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Abstract. The paper deals with finding of soliton solution for Schrédinger equation
with periodic linear and nonlinear properties of medium in 1D case. Such structure
is named as photonic crystal. To find soliton solution the corresponding problem for
finding of eigenfunctions and eigenvalues is formulated. Iterative process is proposed
for solution of this problem. Using the technique of continuation on parameter we in-
vestigate a dependence of soliton location on its maximum intensity, on ratio between
light frequency and frequency of structure, on ratio between dielectric permittivity of
alternating linear and nonlinear layers and on position between centre of initial distri-
bution of eigenfunction and center of considered photonic structure area. The results
of this paper confirm the features of soliton self-formation investigated early in our
papers [37, 38, 39, 40, 41, 42], in which one considered a propagation of femtosecond
laser pulse through nonlinear layered structure.
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1 Introduction

Interaction of laser pulse with photonic crystal (PC), which is a periodic struc-
ture, and with other periodic structure is one of the actual problems of mod-
ern laser physics [3, 11, 12, 13, 14, 17, 18, 26, 28, 45, 46]. Among the vari-
ous problems of such interaction the light localization and soliton formation
are very attractive: there are many papers dealing with these phenomena
[1, 8, 10, 15, 16, 19, 20, 21, 22, 23, 24, 29, 32, 37, 38, 39, 40, 41, 42, 44, 47|.
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For example, light localization has a great interest for various applications in
all-optical switchers and optical data storage devices.

As it is well-known, there are various physical mechanisms of a light local-
ization in periodic structures. In our recent papers [37, 38, 39, 40, 41, 42], we
reported about a possibility of nonlinear light energy localization in 1D PC.
It takes place due to soliton sub-pulses formation in nonlinear (self-focusing)
layers while the laser pulse propagates through the PC. Sub-pulses propagate
inside the nonlinear layer and totally reflect from its boundaries (neighboor
layers are linear or defocusing ones). As it was shown in [42], these self-formed
sub-pulses are solitons and there is a good agreement with well-known analyt-
ical soliton solution for a nonlinear cubic medium.

Another known effect of the light localization is Anderson one [13] in linear
periodic structure. It takes place for disordered PC. In practice, it means
a bad quality of the PC. So, for the case of layered structure it means that
the thickness of layers changes randomly from layer to layer. Hence, a local
band-gap of PC for various frequencies appears. Such effect takes place for the
structure with big number of layers (more than 30) in a contrast to the nonlinear
localization which takes place even for the PC with several layers [41]. It should
be also mentioned that for the observation of the Anderson localization it is
necessary that the carrying frequency of an input optical pulse is near the
band-gap or stronger PC layers thickness fluctuations take place. Under such
conditions the light energy localises in a part of PC, but not in a definite layer as
it realises at the nonlinear light localization. It is very important that nonlinear
light localization can occur as well for light frequencies, which belong to the
frequency range of a transparency of the linear PC. In this case it is necessary
that an input pulse intensity must be greater than its critical value [37], which
decreases in disordered layered structure [37].

At investigation of soliton formation in a nonlinear 1D PC has shown real-
ization of unmoving spatial distribution of optical radiation, which is located
near the boundary of layers. From mathematical point of view, such mode
of laser light propagation is a soliton mode. Such modes of optical radiation
would be very important in many applications, e.g for construction of opti-
cal data storage devices. Hence, we investigate below a dependence of soliton
formation on various parameters of optical pulse interaction with layered struc-
ture and an opportunity for controlling the soliton displacement in PC and their
parameters.

2 Statement of Problem for Laser Pulse Propagation in
PC

As it is well-known, femtosecond pulse propagation in 1D photonic crystal is
governed by the following wave equation:
0?E(z,t)  n?(2) 0*E(z,t) 4 0?
LR L= ——Py, 0<t<L; 0<z<L, (21
022 c? ot? 2o ! : (2.1)
where P,; = x®)|E|?E, and E(z,t) is the electric field strength; z is a coor-
dinate, along which the pulse propagates, and L, its maximum value; n(z) =
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€(z) is a medium refractive index; ¢ is time and L; is time interval, within
which a pulse propagation is analysed; ¢ is a light velocity and x(® is a cubic
susceptibility of medium.

To simplify a mathematical description of an optical pulse propagation we
transform the wave equation (2.1) to Schrodinger equation with respect to com-
plex amplitude A(z,t), which is slowly varying in time and fast varying on the
spatial coordinate. It means that we do not make a choice of light propagation
direction for incident wave on PC as it is usually used for consideration of this
problem [27]. The reason of choosing this approach concludes in self-validity
of certain invariant (conservation law that is named by us as spectral invariant
[33, 34]) at the solution of corresponding Schrédinger equation. If we apply
the standard approach [27] it is necessary to control this invariant addition-
ally. Hence, an accuracy of computation increases and computation algorithm
for our approach is more simple and stable in comparison with computation
algorithms, that are based on well-known approach. Thus, the electric field
strength and nonlinear medium response can be written in the form

E(z,t) = %EO(A(z,t)e’i“t +cc), Pu= %X@) A E3(A(z, t)e ™ + c.c.).
Here c.c. denotes a conjugation of complex function, Fy is amplitude of the elec-
tric field strength. Assuming the linear relationship between the wave number
k and frequency of light w, as it is frequently done for a considered class of
problems [27], and using the same coordinates’ notations for convenience, one
can get from wave equation (2.1) the following nonlinear Schrodinger equation,
which is written in dimensionless variables

0A 9%A

The following parameters are used above: D = — g, f = -0, 2 = 2,
L=1L,/)\,
1, 0<z< Lo,

€1, 0<z—Lo—(di+da)(j—1)<d1,1<j<Ngp+1,
g2, 0<z—Lo—(di+d2)(j—1)—di <dp,1<j< Ny,
es, Lo+ (di +d2)Ngyr +di <z < L.

e(z) =

0, 0<z<Ly,

ar, 0<z—Lo—(di+d2)(j—1)<di,1<j< N+ 1,
@z, 0<z—"Lo—(di+d2)(j—1)—di <d2,1<j< Ny,
0, Lo+ (di+d2)Ngr+di <2< L.

a(z) =

Function £(z) describes a dielectric permittivity of medium before PC, in
PC layers and in substrate (medium after PC). From physical point of view
it follows that €(z) > 0. It should be noted that the case ¢ = 1 in any layer
of PC or substrate corresponds to its measurement in units of permittivity for
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medium before the PC. Let’s notice that the photonic crystal begins from layer
with dielectric permittivity €; and a dielectric permittivity of the last layer of
PC is equal to €1 as well. In practice the substrate follows after this layer.
Nevertheless, below we will be interested in a location of soliton inside the
photonic crystal or inside some layers of photonic crystal. Hence, under the
investigation of soliton formation we will consider only the domain of photonic
crystal.

Above, wgy is a frequency of periodic structure: wgy, = 2me/Ng, Ao =
di\/e1 + d2\/€2; di, d2 and €1, €2 are thickness and permittivity of alternat-
ing layers; Ny, is number of layers pairs; €3 is substrate permittivity. Lg
denotes dimensionless distance before PC; L is the normalised length of con-
sidering domain (it includes a distance before PC, length of layered structure,
and substrate length), parameters a, ao characterise the cubic nonlinearity of
alternating layers. Schematically the distribution of nonlinear coefficient « is
shown in Fig. 1 for the domain of photonic crystal.

] a(z)

0.5 -

oo AL IABSZ, 1 el _I|

Figure 1. Spatial distribution of nonlinearity of medium and initial spatial distribution of
optical intensity inside the PC.

In this figure L is equal to zero and L coincides with the end of photonic
crystal. It should be noticed that the initial condition for (2.2) becomes

(z—Le)?
- 2

Alizo = Ap(2)e2m 220 | 4g(z) = e 5 (2.3)

Here L. is a coordinate of laser pulse centre on z axis and a characterises pulse
duration. Spatial distribution (2.3) corresponds to one of the physical situations
taking place in practice. For the first situation the laser pulse falls on the PC
and propagates in the direction, which is transverse to layered structure. Then,
the laser pulse is located before the PC.

The second situation corresponds to a propagation of laser pulse along the
layers of PC. In this case the laser pulse is located inside a PC (Fig.1). Then,
a parameter {2 means a perturbation of propagation direction. It does not
equal to zero for inclined incidence of laser beam with respect of direction
along which the layers are placed. An investigation of a stability for the laser
pulse propagation with respect to transverse perturbation of propagation direc-
tion is reasonability made by the usage of so-called nonreflecting (transparent)



Parameter Control of Optical Soliton in 1D Photonic Crystal 521

boundary conditions [30, 31]:

dA 1 94
e 928A = — 2.4
o \/_624—16 0,1>0, z=0, (2.4)
aA 1 04

\/—6 +i28A=0,1t>0, z= L.
It should be stressed that the development of the nonreflecting boundary con-
ditions is a very modern problem. There are many papers on this subject. For
example, we mention two review papers [2, 4]. Our approach at creation of
nonreflecting boundary conditions concludes in developing of such conditions
which allow to create a two- layer conservative finite-difference scheme for non-
linear Schrodinger equations. Let’s note that the conservative finite-difference
scheme for nonlinear Schrédinger equations which describe various nonlinear
optics problems were discussed recently in [5, 6] as well. Nevertheless, we use
the zero value boundary conditions as well under consideration of the eigen-
function (EF) and eigenvalues (EV) problem that is formulated below. These
conditions look like A|,—r, = 0, A|.—r, = 0, here Ly, Ly are coordinates of
domain, which either coincide with the domain of photonic crystal or are lo-
cated inside the photonic crystal if we want to find the solution that is located
in some layer of PC.

For problem (2.2), (2.4) two invariants (conservation laws) [31] take place:

L

I t)=/8(2)|A2dz—2D/tIm((%A*)|Z_L+(%A)|Z_O)dn = const,
0 0

amzji( DIZA 1 5[e(z) +0.50(2) AP] |4 ) d=

+2D/ ?afaa—f) |Z:L (?3;1 65717 ) | )dn = const. (2.5)

3 Eigenfunction Problem

To find EFs of equation (2.2) its solution is presented as A = u(z)e™ . After
substituting this function into (2.2), the following boundary value problem is
derived:

1 d*u a(z) ~ <
TToemar et e A=l (3.1)

It should be noted that in (3.1) we introduce the shifted EVs A. It does not
restrict the problem because we add the same positive number to all EVs.
Generally speaking, equation (3.1) can possess both real and complex EVs.
However, taking into account that the function e(z) is a real one, it can be
shown that EVs of equation (3.1) are real. Actually, if we multiply equation
(3.1) by e(z)u* (symbol star means a conjugation of complex function) and
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integrate it from Lq to Lo, then after using boundary conditions (3.2), we will
obtain the relation:

Lo 1 2 _ Lo
/L (R‘Z_Z’ —Wﬂa(z)\u|4)dz = /\/L1 (2)|uldz.

1

Taking into account that the integrals on the left and right sides are real, we
will conclude that A is real.
Let us introduce the uniform grid

Wy = {Zn =nh, +L17 n = 07N27 Ly —L; = thz}

and define grid functions un, ap, €p, o0 Wy Uy = U(2n), Apn = &(2n), Epn =
e(z,) and the difference Laplace operator uz,, = (unt1 — 2up + upn—1)/h2.
Then the finite-difference scheme for equation (3.1) and boundary conditions
(3.2) are written as:

1 Qh,n

Uzzn — i

. -
- Up|tn|® = Aup, n=1,N,—1,
47T_Q€hm Eh,n

up =0, uyn, =0.

Because the above equations are nonlinear, the following iterative process is
used:
1

1 s+1 ap, s+1, s St s+1 —_—
— Uz T2 Uy, Uy, =X U, n=1,N, -1, (3.3)
47T_Q€hm Eh,n
s+1 s+1

ug =uny, =0, s=0,1,2,....

A realization of the iterative process requires specifying an initial distribution
for function u on the zero iteration (s = 0). We consider two kinds of initial
approximations, i.e. sinus distribution:

= - Lso
Uw(z):Sin (%), m=1,2,... (3.4)
and Gaussian distribution:
s=0
U = exp(—(z — Lgo1)?/a?). (3.5)

Parameter Lg,; defines the coordinate with respect to which the initial distri-
bution of EF is symmetric.

Taking into account the zero value boundary conditions, we introduce the
vector ¢ = (ug,us,...,un,.—1). In this case we can rewrite the equations (3.3)

in matrix form:
g s+1 stlgs4q

Ay =X ¢ . (3.6)
;1 is a real nonsymmetrical tridiagonal matrix:
—(2&1 + b1) a1 0 0
s as —(2&2 + bg) as 0
A= 0 as —(2&3 + bg) as e s

0 0 a4 — (2@4 + b4)
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where a,, = —1/4nQe), ,h?, by, = T2 | 10, 12/eh .
S
Under solution of the problem the vector 1 is normalised at each iteration
S
in accordance to the rule max |); | = 1. Iterative process completes, if the stop
J

criterion is valid:
s+1 s

X _x\<51|x|+52, 51,85 > 0. (3.7)

As it can be seen, the original problem of obtaining the function u(z) is reduced

to searching EFs and EVs of the matrix /51 Because the matrix is nonsymmetri-
cal, the bisection method for obtaining EVs, used in works [35, 36, 43|, cannot
be applied in our case. Therefore, EVs of real nonsymmetrical tridiagonal

matrix are obtained using the QR-algorithm |7, 9]. Essentially, that matrix jl
already has the Hessenberg form. This reduces the complexity of QR~algorithm
to O(N3). However, that is an order higher than for symmetric matrix.

EVs of matrix ;1 were sorted at each iteration. After that, the maximal
EV was taken for finding corresponding EF. This approach was used previ-
ously in [43] for finding soliton solutions for nonlinear Schrédinger equation in
homogeneous media.

Computer simulations show that the iterative method converges for a wide
range of the nonlinear parameter. Its convergence depends on a choice of initial
approximation for EF. To avoid the non-convergence of iterative method we
have applied the method of continuation on parameter. The soliton shape for
new value of parameter is found using the soliton shape for previous value
of parameter and taking into account the continuous dependence of soliton
shape on this parameter. Then the convergence of iterative method was always

obtained.
s+1
After finding EVs, the EF corresponding to )\, is calculated by inverse
iteration method [7, 9, 25|. Then the obtained EF is used for constructing a

new matrix Sjll on the following iterative step. Process is repeated, until the
condition (3.7) is satisfied.

Described procedure allows to find the requiring number of EFs. However,
the first EF corresponds to stable soliton, if some conditions are satisfied [43]. It
should be stressed also that in general case the multiple values of EFs from the
same EV can take place. However, we do not find such EVs in our experiments.

4 Computer Simulation Results

At computer simulations we restricted ourself to find the EFs with one maxi-
mum. This choice follows from our previous investigations. So, in [37, 38, 39,
40, 41, 42| we have investigated a self-formation of soliton, which locates in
some layers of nonlinear 1D PC and has intensity profile similar to ch=2(z). In
these papers we have considered the case when the optical radiation falls on PC
in a direction that is perpendicular to PC layers. An appearance of soliton took
place if a certain ratio between wavelength of optical radiation and thickness
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of layers is realised. In particular, this ratio depends on maximum intensity of
laser beam.

Below we investigate the influence of problem parameters on area of soli-
ton formation and its spatial distribution. We do not discuss the questions of
formation of such solitons in practice. Nevertheless, our computer simulation
results show that the soliton is stable to perturbations of its propagation direc-
tion and of its spatial distribution. Hence, one of the possible ways concludes
in falling of optical radiation with soliton profile along the layers or under an
angle, a little distinguishing from this direction.

During computations a left boundary of the considered domain coincides
with the front point of PC (it means that L; is equal to Lo, Fig.1). The first
layer of PC has a low dielectric permittivity and zero value of nonlinear coef-
ficient. A coordinate Lo of the right boundary of the domain either coincides
with the right boundary of PC or is located inside of the photonic crystal layer
with high dielectric permittivity. In the last case, the layer is a nonlinear one.
For simplicity, let L; corresponds to zero value of z coordinate, and coordinate
L is equal to coordinate L. In other words, we consider only the domain of
PC. Obviously, it does not restrict the generality.

Firstly, we discuss the influence of the maximum intensity of soliton and a
ratio of optical beam frequency to the frequency of layered structure on width
of soliton. Then, we consider the influence of relation between the position of
maximum intensity of initial spatial distribution of EF and position of centre
of layer, which is the closest to coordinate of intensity maximum, on an area of
soliton formation. After that, we will discuss the jump of position of maximum
intensity of soliton to one of the boundaries of nonlinear layer with changing
of interaction parameters.

4.1 Soliton localization in dependence on light pulse intensity and
frequency of structure.

As well as for homogeneous cubic medium, the soliton formation depends on
a maximum intensity of laser radiation penetrated into PC. At fixed thickness
of PC the EF becomes soliton, if the maximum intensity exceeds some critical
value.

In Fig. 2a we show a transformation of EF with respect to increased values
of |ag|. For small |as| (Jaz| < 4) the EF is far from soliton shape, while for
|az] > 5 the soliton is formed. The width of such a soliton essentially depends
on the maximum of the intensity: the larger |as|, the narrower is the soliton.
Nevertheless, in opposite to the case of homogeneous medium, the width of
soliton, which is formed in layered structure, does not decrease always with
increasing of nonlinearity. In Fig. 2a we can see a saturation of decreasing in
soliton width. It is a consequence of layered structure with alternating linear
and nonlinear layers.

The other feature of soliton formation in inhomogeneous nonlinear medium
is connected to dependence of centre position for soliton profile on the presence
or absence of nonlinear response in layer, which is closest to the position of the
maximum intensity of a soliton (we discuss this feature below).
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Figure 2. Dependence of EF profile on |az| (a) or on £2 (b, ¢) at increasing of |az]| from 0
to 40 (a) and at increasing of 2 from 1 to 11 (b) or from 0.01 to 10 (c¢). Other parameters
are the following 2 = 1/(4w), a1 = 0, e1 = 1.3,e2 = 2.3,d1 = do = 1.0,L = 21 (a);
e1=ea=1,01 =0, =-0.1, L=21,dy =d2=3(b), a1 =0, =-1.0,L=15,d1 =
d2 = 0.2 (¢). A width of EF decreases with increasing of corresponding parameter. Areas
with horizontal lines correspond to nonlinear layers of a photonic crystal.

The pictures Fig. 2b,c confirm the conclusion of our previous papers about
of the opportunity for soliton formation in some layer: soliton can appear in
layer if the length of the layer is greater than the wavelength of laser radiation.
More explicit, a soliton appears if the wavelength of the structure is 3-4 times
greater than the wavelength of laser light.

4.2 Dependence of soliton formation area on layers configuration

The location of soliton depends essentially on interposition between the centre
of initial distribution for EF and the centre of nonlinear layer, which is close
to it. As a rule, the maximum intensity of soliton realises in this nonlinear
layer. However, if the centre of linear layer coincides with the centre of initial
distribution of EF then two identical solitons may appear in the neighbouring
nonlinear layers. Nevertheless, the slightest asymmetry of the layers position
with respect to the centre of initial distribution of EF suppresses an appearance
of such solitons and only a formation of unique soliton takes place (see, Fig. 3).

Math. Model. Anal., 15(4):517-532, 2010.
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Figure 3. Transformation of EF profile in dependence on |az|, which is changing from 0 to
40, for various ratio of a nonlinear layer centre position and the position of centre of initial
spatial distribution of EF at as = 0.0 for L = 15,dy = d2 = 3.0 (a) L = 15,d1 = d2 = 2.9
(b), L =21,di1 =d2 =30 (c), L =18,dy =dz =3.0(d), L =24,d; = d2 = 3.0 (e) and
a1 =0, 2=1/(4n), e1 = e2 = 1.0 (homogeneous medium). A width of EF decreases with
increasing of |az|. Areas with horizontal lines correspond to nonlinear layers of a photonic
crystal.

The unique soliton corresponds to an EV with the smallest modulus of its
value. However, at the formation of twin solitons their EVs are a little different.
4.3 Jump of soliton position at changing parameters of interaction

Another significant property of soliton evolution under the gradual increasing
of problem parameters is its jumping out of nonlinear layer, in which it exists
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Figure 4. Jump of soliton position at increasing of |az| from 0 to 40 (a-d) for 2 = 1/(4w),
g1 = 1.69,e2 = 5.29, 1 = 0, L = 21 at small changing of layers thickness from d; = do = 3.0
(a, b) to di = d2 = 2.9 (c-d) or jump of soliton position at increasing of €2 from 1.3 to 11
(e-f) for 2 =1/(47m), e1 = 1,01 = 0,020 = —4, L = 42,dy = d3 = 6.0 (e-f). A width of EF
decreases with increasing of |az|. Areas with horizontal lines correspond to nonlinear layers
of a photonic crystal. Final soliton profile for maximum value |az|or €2 is depicted on Fig.
4b, 4d , 4f.

for values of parameters less than critical ones. The jump of soliton can be
realised under various conditions. One of them corresponds to an excess of
maximal light intensity of crucial value. For examples, the critical value of

Math. Model. Anal., 15(4):517-532, 2010.
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nonlinearity equals to |as| = 5.6. Of course, this value depends on such param-
eters as layer thickness and diffraction coefficient. In Fig. 4a-d we see a jump
of soliton location either to the left or to the right boundary of nonlinear layer
in dependence of interposition between centre of layer and centre of soliton for
low value of nonlinearity in PC. For considered case one half of soliton belongs
to nonlinear layer and another half of soliton belongs to the linear layer. Con-
sequently, its profile becomes asymmetrical. It is important that the greatest
part of soliton can belong to linear layer.

The similar evolution of soliton location takes place at changing other pa-
rameters of problem. Fig. 4e-f illustrates the jump of soliton position at ex-
ceeding the dielectric permittivity of nonlinear layer the corresponding critical
value: the larger the permittivity of nonlinear layer, the greater part of soliton
displacement in a linear layer and the jump of soliton location is more pro-
nounced. First, (for the least initial parameters values) the soliton is located in
the central nonlinear layer. At variation of dielectric permittivity in the range
1 < &9 < 2.5 the small changes of soliton profile take place. At €5 = 2.6 the
soliton jumps out of the nonlinear layer and localises half in and half out of
the nonlinear layer so that its maximum intensity realises at the left boundary
of the layer. The further growth in dielectric permittivity €2 results in gradual
shifting of the left part of soliton to the left boundary of PC. So, a soliton pro-
file becomes more asymmetrical because its right part remains in the nonlinear
layer without significant shifting.

Increasing the ratio between light frequency and PC frequency (parameter
2), we get the jump of soliton location as well. In this case a soliton not only
shifts to the boundary of nonlinear layer, but also its profile changes essentially.
With increasing of {2 decreasing of soliton width takes place while the soliton
center does not move at all. In contrast to the previous case a soliton preserves
approximately symmetrical profile and its both left and right parts (out and in
nonlinear layer) are shifting towards each other.

It should be stressed that the left shifts in all discussed cases are due to
small non-symmetry in layers configuration: the left nonlinear layer is a little
farther from the boundary then the right one. Changing of non-symmetry
results in the changing of the shifts direction.

5 Conclusions

In this paper we develop the method for finding of soliton solution of Schré-
dinger equation with periodic linear and nonlinear properties of medium. Such
structure of medium is ordinary for PC. Soliton solution is found out as EF on
the base of iterative process.

This method with combination of continuation on parameter technique al-
lows us to investigate the dependence of spatial distribution of soliton on pa-
rameters of laser pulse interaction with PC. It is very important that our algo-
rithm allows finding the soliton in requiring domain of PC: one-layer structure
or multi-layers one.

Firstly, we stress that the width of soliton essentially depends on peak
intensity. This result, obviously, is similar to one for homogeneous medium
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with cubic nonlinear response. Nevertheless, for PC with alternating nonlinear
and linear response there are some features in comparison with homogeneous
nonlinear medium. In that way, decreasing or increasing maximum intensity of
input laser pulse it is possible to create solitons spreading over several layers
or localizing into one layer or mainly located in linear medium.

Secondly, the area of soliton localization is sensitive to the defects in thick-
ness of PC. So, the slightest non-symmetry in layers displacement with respect
to initial beam symmetry can result in soliton shift to the left or right boundary
of layer.

Thirdly, soliton jump out of nonlinear layer occurs if one of the following
situations is valid. The maximum intensity of optical radiation or ratio between
light frequency to frequency of structure or ration between dielectric permittiv-
ity of linear and nonlinear layers exceeds some critical value under fixed other
parameters.

These investigations explain the results, which were obtained by us at an in-
vestigation of soliton self-formation in some layers of PC under the propagation
of laser pulse through the layered photonic structure.
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