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Abstract. We consider positively homogeneous the sixth order differential equa-
tions of the type x(6) = h(t, x), where h possesses the property that h(t, cx) = ch(t, x)
for c ≥ 0. This class includes the linear equations x(6) = p(t)x and piece-wise linear
ones x(6) = k2 x+

− k1 x−. We consider conjugate points and angles associated with
extremal solutions and prove some comparison results.

Key words: differential equations of 6-th order, equations with asymmetric nonlin-
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1 Introduction

We study sixth-order ordinary differential equations of the type

x(6) = h(t, x) (1.1)

on a half-axis [0,+∞), where h(t, x) is a positively homogeneous function, that
is h(t, cx) = ch(t, x) for any (t, x) and c nonnegative. Obviously h(t, 0) ≡ 0.
The linear equation belongs to this class as well as equations of the form x(6) =
k2x

+−k1x
−. The theory of equations of the kind x(n) = k2x

+−k1x
− is rich and

starts from the works by Fučík and Kufner [7]. For n = 4 mention the works
by Pope [9] and Krejči [6]. The case of n = 3 in a broader setting was studied
by Habets and Gaudenzi [3] and Sergejeva [10]. The case n = 2 is the most
intensively studied. Several generalizations of the equation x(n) = k2x

+−k1x
−

were considered in a recent paper by Gritsans and Sadyrbaev ([1]).

Respectively the linear theory provides a lot of relevant results. We are
interested mostly in oscillatory linear equations. Oscillation of solutions of
linear equations is measured in terms of conjugate points (see [11]).

First, we give the definition of a conjugate point (see, Kiguradze [5]).
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Definition 1. Let us consider the differential equation

x(n) = p(t)x, n > 2, (1.2)

which have a zero value at t = a. By m-th conjugate point of a with respect
to equation (1.2) we call the minimal value of am+n−1, where am+n−1 is a
(m+ n− 1)st zero in [a; +∞) (counting multiplicities) of solutions.

Since conjugate points are infimums of some zeros, and therefore possess some
extremal property, the related solutions are called extremal functions.

In what follows we shall make this definition more precise for specific equa-
tions. The idea of investigation of oscillatory properties of such equations in
terms of conjugate points goes back to W. Leighton and Z. Nehari [8], who in-
vestigated linear equations of the type x(4) = p(t)x, where p(t) is a continuous
sign definite function. They formulated a number of results on oscillation of
such equations and introduced conjugate points as minima of certain zeros of
solutions. They discovered that for p > 0 and p < 0 the characters of conjugate
points essentially differ.

A big part of this theory is valid for equations of the type x(4) = h(t, x),
such analysis is done in [4], where one could find basics. It appears that the
same results are true for 6-th order positively homogeneous equations.

The theory of conjugate points was developed for equations with increasing
right sides, we suppose that p is positive.

The paper is organized as follows. In the second section we discuss the two-
termed linear equation x(6) = k6x, and define conjugate points. The structure
of related solutions is studied and some comparison results are provided.

In the third section we consider the Fučík type equation u(6) = k2 u
+−k1 u

−

and dual equation v(6) = k1 v
+ − k2 v

−. We define conjugate points for both
equations and study the relation between them (conjugate points).

The fourth section is devoted to positively homogeneous equation. Com-
parison results are given (Lemma 1 and Lemma 2), which are motivated by
similar results in [8].

Theorem 4 gives comparison result for the first extremal solutions of two
positively homogeneous equations.

2 Linear Equation

Let us recall ([2, 5]) that conjugate points ηi associated with the point t = 0 of
the linear equation

x(6) = p(t)x

form an ascending sequence and coincide with double zeros of solutions xi which
have quadruple zero at t = 0. These solutions xi are uniquely defined (up to
multiplication by a constant) by the number (i − 1) of internal (with respect
to the interval (0, ηi)) zeros as well as by the angle

φi(k) = arctan

(

x
(5)
i (0)

x
(4)
i (0)

)

.
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They are called extremal solutions. Examples of the first and second solutions
are given in Fig. 1, 2.
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Figure 1. The first extremal function
x1(t) of (2.1) which relates to η1, k = 1.
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Figure 2. The second extremal function
x2(t) of (2.1) which relates to η2, k = 1.

It is known ([2]) that both sequences {ηi} and {φi} are ordered as

−
π

2
< φ2 < . . . < φ2n < · · · < φ2n+1 < . . . < φ1 < 0, 0 < η1 < η2 < . . . .

Evidently both sequences φ2n and φ2n+1 have limits φeven and φodd respec-
tively.

In this section we provide some simple results on the linear equation

x(6) = k6x, (2.1)

where k 6= 0. Let us denote by ηi(k) conjugate points to the point t = 0 of
(2.1).

Theorem 1. If k2 > k1 then ηi(k2) < ηi(k1) for any i.

Proof. This result for the 4-th order linear equation was proved in [8] by
using the variational method and the Courant minimax eigenvalue theory. We
give straightforward proof based on the variable change. Consider the linear
equations

x(6) = k6
2x, (2.2)

and
x(6) = k6

1x, (2.3)

where k2 > k1. By the variable change τ = (k1

k2

)t the equation (2.3) becomes

d6x

dτ6
=

(

k2

k1

)6
d6x

dt6
= k6

2x(t) = k6
2 x
(k2

k1
τ
)

,

or
d6X

dτ6
= k6

2X(τ), X(τ) = x
(k2

k1
τ
)

and hence ηi(k2) = k1

k2

ηi(k1). ⊓⊔
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Theorem 2. If we consider two linear equations (2.2) and (2.3), then

tanφi(k2) =

(

k2

k1

)

tanφi(k1). (2.4)

Proof. The proof is obtained by computing derivatives of extremal solutions.
We use the variable change t = k2

k1

τ for the left hand side of (2.4) and have

tanφi(k2) = tan

[

arctan
x

(5)
i (τ)

x
(4)
i (τ)

]∣

∣

∣

∣

∣

τ=0

=
dx

(4)
i (τ)

dτ

1

x
(4)
i (τ)

∣

∣

∣

∣

∣

τ=0

=
dx(4)(t)

dt

dt

dτ

1

x
(4)
i (t)

∣

∣

∣

∣

∣

t=
k2

k1
τ

τ=0

=
dx(4)(0)

dt

k2

k1

1

x
(4)
i (0)

=
k2

k1

x
(5)
i (0)

x
(4)
i (0)

=
k2

k1
tanφi(k1).

⊓⊔

Corollary 1. If we consider two linear equations (2.2) and (2.3) and suppose
that k2 > k1, then φi(k2) < φi(k1). The proof follows from Theorem 2 and the
fact that −π/2 < φi(k) < 0 for any i, k.

3 Comparison of Asymmetric Equations

Consider the equation
u(6) = k2 u

+ − k1 u
− (3.1)

along with
v(6) = k1 v

+ − k2 v
−, (3.2)

where k1 and k2 are positive constants. The theory of conjugate points for
positively homogeneous equations is applicable for both equations (3.1) and
(3.2) as well as for equations (2.2) and (2.3).

Let us use definitions of extremal functions and conjugate points for equa-
tions with asymmetric nonlinearities in the right hand side similarly to the case
of 4−th order equation (see Henrard and Sadyrbaev [4]).

Definition 2. A solution x(t) of equation (3.1) is called an i−th (+)-extremal
(resp. i−th (−)-extremal) function and denote x+

i (resp. x−i ), if for some
η > 0,

x(0) = x′(0) = x′′(0) = x′′′(0) = x(η) = x′(η) = 0,

x(4)(0) > 0, (resp. x(4)(0) < 0) and x(t) has exactly (i − 1) simple zeros in
(0, η).

Definition 3. A point η+
i (resp. η−i ) is called an i−th (+)-conjugate (resp.

i−th (−)-conjugate) point (to t = 0) with respect to equation (3.1), if
there exists a i−th (+)-extremal (resp. i−th (−)-extremal) function, having
quadruple zero at t = 0 and double zero at t = η+

i (resp. t = η−i ) and exactly
(i− 1) simple zeros in (0, η+

i ) (resp. (0, η−i )).



Results for Sixth Order Positively Homogeneous Equations 29

Remark 1. The (+)-extremal and (−)-extremal functions are defined uniquely
by the number of simple zeros up to a positive multiplicative constant.

Let u±i and v±i stand for extremal functions of (3.1) and (3.2) respectively,
and η±i and ξ±i be associated conjugate points.

Theorem 3. For equations (3.1)and (3.2) the following equalities hold:

1)η+
2i+1 = ξ−2i+1, 2)η−2i+1 = ξ+2i+1, 3)η−2i = ξ+2i, 4)η+

2i = ξ−2i.

Proof. Assertions 1) and 2) follow from the fact that u+
2i+1 = −v−2i+1 and

u−2i+1 = −v+
2i+1 (by the variable change u = −v equation (3.1) turns to (3.2)).

Assertions 3) and 4) follow from the relations u+
2i(t) = −v−2i(t) and u−2i(t) =

−v+
2i(t). ⊓⊔

Corollary 2. For extremal angles φ±i and ψ±

i associated with equations (3.1)
and (3.2) the following equalities are valid:

tanφ+
i = tanψ−

i , tanφ−i = tanψ+
i .

Proof. The proof follows immediately from the observation that u+
i (t) =

−v−i (t) and u−i (t) = −v+
i (t). ⊓⊔

Example 1. As illustration we consider two equations

u(6) = u+ − 6u−, v(6) = 6v+ − v−. (3.3)

In Fig. 4 and Fig. 3 we can see that ξ−i = η+
i , i = 1, 2, 3, 4.
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Figure 3. The extremal functions u+
2 (t)

of (3.3) which relate to η+
2 and v−2 (t) of (??)

which relate to ξ−2 .

-2.5 2.5 5 7.5 10 12.5 15
t

-75

-50

-25

25

50

75

xHtL

Ξ-3

v-3

Η+3

u+3

Figure 4. The extremal functions u+
3 (t) of

(3.3) which relate to η+
3 and v−3 (t) of (??)

which relate to ξ−3 .

4 Comparison of Positively Homogeneous Equations

Consider now equations (1.1) and

x(6) = g(t, x), (4.1)

where right sides are positively homogeneous continuous functions, strictly in-
creasing in x.

Math. Model. Anal., 14(1):25–32, 2009.
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Lemma 1. Let the inequality g(t, x) ≥ h(t, x) holds for any (t, x). Suppose
that x(t) and y(t) are solutions of equations (4.1) and (1.1) respectively and

x(i)(0) ≥ y(i)(0), i = 0, 1, 2, 3, 4, 5

with at least one inequality being strict. Then x(i)(t) > y(i)(t) for any t > 0
and i = 0, 1, 2, 3, 4, 5.

Proof. Consider only the case x(5)(0) > y(5)(0), since the other cases can be
treated analogously. Then x(4)(t) > y(4)(t) in some right vicinity of t = 0.
Suppose x(4)(t1) = y(4)(t1) for some t1 > 0 and x(4)(t) > y(4)(t) for any
t ∈ (0; t1). Then x(i)(t) > y(i)(t), i = 1, 2, 3 and x(t) > y(t) for t ∈ (0, t1].
We have that in the interval (0, t1]

x(6) − y(6) = g(t, x(t)) − h(t, y(t)) > g(t, y(t)) − h(t, y(t)) ≥ 0

and therefore

x(i)(t) > y(i)(t), t ∈ (0, t1], i = 5, 4, 3, 2, 1, 0.

We got a contradiction with assumption x(4)(t1) = y(4)(t1). Obviously that
x(t) − y(t) > 0 for t > 0. The proof is complete. ⊓⊔

The dual of Lemma 1 states:

Lemma 2. Let g(t, x) ≥ h(t, x). Suppose x(t) and y(t) are solutions of equa-
tions (4.1) and (1.1) respectively and

x(i)(b) ≥ y(i)(b), i = 0, 2, 4; x(j)(b) ≤ y(j)(b), j = 1, 3, 5

with at least one inequality being strict. Then for t < b we obtain that

x(i)(t) > y(i)(t), i = 0, 2, 4; x(j)(t) < y(j)(t), j = 1, 3, 5.

Theorem 4. Let g(t, x) and h(t, x) be as in Lemma 1. Let φ+
1 (g) and φ+

1 (h) be
angles in (−π

2 , 0) (resp.: φ−1 (g) and φ−1 (h) be angles in (π
2 , π)), corresponding

to (+)–extremal (resp.: (−)–extremal) solutions x+
1 (t) and y+

1 (t) (resp.: x−1 (t)
and y−1 (t)). Then φ+

1 (g) ≤ φ+
1 (h) (resp.: φ−1 (g) ≤ φ−1 (h)).

Proof. Consider the case of extremal functions x1(t) and y1(t) associated with
differential equations x(6) = g(t, x) and y(6) = h(t, y), respectively. Suppose

that φ+
1 (g) > φ+

1 (h). Then, by Lemma 1, x
(j)
1 (t) > y

(j)
1 (t), j = 0, 1, 2, 3, 4, 5.

For simplicity of notations let us omit lower indices of x(t) and y(t). Denote
by η(x) and η(y) the last double zeros (conjugate points) of x(t) and y(t).
Obviously η(x) < η(y), otherwise x(t) is not greater than y(t) for t > a. We
got a contradiction, which completes the proof. ⊓⊔

Corollary 3. Let φ±1 (k1), φ
±

1 (k2), φ
±

i (k12) and φ±1 (k21) stand for the angles
associated with first extremal solutions of the equations (2.3), (2.2), (3.2) and
(3.1) respectively. Then

π

2
< φ−1 (k21) ≤ φ−1 (k2) < φ−1 (k1) ≤ φ−1 (k12) < π,

−
π

2
< φ+

1 (k21) ≤ φ+
1 (k2) < φ+

1 (k1) ≤ φ+
1 (k12) < 0.
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Proof. The proof is obtained by combining Theorem 4 and formula (2.4). ⊓⊔

Remark 2. We see that the structure of the set of solutions to positively ho-
mogeneous equations of order six is generally the same as for the fourth order
equations. There are “conjugate points” which measure the rate of oscillation of
an equation. These points may be different for solutions which are first positive
(in a right neighborhood of t = a) and which are first negative. The extremal
solutions (those which relate to the conjugate points) behave like extremal so-
lutions for the fourth order equations. They are arranged in a sequence as well
as the angles φi of the initial data. These extremal solutions may be compared.
As to comparison of the angles φi we did it only for the first ones. Description
of the rest is still open problem.

The results of this kind may be used for investigation of essentially nonlinear
problems. Some steps in this direction were done in the work by the author
([2]).

5 Conclusions

Investigations of equations with asymmetric nonlinearities in the right hand
side are useful for many reasons. This type equations have some features of
linear ones and at the same time they are nonlinear. They can be investigated
by methods similar to those used in the linear theory and specific oscillatory
behavior of solutions can be analyzed. Connections between linear and nonlin-
ear theories can be traced. If we wish to compare results for 4th and 6th order
positively homogeneous equations, we can see a similar arrangement of angles
associated with extremal solutions. It is possible that similar results and some
generalizations can be made for the case of even order positively homogeneous
equations.
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