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Abstract. The objective of this paper is to compare two methods employed for
solving nonlinear problems, namely the Adomian Decomposition Method (ADM) and
the Homotopy Perturbation Method (HPM). To this effect we solve the Navier-Stokes
equations for the unsteady flow between two circular plates approaching each other
symmetrically. The comparison between HPM and ADM is bench-marked against
a numerical solution. The results show that the ADM is more reliable and efficient
than HPM from a computational viewpoint. The ADM requires slightly more com-
putational effort than the HPM, but it yields more accurate results than the HPM.
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1 Introduction

In recent years, the homotopy perturbation method (HPM) [8] and the Ado-
mian decomposition method (ADM) [1], have been the source of a lot of re-
search activity. These methods have aided in obtaining approximate solutions
to a wide class of linear and nonlinear differential equations [1, 9, 10, 11, 14, 23,
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24, 25, 27, 29, 30, 38, 40]. However, only a few papers deal with the comparison
of these methods [2, 26, 41]. In this paper, we will make a comparative study
to examine the performance of the ADM and HPM when applied to squeezing
flow between circular parallel plates.

It is important to note that the problem we have chosen to compare the
methods is not a trivial problem. Squeezing flow between parallel plates have
many applications, for instance in the areas of biomechanics, food industry,
chemical engineering, polymer processing, compression and injection molding
and hydrodynamic lubrication. Squeezing flows are produced by vertical move-
ments of boundaries or by applying external normal forces. The study of squeez-
ing flows has its origins in the 19th century and continues to receive consider-
able attention due to its practical applications in physical and biophysical areas
[6, 12, 17, 18, 20, 21, 32, 34, 37, 35, 39]. During the formation of foams, bub-
ble boundaries expand biaxially and shrink in thickness in a manner similar to
squeezing films, whereas valves and diarthrodial joints are examples for squeeze
flows relevant in biology and bioengineering. Finally, some phenomena occur-
ring during food intake can be modelled using squeeze flow: chewing between
teeth and/or gums resembles a compression between (irregular) plates. The
compression of food between the tongue and the palate can be approximated
(for some foods) as a squeeze flow [15, 16, 22].

Due to the mathematical complexity of such types of flows, different meth-
ods such as variational, perturbation and numerical techniques have been used
for the solution of the Navier-Stokes equations describing the squeeze flow e.g.,
see [3, 7, 28, 31, 36]. Jackson [13] considered a theoretical study of squeezing
Newtonian liquid-flow generated by the unsteady motion of a disc over a plane
surface and analysed it by using an iterative method. An explicit solution of
a squeeze flow problem taking into account the inertial terms was studied by
Thrope [33], but his solution fails to satisfy the boundary conditions [7]. His
perturbation solution for the case when the plates approach each other with
a constant velocity was erroneous. However, a more accurate solution taking
account of the boundary conditions was computed by Gupta [7]. In [28], the
problem of squeezing flow between parallel plates have been successfully solved
by using HPM.

The current analysis considers the problem of two circular non-rotating
plates that are approaching and receding from each other giving rise to the
squeezing flow. We further consider the motion of the plates to be symmetric
about the axial line. The fluid flowing between the plates is considered to be
a Newtonian incompressible viscous fluid. The systems of partial differential
equations are reduced to a fourth order non-linear differential equation with
appropriate boundary conditions. Here we employ HPM, ADM and the Picard
iterative method to solve the problem. The first two methods are based on
series expansions and the Picard iteration method transforms the fourth order
implicit nonlinear differential equation into a set of algebraic equations that
are solved iteratively. One of the major advantages of these methods is that
they do not require small parameters and avoid linearization and physically
unrealistic assumptions. The comparison between the three methods shows
that the ADM is more reliable, and efficient than HPM from a computational
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viewpoint, although both methods provide solutions in the form of an infinite
series. The ADM requires slightly more computational effort than the HPM,
but it provides more accurate results and has better convergence properties
[4, 19] than the HPM. We have calculated velocity fields for comparison, but
other quantities of interest such as volume flux, shear stress distribution, load
expression, can easily be determined.

The plan of the paper consists of Section 2, which develops the equations as
well as the boundary conditions governing the squeezing flow. Sections 3 and 4
apply the ADM and HPM to obtain the solutions of the problem, respectively.
Section 5 is a comparison of the methods and Section 6 is a summary of the
results.

2 Formulation of the Problem

We consider the squeezing flow of an incompressible viscous fluid between two
circular plates (see, Fig. 1). The distance between the plates at any time t
is 2a(t). We select the central axis of the system to be the r-axis while the
z-axis is normal to it. It is assumed that the circular plates are non-rotating
and move symmetrically with respect to the central region z = 0. The flow is
axisymmetric about r = 0.

0

0

z

ru

r

)(tv
w

)(tv
w

)(2 ta

r

z

Figure 1. Geometry of the problem.

Now we specify the basic equations for an unsteady axisymmetric flow and
assume v =

[

u(r, z, t), 0, w(r, z, t)
]

, where u and w are the velocity components
along the radial and axial directions, respectively. Thus the unsteady mass and
conservation equations become

1

r

∂

∂r
(ru) +

∂

∂z
(w) = 0, (2.1)

ρ
(∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z

)

= −∂p

∂r
+ µ

(

∇2u− u

r2

)

, (2.2)

ρ
(∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z

)

= −∂p

∂z
+ µ

(

∇2w
)

, (2.3)

where ∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
. The boundary conditions on u(r, z, t) and

Math. Model. Anal., 15(4):491–504, 2010.
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w(r, z, t) are

at z = a : u(r, z, t) = 0 and w(r, z, t) = vw(t),

at z = 0 :
∂u(r, z, t)

∂z
= 0 and w(r, z, t) = 0,







(2.4)

where vw(t) =
da

dt
denotes the velocity of the circular plates. The conditions

(2.4) are due to no-slip conditions at the upper plate z = a and to symmetry
at z = 0.

If the dimensionless variable η = z/a(t) is introduced, equations (2.1)–(2.3)
transform to

∂u

∂r
+

u

r
+

1

a

∂w

∂η
= 0, (2.5)

ρ
(∂u

∂t
+ u

∂u

∂r
+

w

a

∂u

∂η

)

= −∂p

∂r
+ µ

[∂2u

∂r2
+

1

r

∂u

∂r
+

1

a2
∂2u

∂η2
− u

r2

]

, (2.6)

ρ
(∂w

∂t
+ u

∂w

∂r
+

w

a

∂w

∂η

)

= −1

a

∂p

∂η
+ µ

[∂2w

∂r2
+

1

r

∂w

∂r
+

1

a2
∂2w

∂η2

]

. (2.7)

Introducing the functions h and Ω respectively as

h =
ρ

2
(u2 + w2) + p, Ω =

∂w

∂r
− 1

a

∂u

∂η
,

equations (2.6)–(2.7) can be simplified as

∂h

∂r
+ ρ

∂u

∂t
− ρΩw +

µ

a

∂Ω

∂η
= 0,

1

a

∂h

∂η
+ ρ

∂w

∂t
+ ρΩu− µ

(∂Ω

∂r
+

Ω

r

)

= 0.

We can eliminate h from these equations by cross differentiation and obtain
the system

−ρ
∂Ω

∂t
− ρ

[

u
∂Ω

∂r
+

w

a

∂Ω

∂η
− u

r
Ω
]

+ µ
[

∇2Ω − Ω

r2

]

= 0 (2.8)

along with equation of continuity (2.5). The boundary conditions (2.4) take
the form

at η = 1 : u = 0 and w = vw(t),

at η = 0 :
∂u

∂η
= 0 and w = 0.







Defining velocity components of the form

u = − r

2a(t)
vw(t)f

′(η), w = vw(t)f(η),

we find that the equation of continuity (2.5) is identically satisfied and equation
(2.8) yields

R
[

(η − f)
d3f

dη3
+ 2

d2f

dη2

]

+
d4f

dη4
= Q

d2f

dη2
, (2.9)
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where

R =
ρavw
µ

and Q =
ρa2

µvw

dvw
dt

(2.10)

Both R and Q are functions of t but for the similarity solution R and Q become
constants. Integrating the first equation in (2.10) we get

a(t) =
(

2νRt+ a20
)

1
2 , (2.11)

where ν = µ/ρ and 2a0 is the distance between the two plates at time t = 0.
When R > 0, the plates move apart symmetrically with respect to η = 0

and when R < 0, the plates approach each other and squeezing flow exists with
similar velocity profiles as long as a(t) > 0.

It follows from equations (2.10) and (2.11) that if Q = −R equation (2.9)
is reduced to

R
[

(η − f)
d3f

dη3
+ 3

d2f

dη2

]

+
d4f

dη4
= 0. (2.12)

The boundary conditions in terms of f(η) can be expressed as

at η = 1 : f ′(1) = 0, and f(1) = 1,

at η = 0 : f ′′(0) = 0, and f(0) = 0.

}

(2.13)

The differential equation (2.12) is nonlinear, we present approximate solutions
of this problem using the ADM, HPM and numerical method in the succeeding
sections.

3 Solution of the Problem by ADM

The ADM has been used effectively, easily, and accurately for a large class of
linear and nonlinear, ordinary or partial, deterministic or stochastic differential
equations to obtain approximate solutions, which converge rapidly to accurate
solutions. Following ADM, we define the highest order linear operator Lη for

equation (2.12) as Lη =
d4

dη4
.The inverse L−1

η
is an integral operator given by

L−1
η

=

∫

η

0

∫

η

0

∫

η

0

∫

η

0

dw dw dw dw.

Thus, (2.12) can be written as

Lη[f ] = −
[

Rη
d3f

dη3
+ 3R

d2f

dη2

]

+R
[

f
d3f

dη3

]

.

Taking L−1
η

on both sides of the above equation gives

L−1
η

Lη[f ] = −L−1
η

[

Rη
d3f

dη3
+ 3R

d2f

dη2

]

+RL−1
η

[

f
d3f

dη3

]

(3.1)

f = −η3

2
+

3η

2
− L−1

η

[

Rη
d3f

dη3
+ 3R

d2f

dη2

]

+RL−1
η

[

f
d3f

dη3

]

. (3.2)

Math. Model. Anal., 15(4):491–504, 2010.
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As required by the Adomian decomposition method we express the solutions
f(η) and nonlinear term f(η)f ′′′(η) by the infinite series

f =

∞
∑

n=0

fn, ff ′′′ =

∞
∑

n=0

An, (3.3)

where A0, A1, A2, A3, . . . are the Adomian polynomials defined as

An = − 1

n

dn

dλn

{

F
(

∞
∑

n=0

fn

)}

.

So using this relationship we get

A0 = f0
d3f0
dη3

, A1 = f0
d3f1
dη3

+ f1
d3f0
dη3

A2 = 3
{(df0

dη

)2 df1
dη

+
(df1
dη

)2 df0
dη

}

.

Substituting (3.3) into (3.2) we obtain the recursive formulae

f0 = −η3

2
+

3η

2
, fn+1 = −L−1

[

Rηf
′′′

n
+ 3Rf

′′

n

]

+RL−1An. (3.4)

The first few components of fn follow immediately upon setting:

f1=−L−1 {Rηf ′′′
0 + 3Rf ′′

0 }+L−1RA0, f2=−L−1 {Rηf ′′′
1 + 3Rf ′′

1 }+L−1RA1,

f3 = −L−1 {Rηf ′′′
2 + 3Rf ′′

2 }+ L−1RA2,

which implies

f1 =
37

560
Rη − 73

560
Rη3 +

1

16
Rη5 +

1

560
Rη7,

f2 = 9.86× 10−3ηR2 − 0.13490
η3

6
R2 +

41

2800
η5R2

− 51

39200
η7R2 +

1

1440
η9R2 − 3

123200
η11R2,

f3 = 0.030216R3η − 0118029R3η3 +
97347

5017600
R3η4 − 0.004497R3η5

− 52739

5017600
R3η6− 41

19600
R3η7+

1869351

351232000
R3η8 +

17

117600
R3η9

− 609123

351232000
R3η10+

1

15840
R3η11+

3103

10752000
R3η12+

3

1601600
R3η13

− 8241

717516800
R3η14 − 21

26624000
R3η16 − 1

104448000
R3η18.
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In view of the above equations, the solution in series form is

f ∼= −η3

2
+

3η

2
+

37

560
Rη − 73

560
Rη3 +

1

16
Rη5

+
1

560
Rη7 + 9.86× 10−3ηR2 − 0.13490

η3

6
R2 +

41

2800
η5R2 − 51

39200
η7R2

+
1

1440
η9R2 − 3

123200
η11R2 + 0.030216R3η − 0118029R3η3 +

97347

5017600
R3η4

−0.004497R3η5− 52739

5017600
R3η6− 41

19600
R3η7+

1869351

351232000
R3η8+

17

117600
R3η9

− 609123

351232000
R3η10 +

1

15840
R3η11 +

3103

10752000
R3η12 +

3

1601600
R3η13

− 8241

717516800
R3η14 − 21

26624000
R3η16 − 1

104448000
R3η18. (3.5)

Thus we have the solution of the problem using the Adomian decomposition
method.

4 Solution of the Problem Using HPM

The HPM approach requires that we first start by defining a homotopy F (η, q) :
Ω ∗ [0, 1] → ℜ for (2.12) which satisfies the equation

L [F ]− L [f0] + qL [f0] + q
[

R(η − F )
d3F

dη3

]

= 0, (4.1)

where L =
d4

dη4
+ 3R

d2

dη2
is the linear operator, q ∈ [0, 1] is the embedding

parameter, and f0 is the initial guess approximation. We assume that subject
to the boundary conditions (2.13), the initial guess approximation of (2.12) is

f0 =
1

S

[

η cos k − sin kη

k

]

, (4.2)

where k =
√
3R, S = cos k − sin k/k. We further assume that the solution of

(2.12) can be expressed as a power series in q, i.e.,

F (η, q) = F0(η) + qF1(η) + q2F2(η) + · · · , (4.3)

where the Fi’s are independent of q. Substituting (4.3) into (4.1), and (2.13)
and equating powers of q gives rise to a set of problems that we will now specify
and solve in the succeeding sections.

4.1 The Zeroth-Order Problem

The differential equation of the zeroth-order problem is

L [F0]− L [f0] = 0, (4.4)

Math. Model. Anal., 15(4):491–504, 2010.
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subject to

F ′
0 = 0, and F0 = 1, at η = 1,

F ′′
0 = 0, and F0 = 0 at η = 0.

}

Since L is a linear operator, therefore the solution of the zeroth-order problem
is

F0(η) =
1

S

[

η cos k − sin kη

k

]

= f0(η),

where k and S are defined in (4.2).

4.2 The First-order Problem

The differential equation of the first-order problem is

L [F1] + L [F0] +
k2

3
(η − F0)

dF 3
0

dη3
= 0,

subject to

at η = 1 : F ′
1 = 0, and F1 = 0,

at η = 0 : F ′′
1 = 0, and F1 = 0.

}

The solution of the first-order boundary value problem is given by

F1(η) =
1

36 kS2

(

10 sin(k)2

S
+ 15 cos(k)

)

sin(k)η

+
1

36 kS2

(

cos(k) + 3k sin(k)− 10 sin(k)2

S

)

sin(kη)

− sin(k)

12S2
η2 sin(kη)− 5 sin(k)

12 kS2
η cos(kη)− 1

72 kS2
sin(2kη).

4.3 The Second-Order Problem

The differential equation of the second-order problem is

L [F2] +
k2

3
ηF ′′′

1 − k2

3

[

F0F
′′′
1 + F1F

′′′
0

]

= 0,

subject to

at η = 1 : F ′
2 = 0, and F2 = 0,

at η = 0 : F ′′
2 = 0, and F2 = 0.

}
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The solution of the second-order boundary value problem is given by

F2(η)=η4 sin kη
[

− 1

288

k sin2 k

S3

]

+η3 cos kη
[

− 13

432

sin2 k

S3

]

+η3
[

−k sin k

72 S3

]

+η2 sin kη
[

− A

4 k3
+

41

288

sin2 k

k S3

]

+η2 sin 2kη
[

− sin k

216 S3

]

+η cos kη
[113

288

sin2 k

k2 S3
− 5A

4 k4
− 1

864 S3

]

+η cos 2kη
[

− 17

648

sin k

k S3

]

+η
[

sin4 k
(

− 287

2592 k2 S4
+

1

108 S4

)

+sin3 k
(

− 143

1944

cos k

k S4
+

61

1944 k S3

− H

6 k4 S

)

+sin2 k
( 3A

4 S k4
− 113 cosk

288 k2 S3
− 5

432 S4
+

cos k

72 S3

)

+sink
( k

72 S3
+

17

648 k S3
− cos k

864 k S4

)

+
5A cosk

4 k4
+

1

864 S4

]

+sinkη
[

sin3 k
(

− 11

432 S4
+

2431

7776 k2 S4

)

+sin2 k
(

− 95

3888 k S3
− 281 cosk

1944 k S4

+
k

288 S3
+

H

6 k4 S

)

+sin k
(

−3A sink

4 k4 S
− 169 cosk

1944 k2 S3
+

23

864 S4
+

cos k

108 S3

)

+
A

4 k3
−H cos k

6 k4
+

1

10368 k S3

]

+sin 2kη
[ 169

3888

sin k

k2 S3
+

H

12 k4

]

+sin 3kη
[

− 1

31104kS3

]

,

where

A =
k2

3 S3

[

7

18
k sin k cos k +

5

9
k sin3 k + sin2 k

(

3

4
− k2

12

)]

,

H =
k

6 S3

[

1

18
k2 cos k − 5

9S
k2 sin2 k +

k3

6
sin k +

3

4
k sin k

]

.

Finally, the homotopy perturbation solution of the problem up to 2nd order is

f(η) = lim
q→1

F (η, q) = F0(η) + F1(η) + F2(η) + · · · . (4.5)

Using (3.4), (3.5) and (4.4) with (4.5) we get the required approximate solution
in terms of f(η).

5 Comparison of the Adomian and HPM

In order to compare the two methods we first need to set up a bench mark
numerical solution as a guide. We do this by employing the well established
Picard Iteration Method [5] for solving nonlinear problems. In Figure 2 we note
the comparison between the two methods and the numerical solution of (2.12)
along with the boundary conditions (2.13). We can note here that the Adomian
is closer to the numerical solution than the HPM. In addition, it is worth noting
that as R increases from 0.2 to 0.7 the HPM solution gets progressively worse,
whereas the Adomian solution maintains its accuracy.

Math. Model. Anal., 15(4):491–504, 2010.
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Figure 2. Comparison of solution profiles f(η) by ADM and HPM for different values of R.

We further note in Figure 3 that the derivative of the solution reflects similar
behaviour; once again as expected the Adomian is a better solution than the
HPM solution. Of course the HPM is a good method in solving nonlinear
problems, but we note that in this particular instance the Adomian is clearly a
better choice. In addition, we need to note that the Adomian has an established
support for its convergence (cf. [4, 19]), this is an important point since both
methods provide infinite series solutions.

6 Summary

In this paper, the homotopy perturbation and the Adomian decomposition
have been successfully applied to solve the non-linear equation (2.12) along
with the boundary conditions (2.13) arising in the case of squeezing flow of
an incompressible viscous fluid between two circular plates. It was shown that
HPM and ADM are efficient in attaining solutions. The comparison between
HPM and ADM with the numerical solution when applied to solve the equation
(2.12) showed that the ADM is more reliable and efficient than HPM from a
computational viewpoint, although both methods provide solutions in the form
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Figure 3. Comparison of velocity profiles f ′
(η) by ADM and HPM for different values of

R.

of an infinite series. The ADM requires slightly more computational effort than
the HPM, but it yields more accurate results than the HPM. We also note
that the solutions using the HPM loose accuracy as we change the value of
R, whereas the Adomian maintains its accuracy. In addition, noting that the
Adomian has better convergence support makes it a better choice.

References

[1] G. Adomian. A review of the decomposition method and some recent results for
nonlinear equation. Mathematical and Computer Modelling, 13(7):17–43, 1992.
Doi:10.1016/0895-7177(90)90125-7.

[2] J. Biazar, R. Ansari, K. Hosseini and P. Gholamin. Solution of the linear and
non-linear Schrödinger equations using homotopy perturbation and Adomian de-
composition methods. International Mathematical Forum, 38:1891–1897, 2008.

[3] N.M. Bujurke and R.B. Kudenatti. MHD lubrication flow between rough rect-
angular plates. Fluid Dynamics Research, 39:334–345, 2007.
Doi:10.1016/j.fluiddyn.2006.05.004.

Math. Model. Anal., 15(4):491–504, 2010.

http://dx.doi.org/10.1016/0895-7177(90)90125-7
http://dx.doi.org/10.1016/j.fluiddyn.2006.05.004


i

i

“MMA15v37” — 2010/11/3 — 9:25 — page 502 — #12
i

i

i

i

i

i

502 A. M. Siddiqui, T. Haroon, S. Bhatti and A. R. Ansari

[4] Y. Cherruault and G. Adomian. Decomposition methods: A new proof of
convergence. Mathematical and Computer Modelling, 18(12):103–106, 1993.
Doi:10.1016/0895-7177(93)90233-O.

[5] D. Estep. Practical Analysis in One Variable. Springer-Verlag New York, Inc,
2002.

[6] R.J. Grimm. Squeezing flows of Newtonian liquid films an analysis include the
fluid inertia. Appl Sci Res, 32:146–149, 1976. Doi:10.1007/BF00383711.

[7] P.S. Gupta and A.S. Gupta. Squeezing flow between parallel plates. Wear,
45:177–185, 1977.

[8] J.H. He. Homotopy perturbation technique. Computer Methods in Applied Me-
chanics and Engineering, 178:257–262, 1999.
Doi:10.1016/S0045-7825(99)00018-3.

[9] J.H. He. Homotopy perturbation method for solving boundary value problems.
Physics Letters, A 350(1–2):87–88, 2006. Doi:10.1016/j.physleta.2005.10.005.

[10] J.H. He. Some asymptotic methods for strongly nonlinear equations. Interna-
tional Journal of Modern Physics, B 20:1141–1199, 2006.

[11] J.H. He. Recent development of the homotopy perturbation method. Topological
Methods in Nonlinear Analysis, 31:205–209, 2008.

[12] S. Ishizawa. Squeezing flows of Newtonian liquid films an analysis include the
fluid inertia. Appl Sci Res, 32:149–166, 1976. Doi:10.1007/BF00383711.

[13] J.D. Jackson. A study of squeezing flow. Appl Sci Res A11, pp. 148–52, 1963.

[14] Bongsoo Jang. Two-point boundary value problems by the extended Adomian
decomposition method. Journal of Computational and Applied Mathematics,
219:253–262, 2008. Doi:10.1016/j.cam.2007.07.036.

[15] J.L. Kokini and E.L. Cussler. The psychophysics of fluid food texture. In
H. Moskowitz (Ed.)(Ed.), Food Texture: Instrumental and Sensory Measure-
ment, pp. 97–127. Dekker, 1987.

[16] J.L. Kokini, J.B. Kadane and E.L. Cussler. Liquid texture perceived in the
mouth. J. Texture Stud., 8:195–218, 1977.
Doi:10.1111/j.1745-4603.1977.tb01175.x.

[17] D.C. Kuzma. Fluid inertia effects in squeeze films. Appl Sci Res, 18:15–20, 1967.
Doi:10.1007/BF00382330.

[18] H.M. Laun and Rady M. Hassager. Analytical solutions for squeeze flow
with partial wall slip. J. Non-Newtonian Fluid Mech, 81:1–15, 1999.
Doi:10.1016/S0377-0257(98)00083-4.

[19] T. Mavoungou. Convergence of Adomian’s method and applications to
non-linear partial differential equations. Kybernetes, 21(6):13–25, 1994.
Doi:10.1108/eb005942.

[20] A.H. Nayfeh. Introduction to perturbation techniques. Wiley, 1979.

[21] P.T. Nhan. Squeeze flow of a viscoelastic solid. J. Non-Newtonian Fluid Mech,
95:433–462, 2000.

[22] M.A. Nicosia and J. Robbins. The fluid mechanics of bolus ejection from the
oral cavity. J. Biomech., 34(12):1537–1544, 2001.
Doi:10.1016/S0021-9290(01)00147-6.

http://dx.doi.org/10.1016/0895-7177(93)90233-O
http://dx.doi.org/10.1007/BF00383711
http://dx.doi.org/10.1016/S0045-7825(99)00018-3
http://dx.doi.org/10.1016/j.physleta.2005.10.005
http://dx.doi.org/10.1007/BF00383711
http://dx.doi.org/10.1016/j.cam.2007.07.036
http://dx.doi.org/10.1111/j.1745-4603.1977.tb01175.x
http://dx.doi.org/10.1007/BF00382330
http://dx.doi.org/10.1016/S0377-0257(98)00083-4
http://dx.doi.org/10.1108/eb005942
http://dx.doi.org/10.1016/S0021-9290(01)00147-6


i

i

“MMA15v37” — 2010/11/3 — 9:25 — page 503 — #13
i

i

i

i

i

i

A Comparison of the Adomian and Homotopy Perturbation Methods 503

[23] M.M. Rashidi and S. Dinarvand. Purely analytic approximate solutions for
steady three-dimensional problem of condensation film on inclined rotating disk
by homotopy analysis method. Nonlinear Analysis Real World Applications,
10(4):2346–2356, 2009. Doi:10.1016/j.nonrwa.2008.04.018.

[24] M.M. Rashidi and G. Domairry. New analytical solution of the three-dimensional
Navier–Stokes equations. Modern Physics Letters, B 26:3147–3155, 2009.
Doi:10.1142/S0217984909021193.

[25] M.M. Rashidi, D.D. Ganji and S. Dinarvand. Explicit analytical solutions of
the generalized Burger and Burger–Fisher equations by homotopy perturbation
method. Numerical Methods for Partial Differential Equations, 25(2):409–417,
2009. Doi:10.1002/num.20350.

[26] D.D. Sadighi and A. Ganji. Analytical treatment of linear and non-
linear Schrödinger equations: A study with homotopy-perturbation and
Adomian decomposition methods. Physics letters, A 372:465–469, 2008.
Doi:10.1016/j.physleta.2007.07.065.

[27] A.M. Siddiqui, A.R. Ansari, A. Ahmad and N. Ahmad. On Taylor’s scraping
problem and flow of a Sisko fluid. 14(4):515–529.
Doi:10.3846/1392-6292.2009.14.515-529.

[28] A.M. Siddiqui, S. Irum and A. R. Ansari. Unsteady squeezing flow of
a viscous MHD fluid between parallel plates, a solution using the ho-
motopy perturbation method. Math. Model. Anal., 13(4):565–576, 2008.
Doi:10.3846/1392-6292.2008.13.565-576.

[29] A.M. Siddiqui, R. Mahmood and Q.K. Ghori. Homotopy perturbation method
for thin film flow of a third grade fluid down an inclined plane. Chaos, Solitons
and Fractals, 35:140–147, 2008. Doi:10.1016/j.chaos.2006.05.026.

[30] A.M. Siddiqui, A. Zeb, Q.K. Ghori and A.M. Benharbit. Homotopy perturbation
method for heat transfer flow of a third grade fluid between parallel plates. Chaos,
Solitons and Fractals, 36:182–192, 2008. Doi:10.1016/j.chaos.2006.06.037.

[31] P. Singh and R.L. Verma. Application of a thermodynamic method to squeezing
flow between parallel plates. Wear, 65:375–383, 1981.

[32] J. Stefan. Versuch U ber die scheinbare adhesion. Akad Wissensch Wien Math
Natur, 69:713–721, 1874.

[33] J.F. Thrope. Developments in theoretical and applied mechanics Vol.3. Shaw,
W. A. (ed.) Pergamon, Oxford, 1967.

[34] J. Tichy and W.O. Winner. Inertial considerations in parallel circular squeeze
film bearings. Trans ASME J Lub Technol, 92:588–592, 1970.

[35] R. Usha and R. Sridharan. Arbitrary squeezing of a viscous fluid between elliptic
plates. Fluid Dynam Res, 18:35–51, 1996.

[36] R.L. Verma. A numerical solution for squeezing flow between parallel channels.
Wear, 72:89–95, 1981.

[37] C.Y. Wang and L.T. Watson. Squeezing of a viscous fluid between elliptic plates.
Appl Sci Res, 35:195–207, 1979. Doi:10.1007/BF00382705.

[38] A.-M. Wazwaz. Adomian decomposition method for a reliable treatment of the
Bratu-type equations. Applied Mathematics and Computation, 166:652–663,
2005. Doi:10.1016/j.amc.2004.06.059.

[39] W.A. Wolfe. Squeeze film pressures. Appl Sci Res, 14:77–90, 1964–1965.
Doi:10.1007/BF00382232.

Math. Model. Anal., 15(4):491–504, 2010.

http://dx.doi.org/10.1016/j.nonrwa.2008.04.018
http://dx.doi.org/10.1142/S0217984909021193
http://dx.doi.org/10.1002/num.20350
http://dx.doi.org/10.1016/j.physleta.2007.07.065
http://dx.doi.org/10.3846/1392-6292.2009.14.515-529
http://dx.doi.org/10.3846/1392-6292.2008.13.565-576
http://dx.doi.org/10.1016/j.chaos.2006.05.026
http://dx.doi.org/10.1016/j.chaos.2006.06.037
http://dx.doi.org/10.1007/BF00382705
http://dx.doi.org/10.1016/j.amc.2004.06.059
http://dx.doi.org/10.1007/BF00382232


i

i

“MMA15v37” — 2010/11/3 — 9:25 — page 504 — #14
i

i

i

i

i

i

504 A. M. Siddiqui, T. Haroon, S. Bhatti and A. R. Ansari

[40] Lei Wu, Li dan Xie and Jie fang Zhang. Adomian decomposition method for
nonlinear differential-difference equations. Communications in Nonlinear Science
and Numerical Simulation, 14:12–18, 2009. Doi:10.1016/j.cnsns.2007.01.007.

[41] Turgut Oziso Ahmet Yildirim. Comparison between Adomian’s method and He’s
homotopy perturbation method. Computers and Mathematics with Applications,
56:1216–1224, 2008. Doi:10.1016/j.camwa.2008.02.023.

http://dx.doi.org/10.1016/j.cnsns.2007.01.007
http://dx.doi.org/10.1016/j.camwa.2008.02.023

	MMA15v37
	Introduction
	Formulation of the Problem
	Solution of the Problem by ADM
	Solution of the Problem Using HPM
	The Zeroth-Order Problem
	The First-order Problem
	The Second-Order Problem

	Comparison of the Adomian and HPM
	Summary
	References




