGS - BiCGStab 6 276 46 7.4
ILU(0) - BiCGStab 6 221 36.8 6.5

Jacobi - GMRES(100) - - fail -

SGS - GMRES(100) 6 390 65 8.3
ILU(0) - GMRES(100) 6 319 53.2 7.45

6.3 Deformation of subdomains

In the last model problem, free convection for varying Rayleigh numbers, Ra, is
analyzed while keeping the Prandtl number, Pr, as unity. Different geometries
are also investigated by changing the radius of curvature, p, of the bimetallic
strip. In order to improve the convergence of the discretized system, continua-
tion is used with both Ra and p.

Figure 14. Stream function and Temperature for Ra = 106 and p = 6.5.

Computations are started with Ra = 10* which is a reasonable value to start
without continuation. Stream function and temperature profiles for Ra = 10°
and p = 6.5 are given in Figure 13. Similarly, another set of results for Ra = 106

Math. Model. Anal., 15(3):349-370, 2010.
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is given in Figure 14. Continuation is used for both cases to improve the
convergence.

A typical linear convergence history (see, Figure 15) as well as nonlinear
residual history (see, Figure 16) are also shown.

norm of the linear residual

1 1 1

100
number of iterations

Figure 15. Typical linear convergence  Figure 16. Typical non-linear conver-
history for Ra = 106. gence history for Ra = 109.

In the computations, total number of nonlinear correction steps increase as
Ra increases which is expected since the nonlinearity of the governing equations
depends on Ra number. Another observation is that total number of subdomain
visits decreases as the Ra increases, however, Newton steps per visit shows an
increasing trend. When radius of curvature, p, is in concern it can be said that
more visits are needed as we reduce p. This is also what would be predicted
before the computation since a large value of p mimic the fully cartesian setup
and this is simpler to analyze compared to polar geometry. In addition, number
of subdomain visits can be cut down if continuation is applied in terms of the
radius of curvature as seen in Table 3, where numbers above denote the number
of total subdomain visits and numbers below show the number of total number
of nonlinear iterations.

Table 3. Results of computational experiments.

Ra = 10* Ra = 10° Ra = 10°
999.5 49 — 31 — 27
747 612 1868
99.5 ~ 33 49 25 31 23 25
p 346 795 381 579 1598 1730
9.5 19 60 35 53 29 29
573 801 656 983 1966 2091
6.5 69 87 48 53 35 39
787 1183 776 835 2338 2646

When Table 3 is examined, it can be said that continuation in Ra and p
reduces the number of subdomain visits. In order to get the result for Ra = 10°
and p = 6.5, two different paths can be followed. Either one can first fix p as
p = 999.5 and start with Ra = 10* to reach Ra = 10° and then change the
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radius of curvature. The other path is also possible, first compute for p = 6.5
at Ra = 10* and then continue to Ra = 10°. It is seen from the table that the
former approach requires 194 subdomain visits, whereas the latter path needs
292 visits. However, when the total Newton steps are considered, the picture
is just the opposite: 9129 to 5934. The second option is also more efficient
in terms of the average Newton steps: 47.1 to 20.1. As a result it can be
concluded that we need two times less Newton steps per visit if continuation
in p is favored.

7 Conclusion

In this study, a decomposition method on non-symmetric flow problems is
investigated. The domains are kept simple as a result discretizations are done
in standard way. Also, the burden of generating different meshes for each
geometry is replaced by the iterations between subdomains. It is showed that,
by relevant selection of subdomains and continuation parameters, subdomain
shifting can be used as a solver.

Problems examined in this study are simple models of different engineering
problems. First model was an eccentric cylinder problem where subdomain
shifting is tested in such a way that translation of subdomains is investigated.
The translation is achieved over the eccentricity, e. Next, flow around a cur-
vature tube is analyzed which represents a simple model of a paraglider wing.
In this problem, two domains are solved in two different coordinate systems
namely, cartesian and polar coordinates. This approach is tested for rotation
of domains, so different values of angle of attack, «, are given by rotating
the inner domain. The last problem is designed to analyze the deformation
of subdomains. A bimetallic strip is bent with the presence of a temperature
difference from the initial configuration. The deformation of the domain is
reflected only onto the inner domain which is in polar coordinates, so grid gen-
eration all over the domain is avoided and the outer domain is kept in cartesian
coordinates. Radius of curvature, pg, is the geometric parameter used to model
the deformation.

In terms of fluid mechanics, three different flow problems are examined in
three test cases. An internal flow problem is investigated in the first case,
whereas in the second model, an external flow problem is examined. Reynolds,
Re, number was the key physical parameter for both models. These problems
can be considered as the first step of solving a forced convection problem,
however, the solution of the energy equation is avoided for these two cases
because the velocity field and the temperature field are decoupled. On the
contrary, the third case was a free convection problem in which the solution of
energy equation to calculate the temperature distribution was essential since
the equations are coupled through the buoyancy term. For this model, various
Rayleigh number, Ra, flows are analyzed.

Stream Function Vorticity approach with relevant boundary conditions is
utilized to model the dynamics of the flow. During the discretization process
of the governing equations, we took the advantage of simple domains and fi-
nite difference algorithms. Systems of nonlinear equations are solved taking
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Newton-Krylov approach and using the matrix-free methodology. In matrix-
free approach, directional differencing is used to replace matrix-vector multi-
plications in Krylov solvers (e.g. GMRES), while avoiding the formation of
the Jacobian in Newton’s method. In order to improve the convergence of the
linear solvers, different preconditioners are tested. Diagonal scaling is applied
in all test problems within the matrix-free context which provided mild im-
provement in linear solver. In addition, ILU(0) and LU-SGS preconditioners
are tested and it is observed that LU-SGS is comparable to ILU(0) in number
of iterations and it can still be applied in matrix-free approach however, the
computations are taking too long and compressed storage schemes should be
used to reduce the time overhead.

Parallelism is an important feature sought in today’s numerical computa-
tions. Since the subdomains are similar in shape, load balancing issues are
simplified. Also, with the use of subdomain shifts, mesh generation for moving
objects is avoided so parallelization can be still be applied as stationary objects.
Further analysis can be carried out in terms of the parallel processing to take
the advantage of the proposed idea.
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