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Gronwall–Bellman’s inequality to prove our main result.

Keywords: almost periodic solution; neural networks; contraction mapping princi-

ple; Gronwall–Bellman’s inequality.

AMS Subject Classification: 34K14; 34K45.

1 Introduction

Due to their immense potentials of application perspective in different areas
such as pattern recognition, optimization, signal and image processing, robotics
and psychophysics, models of neural networks have been extensively studied in
the recent years. Indeed, they have been the object of intensive analysis by
many authors who established good results concerning the qualitative proper-
ties of their solutions. These models have been mainly investigated in form of
delayed neural networks or impulsive delayed neural networks, see the papers
[7, 8, 12, 17, 22, 24, 19, 20, 25, 32, 33, 34, 35, 38].

The reader can easily realize, nevertheless, that most of equations of mod-
els considered in the above mentioned papers are subject to periodic assump-
tions and the authors, in particular, studied the existence of their periodic
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solutions, see also [11, 13, 18, 37, 42]. On the other hand, upon consider-
ing long–term dynamical behaviors it is possible for the various components
of the model to be periodic with rationally independent periods, and there-
fore it is more reasonable to consider the various parameters of models to
be changing almost–periodically rather than periodically with a common pe-
riod. Thus, the investigation of almost periodic behavior of solutions is con-
sidered to be more accordant with reality. Although it has widespread appli-
cations in real life, the generalization to the notion of almost periodicity is
not as developed as that of periodic solutions. To the best of authors’ knowl-
edge, there are a few recent published papers considering the notion of almost
periodicity of differential equations with or without impulses, see the papers
[1, 2, 3, 14, 15, 16, 23, 28, 29, 30, 31, 36, 39, 40, 41].

Motivated by this, the aim of this paper is to establish sufficient condi-
tions for the existence and exponential stability of almost periodic solutions
of general model of neural networks. However, it is known that many real
world phenomena often behave in a piecewise continuous frame interlaced with
abrupt changes. Thus, the choice of system of neural networks accompanied
with impulsive conditions would be more appropriate. For more details on
impulsive differential equations and their applications, we refer the readers to
[4, 5, 6, 9, 10, 21, 26, 27].

In this paper, we shall employ the contraction mapping principle as well
as the Gronwall-Bellman’s inequality to prove the existence of almost periodic
exponential stable solutions for system of impulsive integro-differential neural
networks. Our approach is based on the estimation of the Cauchy matrix
of linear impulsive differential equations. The impulsive integro-differential
neural networks are natural generalizations of Hopfield neural networks and
may be used for applying certain mathematical simulations and describing some
real life phenomena which are subject to short-term perturbations during their
evolutions.

2 Preliminary Notes

Let Rn be the n-dimensional Euclidean space with elements x=(x1, x2, .., xn)
T

and the norm |x| = maxi |xi|. Let Ω be a domain in R
n such that Ω 6= ∅. By

B =
{

{τk} : τk ∈ R, τk < τk+1, k ∈ Z
}

, we denote the set of all unbounded and
strictly increasing sequences. We shall investigate the problem of existence of
exponentially stable almost periodic solution for system of impulsive integro–
differential neural networks of the form



























dxi(t)

dt
=

n
∑

j=1

aij(t)xj(t) +
n
∑

j=1

t
∫

t0

kij(t, s)xj(s) ds

+
n
∑

j=1

αij(t)fj(xj(t)) + γi(t), t 6= τk, i = 1, 2, . . . , n,

∆x(t) = Akx(t) + Ik(x(t)) + γk, t = τk, k ∈ Z,

(2.1)

where

(i) t0, t ∈ R, aij(t), αij(t), γi(t) ∈ C(R,R), kij(t, s) ∈ C(R2,R),
fj(t) ∈ C(R,R), i, j = 1, 2, . . . , n;
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(ii) Ak ∈ R
n×n, Ik(x) ∈ C(Ω,Rn), γk ∈ R

n, k ∈ Z;

(iii) ∆x(t) = x(t+ 0)− x(t− 0), {τk} ∈ B.

Let J ⊂ R. By PLC(J,Rn), we denote the space of all piecewise continuous
functions x : J → R

n with points of discontinuity of the first kind at τk such
that x is left continuous, i.e. the following relations hold

x(τk−0) = x(τk), x(τk + 0) = x(τk) +∆x(τk), k ∈ Z.

It follows that the solution x(t) of (2.1) is from the space PLC(J,Rn) and thus
one may adopt some definitions and facts concerning the concept of almost
periodicity for piecewise continuous functions.

Definition 1. [27] The set of sequences {τk+j − τk} k, j ∈ Z is said to be
uniformly almost periodic if for arbitrary ε > 0 there exists a relatively dense
set of ε−almost periods common for any sequences.

Definition 2. [27] The function g ∈ PLC(R,Rn) is said to be almost periodic

if

(a1) the set of sequences {τk+j − τk}, k, j ∈ Z, {τk} ∈ B is uniformly almost
periodic.

(a2) for any ε > 0 there exists a real number δ> 0 such that if the points
t′ and t′′ belong to one and the same interval of continuity of g(t) and
satisfy the inequality |t′ − t′′| < δ, then |g(t′)− g(t′′)| < ε.

(a3) for any ε > 0 there exists a relatively dense set T such that if τ ∈ T , then
∣

∣

∣
g(t + τ) − g(t)

∣

∣

∣
< ε for all t ∈ R satisfying the condition |t − τk| > ε,

k ∈ Z.

Together with (2.1), we consider the linear integro-differential system



















∂R(t, s)

∂t
= A(t)R(t, s) +

t
∫

t0

K(t, v)R(v, s) dv, s 6= τk, t 6= τk,

R(τk + 0, s) = (E +Ak)R(τk, s), k = ±1,±2, . . . ,

R(s, s) = E,

(2.2)

where R(t, s) ∈ R
n×n, t0, t ∈ R, A(t) = (aij(t)), K(t, v) = (kij(t, v)), i, j =

1, 2, . . . , n, E ∈ R
n×n and {τk} ∈ B.

Introduce the following conditions:

(H1) There exists a matrix function R(t, s) ∈ R
n×n that satisfies (2.2);

(H2) det(E + Ak) 6= 0, k ∈ Z;

(H3) µ[A(t) −R(t, t)] ≤ −α, where α > 0 and µ[·] denotes the logarithmic
norm.

Math. Model. Anal., 15(4):505–516, 2010.
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Lemma 1. [26] Let conditions H1–H3 be fulfilled. Then

|R(t, s)| ≤ Ke−α(t−s), t > s, (2.3)

where K > 0.

Introduce the following conditions:

(H4) The matrix A(t) = (aij(t)), i, j = 1, 2, . . . , n, is almost periodic in the
sense of Bohr;

(H5) The sequence {Ak}, k ∈ Z, is almost periodic;

(H6) The set of sequences {τk+j − τk}, k, j ∈ Z, {τk} ∈ B is uniformly almost
periodic and infk{τk+1 − τk} = θ > 0;

(H7) The matrixK(t, s) = (kij(t, s)), i, j = 1, 2, . . . , n, is almost periodic along
diagonal line, i.e. for any ε > 0, the set T (K, ε) composed from ε-almost
period τ such that for τ ∈ T (K, ε), satisfies the inequality

∣

∣K(t+ τ, s+ τ)−K(t, s)
∣

∣ ≤ εe−
α

2
(t−s), t > s

and T (K, ε) is a relatively dense in R;

(H8) The functions αij(t) are almost periodic in the sense of Bohr such that

0 < sup
t∈R

|αij(t)| = αij <∞, i, j = 1, 2, . . . , n;

(H9) The functions γi(t), i = 1, 2, . . . , n, are almost periodic in the sense of
Bohr, {γk}, k ∈ Z, is almost periodic sequence and there exists C0 > 0
such that

max
{

max
i

|γi(t)|,max
k

|γk|
}

≤ C0;

(H10) The functions fj(t) are almost periodic in the sense of Bohr such that

0 < sup
t∈R

|fj(t)| = f j <∞, fj(0) = 0

and there exists L1 > 0 such that for t, s ∈ R

max
j

∣

∣fj(t)− fj(s)
∣

∣ < L1|t− s|, j = 1, 2, . . . , n;

(H11) The sequence of functions Ik(x) is almost periodic uniformly with respect
to x ∈ Ω such that

0 < sup
x∈Ω

|Ik(x)| = Ik <∞, Ik(0) = 0

and there exists L2 > 0 for which
∣

∣Ik(x) − Ik(y)
∣

∣ ≤ L2|x − y|, when
k ∈ Z, x, y ∈ Ω.

The following lemmas are essential in proving our main results.
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Lemma 2. [27] Let conditions H1–H6, H8–H10 be fulfilled. Then for each ε > 0
there exist ε1, 0 < ε1 < ε and relatively dense sets T of real numbers and Q of

whole numbers such that the following relations hold:

(a) |A(t+ τ) −A(t)| < ε, t ∈ R, τ ∈ T ;

(b) |αij(t+ τ) − αij(t)| < ε, t ∈ R, τ ∈ T, k ∈ Z, i, j = 1, 2, . . . , n;

(c) |fj(t+ τ) − fj(t)| < ε, t ∈ R, τ ∈ T, k ∈ Z, j = 1, 2, . . . , n;

(d) |Ak+q −Ak| < ε, q ∈ Q, k ∈ Z;

(e) |γj(t+ τ)− γj(t)| < ε, t ∈ R, τ ∈ T, k ∈ Z, j = 1, 2, . . . , n;

(f) |γk+q − γk| < ε, q ∈ Q, k ∈ Z;

(g) |τk+q − τ | < ε1, q ∈ Q, τ ∈ T, k ∈ Z.

Lemma 3. [27] Let the set of sequences {τk+j − τk}, k, j ∈ Z, {τk} ∈ B be

uniformly almost periodic. Then for each p > 0 there exists a positive integer

N such that on each interval of length p there is no more than N elements of

the sequence {τk}, i.e., i(s, t) ≤ N(t− s) +N , where i(s, t) is the number of

points τk in the interval (s, t).

3 The Main results

Lemma 4. Let conditions H1–H7 be fulfilled. Then the matrix function R(t, s)
is almost periodic along diagonal line and

∣

∣R(t+ τ, s+ τ) −R(t, s)
∣

∣ ≤ εΓe−
α

2
(t−s), t > s, (3.1)

where Γ> 0, ε > 0 and τ is almost period.

Proof. Let ε > 0 be given and τ is common ε-almost period of A(t) and
K(t, s). Then

∂R(t+ τ, s+ τ)

∂t
= A(t)R(t+ τ, s+ τ) +

(

A(t+ τ)−A(t)
)

R(t+ τ, s+ τ)

+

∫ t

s

(

K(t+ τ, v + τ)−K(t, v)
)

R(v + τ, s+ τ) dv

+

∫ t

s

K(t, v)R(v + τ, s+ τ) dv, s 6= τ ′k, t 6= τ ′k,

for

R(τ ′k + τ, s+ τ) = (E +Ak)R(τ
′
k + τ, s+ τ) + (Ak+q −Ak)R(tk + τ, s+ τ),

Math. Model. Anal., 15(4):505–516, 2010.
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where τ ′k = τk − τ and τ, q are the numbers defined in Lemma 2. Hence from
(2.2) we obtain

R(t+ τ, s+ τ)−R(t, s) =

∫ t

s

R(t, u)
(

A(u+ τ) −A(u)
)

R(u+ τ, s+ τ) du

+

∫ t

s

R(t, u)
(

∫ u

s

(

K(u+ τ, v + τ) −K(u, v)
)

R(v + τ, s+ τ) dv
)

du

+
∑

s≤τ ′

v
<t

R(t, τ ′v + 0)
(

Av+q −Av

)

R(τ ′v + τ, s+ τ). (3.2)

In view of Lemma 2, it follows that if |t− τ ′k| > ε, t ∈ R then τ ′k+q < t + τ <
τ ′k+q+1. Then from (2.3), (3.2) and Lemma 2, we have

∣

∣R(t+ τ, s+ τ) −R(t, s)
∣

∣ ≤ K2ε
(

e−α(t−s)(t− s) +
4

α2
e−

α

2
(t−s)

+ i(s, t)e−α(t−s)
)

≤ εΓe−
α

2
(t−s), t > s,

where Γ= K2 2
α

(

1 + 2
α +N + Nα

2

)

. Thus, proof of Lemma 4 is complete. ⊓⊔

Now we are in a position to state and prove the main theorem of our paper.

Theorem 1. Let the following assumptions be satisfied:

(i) Conditions H1–H11 be fulfilled;

(ii) The number r = K
{

maxi L1α
−1

∑n
j=1 αij + 2NL2/(1− e−α)

}

< 1.

Then

(1) There exists a unique almost periodic solution x(t) of (2.1).

(2) If the following inequalities

1 +KL2 < e and α−KL1max
i

n
∑

j=1

αij −N ln(1 +KL2) > 0

hold, then the solution x(t) of (2.1) is exponentially stable.

Proof of Assertion 1. By D, D ⊂ PLC(R,Rn), we denote the set of all almost
periodic functions ϕ(t) satisfying the inequality ‖ϕ‖ < K, where

‖ϕ‖ = sup
t∈R

|ϕ(t)|, K = KC0

( 1

α
+

2N

1− e−α

)

.

Set γ(t)=col(γ1(t), γ2(t), .., γn(t)), F (t, x)=col
{

F1(t, x), F2(t, x), .., Fn(t, x)
}

,
where

Fi(t, x) =
n
∑

j=1

αij(t)fj(xj), i = 1, 2, . . . , n.
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In virtue of [27], we know that the solution x(t) of (2.1) has the form

x(t) = R(t, t0)x(t0) +

∫ t

t0

R(t, s)
[

F (s, x(s)) + γ(s)
]

ds

+
∑

t0<τk<t

R(t, τk)
[

Ik(x(τk)) + γk
]

.

Define an operator S in D as follows

Sϕ =

∫ t

−∞

R(t, s)
[

F
(

s, ϕ(s)
)

+ γ(s)
]

ds+
∑

τk<t

R(t, τk)
[

Ik
(

ϕ(τk)
)

+ γk
]

. (3.3)

Let the subset D∗, D∗ ⊂ D, be defined as follows

D∗ =
{

ϕ ∈ D : ‖ϕ− ϕ0‖ ≤ rK/(1− r)
}

,

where

ϕ0 =

∫ t

−∞

R(t, s)γ(s) ds+
∑

tk<t

R(t, τk)γk.

Taking the norm, we obtain

‖ϕ0‖ = sup
t∈R

{

max
i

(

∫ t

−∞

|R(t, s)||γi(s)|
)

ds+
∑

τk<t

|R(t, τk)||γk|
}

≤ sup
t∈R

{

max
i

(

∫ t

−∞

Ke−α(t−s)|γi(s)| ds
)

+
∑

τk<t

Ke−α(t−τk)|γk|
}

≤ K
(C0

α
+

2NC0

1− e−α

)

= K. (3.4)

Then for arbitrary ϕ ∈ D∗, it follows from (3.3) and (3.4) that

‖ϕ‖ ≤ ‖ϕ− ϕ0‖+ ‖ϕ0‖ ≤ rK

1− r
+K =

K

1− r
.

Now we prove that S is self–mapping from D∗ to D∗. For arbitrary ϕ ∈ D∗, it
follows that

‖Sϕ− ϕ0‖ ≤ sup
t∈R

{

max
i

(

∫ t

−∞

|R(t, s)|
n
∑

j=1

|αij(s)||fj(ϕj(s))| ds
)

+
∑

τk<t

|R(t, τk)||Ik(ϕ(τk))|
}

≤
{

max
i

(

∫ t

−∞

Ke−α(t−s)
n
∑

j=1

αijL1 ds
)

+
∑

τk<t

Ke−α(t−τk)L2

}

‖ϕ‖ ≤ K
{

max
i
α−1

n
∑

j=1

αijL1 +
2NL2

1− e−α

}

‖ϕ‖

= r‖ϕ‖ ≤ rK

1− r
. (3.5)

Math. Model. Anal., 15(4):505–516, 2010.
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Let τ ∈ T, q ∈ Q where the sets T and Q are defined as in Lemma 2. Then

‖Sϕ(t+ τ)− Sϕ(t)‖ ≤ sup
t∈R

{

max
i

[

∫ t

−∞

∣

∣R(t+ τ, s+ τ)−R(t, s)
∣

∣

∣

∣

∣

n
∑

j=1

αij(s+ τ)fj
(

ϕj(s+ τ)
)

∣

∣

∣
ds+

∫ t

−∞

|R(t, s)|
∣

∣

∣

n
∑

j=1

αij(s+ τ)fj
(

ϕj(s+ τ)
)

−
n
∑

j=1

αij(s)fj
(

ϕj(s)
)

∣

∣

∣
ds

]

+
∑

τk<t

∣

∣R(t+ τ, τk+q)−R(t, τk)
∣

∣|Ik+q

(

ϕ(τk+q)
)

|

+
∑

τk<t

|R(t, τk)|
∣

∣Ik+q

(

ϕ(τk+q)
)

− Ik
(

ϕ(τk)
)∣

∣

}

≤ εC1, (3.6)

where

C1 =
2Γ

α
max

i

n
∑

j=1

(

(1 + L1)αij + f j

)

+ 2N
( Γ

1− e−
α

2

Ik +
L2 + 1

1− e−α

)

.

From (3.5) and (3.6), we deduce that Sϕ ∈ D∗. Let ϕ ∈ D∗, ψ ∈ D∗. We get

‖Sϕ− Sψ‖ ≤ sup
t∈R

{

max
i

[

∫ t

−∞

|R(t, s)|
n
∑

j=1

|αij(s)|
∣

∣fj(ϕj(s))− fj(ψj(s))
∣

∣ ds
]

+
∑

τk<t

|R(t, τk)|
∣

∣Ik(ϕ(τk))− Ik(ψ(τk)
∣

∣

}

≤ K
{

max
i
L1α

−1
n
∑

j=1

αij +
2NL2

1− e−α

}

‖ϕ− ψ‖ = r‖ϕ− ψ‖. (3.7)

By the assumption (ii), it follows that S is a contractive mapping in D∗. So
there exists a unique almost periodic solution x(t) of (2.1). �

Proof of Assertion 2. Let y(t) be an arbitrary solution of (2.1). It follows that

y(t)− x(t) =R(t, t0)
(

y(t0)− x(t0)
)

+

∫ t

t0

R(t, s)
[

F (s, y(s))− F (s, x(s))
]

ds

+
∑

t0<τk<t

R(t, τk)
(

Ik(y(τk)− Ik(x(τk))
)

.

Taking the norm, we get

∣

∣y(t)− x(t)
∣

∣ ≤ Ke−α(t−t0)
∣

∣y(t0)− x(t0)
∣

∣ +max
i

(

∫ t

t0

Ke−α(t−s)L1

×
n
∑

j=1

αij

∣

∣yi(s)− xi(s)
∣

∣ ds
)

+
∑

t0<τk<t

Ke−α(t−τk)L2

∣

∣y(τk)− x(τk)
∣

∣.
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Setting u(t) =
∣

∣y(t)− x(t)
∣

∣eαt and applying Gronwall–Bellman’s inequality we
have

∣

∣y(t)− x(t)
∣

∣ ≤ K
∣

∣y(t0)− x(t0)
∣

∣(1 +KL2)
i(t0,t)

× exp
(

− α+KL1max
i

n
∑

j=1

αij

)

(t− t0).

Thus, proof of Theorem 1 is finished. �

Example 1. Let us consider the following model of impulsive integro–differential
neural networks











dxi(t)

dt
= −xi(t) +

∫ t

0

e−3(t−s)xi(s) ds+

n
∑

j=1

αijfj(xj(t)) + γi(t), t 6= τk,

∆x(t) = pkx(t) + γk, t = τk, i = 1, 2, . . . , n, k ∈ Z,

(3.8)
where t ∈ R, αij ∈ R, fj(t), γi(t),∈ C(R,R), {τk} ∈ B and

pk = (p1k, p2k, . . . , pnk), −1 < pik < 0, γk ∈ R
n, i, j = 1, 2, . . . , n, k ∈ Z.

It is easy to check that if the sequence {pk} is almost periodic then for the
following integro-differential system







dxi(t)

dt
= −xi(t) +

∫ t

0

e−3(t−s)xi(s) ds, t 6= τk, i = 1, 2, . . . , n,

∆x(t) = pkx(t), t = τk, k ∈ Z,

for the functions R(t, 0) = R(t), R(t) = (R1(t), R2(t), . . . , Rn(t)), where

Ri(t)=
1

2
√
2

[

k
∏

l=1

(1+pil)
(√

2+1+

√
2− 1

e2
√
2τl

)

e−(2−
√
2)τl

]

e−(2−
√
2)t, i=1, 2, . . . , n

the inequality (3.1) holds. Let conditions H9–H10 hold. Then

K∗L1(2−
√
2)−1 max

i

n
∑

j=1

αij < 1 and 2−
√
2−K∗L1 max

i

n
∑

j=1

αij > 0,

where

K∗ =
1

2
√
2

[

k
∏

l=1

(1 + pil)
(√

2 + 1 +

√
2− 1

e2
√
2τl

)

e−(2−
√
2)τl

]

.

Thus all assumptions of Theorem 1 are satisfied. Therefore, there exists a
unique almost periodic solution for equation (3.8) which is exponentially stable.

Math. Model. Anal., 15(4):505–516, 2010.
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