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Abstract. The heating of buildings by ecologically clean and compact local devices
is an interesting and actual problem. One of the modern areas of applications de-
veloped during last ten years is an effective usage of electrical energy by alternating
current to produce heat energy. This work presents the mathematical model of one of
such devices. It is a finite cylinder with viscous incompressible liquid and with metal
electrodes of the form of bars placed parallel to the cylinder axis in the liquid. These
conductors are connected to the alternating current.

Key words: alternating current, electrically conducting liquid, Navier-Stokes equa-
tions.

1 Introduction

In many technological applications it is important to mix an electrically con-
ducting liquid by using various magnetic fields. In papers [1, 2, 3, 4] we
had modelled cylinder form electrical heat generators with six or nine circular
conductors–electrodes. In this work we analyze different types of conductors,
with the forms of bars and they are placed parallel to the cylinder axis in the
electrically conducting liquid. It means that in distinction with the case of cir-
cular electrodes here we can’t assume the axis symmetry and we must consider
full 3D mathematical model based on the system of Navier-Stokes equations.

Let the cylindrical domain

Ω = {(r, φ, z) : 0 < r < R, 0 ≤ φ ≤ 2π, 0 < z < Z}

contains conducting liquid – electrolyte, where R,Z are the radius and length
of the cylinder. The alternating current is fed to N discrete conductors of

http://dx.doi.org/10.3846/1392-6292.2009.14.1-9
http://www.vgtu.lt/mma/
mailto:buikis@latnet.lv; leonids.buligins @lu.lv
mailto:kalis@lanet.lv


2 A. Buikis, L. Buligins and H. Kalis

forms of bars, which are placed parallel to the cylinder axis in the liquid. The
current creates in the weakly conductive liquid-electrolyte the radial Br and
the azimuthal Bφ components of the magnetic field as well the axial component
of the induced electric field Ez , which, in its turn, creates the radial Fr and
azimuthal Fφ components of the Lorentz force.

For calculation of the electromagnetic fields outside the electrodes, the aver-
aging method over the time interval 2π/ω = 1/f is used. The averaged values
of force < Fr >, < Fφ > give rise to a liquid motion, which can be described
by the stationary Navier-Stokes equation.

2 Calculation of the Electromagnetic Field and Force

Applying the Biot-Savar law we obtain the azimuthal component of the mag-
netic field Bφ and the axial component of vector potential Az created by the
current of density j from one infinite long circular conductor L = {r ≤ a, 0 ≤
φ ≤ 2π,−∞ ≤ z ≤ +∞} with radius a in following form [5]:

Bφ(r, φ) =
µja2

2ρ
, Az(r, φ) = −µja

2

2
ln(ρ),

where ρ = r > a, µ = 4π10−7 mkg
s2A2 is the magnetic permeability in vacuum.

For the limit case when the radius of the conductor tends to zero the mag-
nitude a2/2 must be replaced by 1/2π. If the bar type electrode has finite
length z ∈ [C,D], then the azimuthal component of the magnetic field in point
P outside of electrodes is given in form Bφ(P ) = µj

4πρ
(cos(α1)+cos(α2)), where

α1 = ∠PCD, α2 = ∠PDC. If α1 and α2 tends to zero, then we obtain the
previous expression. The magnetic field inside the electrode is not considered
here.

For the circular conductor defined by using polar coordinates (r, φ)

Li = {r − ri ≤ a, φi − αi ≤ φ ≤ φi + αi, −∞ ≤ z ≤ +∞}

it follows that

Bi(r, φ) =
µjia

2

2ρi

, Ai(r, φ) = −µjia
2

2
ln(ρi),

where ρi =
√

(r2i + r2 − 2rri cos(φ− φi)), αi = arcsin(a/ri) and (ri, φi) are the
polar coordinates of the centers of circular wires Li. In the cases of alternating
current

ji = j0 cos(ωt+ (i− 1)θ), i = 1, . . . , N.

Here j0 = I
πa2 is the amplitude of density, ω = 2πf is the angular frequency,

f is the frequency of the alternating current, θ = const is the phase (usually
θ = 1200, f = 50Hz), t is the time and I is the effective current intensity.

We assume that the azimuthal vector Bi(r, φ) with respect to the planes at
point (ri, φi) can be divided in the sum of two vector components Br,i, Bφ,i,



Modelling of Alternating Electromagnetic and Hydrodynamic Fields 3

where Br,i = Bi sin(αi), Bφ,i = Bi cos(αi) and αi is the angle between vectors
Bi and Bφ,i. Then

cos(αi) =
ri cos(φ− φi) − r

ρi

, sin(αi) =
ri sin(φ− φi)

ρi

.

Therefore we obtain two components of the magnetic field induced by each
current wire Li in the following form















Br,i(r, φ, t) =
µjia

2

2ρ2
i

ri sin(φ− φi),

Bφ,i(r, φ, t) =
µjia

2

2ρ2
i

(ri cos(φ− φi) − r), i = 1, . . . , N.

We can see that

divBi =
1

r

∂

∂r
(rBr,i) +

1

r

∂Bφ,i

∂φ
= 0.

Since

Br,i =
1

r

∂Az,i

∂φ
, Bφ,i = −∂Az,i

∂r
,

then the axial component of vector-potential A (i.e., B = rotA) is given by

Az,i(r, φ, t) = −µjia
2

2
ln(ρi).

It follows from Ohm’s law that the axial components jz of the induced current
density are defined as jz,i = −σ∂Az,i/∂t, where σ is the electric conductivity.

From the vector of electromagnetic (the Lorenz) force F = j × B we can
obtain the radial and azimuthal components Fr = −Bφjz, Fφ = Brjz as the
sum of all induced fields

Bφ =

N
∑

i=1

Bφ,i, Br =

N
∑

i=1

Br,i, jz =

N
∑

i=1

jz,i.

Therefore, we obtain a system

{

Fr(r, φ, t) = K0

∑N
i,j=1 αi,jcs(t),

Fφ(r, φ, t) = K0

∑N
i,j=1 βi,jcs(t),

where

K0 =
(a2µj0

2

)2

σω, cs(t) = 0.5 sin
(

2ωt+ (i+ j − 2)θ
)

+ 0.5 sin
(

θ(j − i)
)

,

αi,j = − ln(ρi)(rj cos(φ− φj) − r)

ρ2
j

, βi,j =
ln(ρi)rj sin(φ − φj)

ρ2
j

.

Similarly, the source term for heat transport equation has the form

j2z (r, φ, t) = K0σω

N
∑

i,j=1

γi,jss(t),

Math. Model. Anal., 14(1):1–9, 2009.
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where γi,j = ln(ρi) ln(ρj),

ss(t) = −0.5 cos
(

2ωt+ (i+ j − 2)θ
)

+ 0.5 cos
(

θ(j − i)
)

.

Denoting Ai = ln(ρi), we obtain

αi,j = Ai

∂Aj

∂r
, βi,j =

Ai

r

∂Aj

∂φ
, γi,j = AiAj ,

∂Aj

∂φ
=
rj sin(φ − φj)

ρ2
j

,
∂Aj

∂r
= −rj cos(φ− φj) − r

ρ2
j

.

By averaging quantities in the time interval of length
2π

ω
we get















< Fr(r, φ) >= 0.5K0S
α
N ,

< Fφ(r, φ) >= 0.5K0S
β
N ,

< j2z (r, φ) >= 0.5K0σωS
γ
N ,

where

Sα
N =

N
∑

i,j=1

sin((j−i)θ)αi,j , S
β
N =

N
∑

i,j=1

sin((j−i)θ)βi,j , S
γ
N =

N
∑

i,j=1

cos((j−i)θ)γi,j .

We can see that

Sα
N = 2

N−1
∑

k=1

sin(kθ)
N−k
∑

i=1

ᾱi,k+i, Sβ
N = 2

N−1
∑

k=1

sin(kθ)
N−k
∑

i=1

β̄i,k+i,

Sγ
N = 2

N−1
∑

k=1

cos(kθ)

N−k
∑

i=1

γi,k+i +

N
∑

i=1

γi,i,

where

ᾱi,j = −0.5
(

Ai

∂Aj

∂r
−Aj

∂Ai

∂r

)

, β̄i,j = −0.5
1

r

(

Ai

∂Aj

∂φ
−Aj

∂Ai

∂φ

)

.

Using the following formula for axial component of the curl of force vector

f = rotzF =
1

r
(
∂(rFφ)

∂r
− ∂Fr

∂φ
) = Br

∂jz
∂r

+
Bφ

r

∂jz
∂φ

,

we analogously obtain its average value

< f(r, φ) >= 0.5K0S
δ
N ,

where

Sδ
N =

N
∑

i,j

sin((j − i)θ)δi,j , δi,j =
1

r

[ ∂

∂r
(rβi,j) −

∂

∂φ
(αi,j)

]

= gi,j − gj,i,

gi,j =
ri sin(φ− φi)(rj cos(φ− φj) − r)

ρ2
i ρ

2
j

.
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3 The Mathematical Model

The stationary flow of incompressible viscous liquid in a cylinder is described
by the system of the Navier–Stokes equations, which are given in the cylindrical
coordinates (r, φ, z) [6]:











































M(Vz) = −ρ̃−1 ∂p

∂z
+ ν∆Vz ,

M(Vr)−r−1V 2
φ =−ρ̃−1 ∂p

∂r
+ν(∆Vr−r−2Vr−2r−2 ∂Vφ

∂φ
)+ρ̃−1 < Fr >,

M(Vφ)+r−1VrV φ=−(ρ̃r)−1 ∂p

∂φ
+ν(∆Vz−r−2Vφ+2r−2 ∂Vr

∂φ
)+ρ̃−1 < Fφ >,

∂(rVr)

∂r
+
∂(Vφ)

∂φ
+
∂(rVz)

∂z
= 0.

(3.1)
Here Vr, Vz , Vφ are the radial, axial and azimuthal components of velocity
vector V, depending on the coordinates r, φ, z; and ∆ is the Laplace operator,

∆g = r−1 ∂

∂r

(

r
∂g

∂r

)

+ r−2 ∂
2g

∂φ2
+
∂2g

∂z2
,

< Fr >,< Fφ > are the components of the external averaged force < F >,

M(g) = Vr

∂g

∂r
+ r−1Vφ

∂g

∂φ
+ Vz

∂g

∂z

are the convective parts of the equations , ρ̃, ν are the density and kinematic
viscosity, p is the pressure, g = Vr ;Vφ;Vz . On the walls (the surfaces of the
cylinder and electrodes) we have the non-slipping conditions V = 0.

In the cross-section z = const we assume that Vz = 0,
∂jg

∂zj
= 0 for all j ≥ 1

and therefore we can consider the 2D problem. In this case by the elimination
of pressure from the second equation of the system of PDEs (3.1) we obtain

M(ω̃) = ν∆ω̃ + ρ̃−1 < f >, (3.2)

where ω̃ = r−1∂(rVφ)/∂r − ∂Vr/∂φ is the axial component of vector’s curlV
or the function of the vorticity, f is the axial component of the vector’s curlF.
The stream function ψ can be determined with formulas

Vr = r−1 ∂ψ

∂φ
, Vφ = −∂ψ

∂r
.

From the equation of continuity and from vorticity function it follows, that

ω̃ = −∆ψ. (3.3)

From (3.2), (3.3) we obtain the system of two PDEs for solving the vorticity
function ω̃ and stream function ψ:

{

∆ψ = −ω̃
r−1J(ω̃, ψ) = ν∆ω̃ + ρ̃−1 < f >,

Math. Model. Anal., 14(1):1–9, 2009.
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where J(ω̃, ψ) = (∂ω̃/∂r)(∂ψ/∂φ) − (∂ω̃/∂φ)(∂ψ/∂r) is the Jacobian of the
functions ψ and ω̃.

In the 2D case we have the following boundary conditions:

1. The conditions of periodicity g(r, 0) = g(r, 2π), ∂g(r,0)
∂φ

= ∂g(r,2π)
∂φ

, where
g = ψ, ω̃;

2. The non-slipping conditions on walls ψ = ∂ψ/∂n = 0, and special condi-
tions for vorticity function ω̃ = ωw, where ωw is the value of the vorticity
on the walls (the modificated Wood’s conditions [3]) which characterizes
the non-slip of the liquid on the wall, n is the external normal on the
walls surfaces.

4 Some Numerical Experiments

The liquid has the following parameters: kinematic viscosity ν ≈ 10−5 m2

s
,

density of liquid ρ̃ ≈ 1000 kg
m3 and the electric conductivity σ ≈ 1000Ω−1m−1.

The parameter K0 = 1, radius R of the cylinder is 0.035m, the length Z of the
cylinder is 0.35m, the density of the current amplitude j0 ≈ 108 A

m2 and the
radius a of the electrodes is 0.005m. At the inlet of the cylinder we assume a
uniform velocity U0 = 0.1m

s
.

Figure 1. The heat generator.

Calculations and graphic visualization were done with the help of the com-
puter tools MATLAB and FLUENT. In Fig. 1 we can see the electrical heat
generator with 7 bar type electrodes. We consider 3 conductors (N = 3)
placed parallel to the cylinder axis creating the regular triangle with following
coordinates of their center (r1, φ1) = (r0, 0), (r2, φ2) = (r0, 1200), (r3, φ3) =
(r0, 2400), r0 = 0.02m. In the case N = 2, θ = π, (r1, φ1) = (r0, 0), (r2, φ2) =
(r0, π) we have < Fr >=< Fφ >= 0, < j2z >= 0.5K0σωS

γ
2 , where Sγ

2 =

ln2 r
2
0 + r2 − 2rr0 cos(φ)

r20 + r2 + 2rr0 cos(φ)
. In this case the Lorenz force is zero, but the heat
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source can depend on the temperature distribution in the liquid. The phase is
2π/3 and the frequency is 50Hz.
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Figure 2. Azimuthal Lorenz force.
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Figure 3. Radial Lorenz force.
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Figure 4. Curl of Lorenz force.
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Figure 5. Source terms of temperature.

In this case θ = 2π
3 , sin(θ) =

√

3
2 , sin(2θ) = −

√

3
2 , cos(θ) = cos(2θ) = − 1

2 ,
and we correspondingly obtain



























Sα
3 =

√

3
2 (α1,2 + α2,3 + α3,1 − α1,3 − α2,1 − α3,2),

Sβ
3 =

√

3
2 (β1,2 + β2,3 + β3,1 − β1,3 − β2,1 − β3,2),

Sγ
3 = γ1,1 + γ2,2 + γ3,3 − γ1,2 − γ2,3 − γ1,3,

Sδ
3 =

√
3(δ1,2 + δ2,3 + δ3,1).

(4.1)

In the Figures 2–5 we presents the results of calculations obtained by com-
puter program MATLAB in cross-section z = const:

1. Distribution of the averaged azimuthal Lorenz force < Fφ > (see, Fig. 2);

2. Distribution of the averaged radial Lorenz force < Fr > (see, Fig. 3);

Math. Model. Anal., 14(1):1–9, 2009.
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3. Distribution of the averaged axial curl of Lorenz force < f > (see, Fig. 4);

4. Distribution of the heat sours term < j2z > (see, Fig. 5).

These results are nondimensionalized by scaling all the lengths to r0. Then
we have the nondimensional radius of cylinder and electrodes R/r0 = 1.75,
a/r0 = 0.25. It seems that the electromagnetic forces are concentrated in the
interior of electrodes. In Figures 6–9 the results for 3D problem are obtained

Figure 6. 3D grid. Figure 7. Pressures in 3 cross-section.

Figure 8. Magnitude of velocity. Figure 9. Vectors of velocity in output.

by computer program FLUENT:

1. 3D grid for finite elements method (see, Fig. 6);

2. Distribution of the pressure in three cross-section of the cylinder z = 0,
z = 0.16, z = 35 (see, Fig. 7);

3. Distribution of the magnitude for the velocity in three cross-section of
the cylinder (see, Fig. 8);

4. Velocity vectors V in the cross-section z = 35 (see, Fig. 9).

We see the vortex formation in the cylinder and how the uniform flow in the
output becomes the vortex flow.
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5 Conclusions

The distribution of electromagnetic fields and forces induced by a three – phase
system of the alternating electric current in the conducting liquid in the cylinder
of finite length has been calculated. An original method was used to calculate
the mean values of magnetic field and electromagnetic forces. The 2D aver-
aged magnetic field, source terms for the temperature and the Lorenz forces,
induced by alternating current with three bar type electrodes are calculated in
cross-section of cylinder by computer program MATLAB. 3D magnetohydrody-
namics flow of the liquid is calculated with the help of the computer programs
FLUENT.

In future it is interesting to apply the finite difference method and to cal-
culate the distributions of magnetohydrodynamical and termodinamical fields
for 2D problem in the fixed cross-section of cylinder depending on the electro-
magnetic and thermodinamical forces.
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