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Abstract. We propose a piecewise polynomial collocation method for solving linear
Volterra integral equations of the second kind with kernels which, in addition to a
weak diagonal singularity, may have a weak boundary singularity. Global convergence
estimates are derived and a collection of numerical results is given.
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1 Introduction

Let C*(£2) be the set of all k times continuously differentiable functions on (2,
CO2) =C(2). Let be R = (—o0,0), b >0,
Dy={(,y):0<2<b 0<y<az}, Dp={(n,y):0<y<az<b}

In many practical applications (see, for example, [3, 5]) there arise integral
equations of the form

ulz) = / " Ko y)uly)dy + f@), 0<z<b, (L1)

with f € C™[0,b], K(z,y) = g(z,y)(x —y)™, 0 < v < 1, g € C™(Dy),
m € N = {1,2,...}. The solution u(x) to (1.1) is typically non-smooth at
x = 0 where its derivatives become unbounded (see, for example, [3, 4, 5, 9]).
In collocation methods the singular behaviour of the solution u(z) can be taken
into account by using polynomial splines on special graded grids
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with the nodes
x; =b(/N)", i=0,....,N, NeN, reR, r>1 (1.2)

The parameter r characterizes the degree of non-uniformity of the grid Afj,: if
r > 1, then the nodes xy, . ..,z of the grid A}, are more densely clustered near
the left endpoint of the interval [0,b] where u(x) may be singular. By using a
collocation method based on the grid A); and piecewise polynomials of degree
at most m — 1 one can reach a convergence of order O(N~"™) for r > m/(1—v),
see [3, 4, 5]. However, although the piecewise polynomial collocation method
on A} turns out to be stable for solving weakly singular integral equations
(see [8]), the realization of this method in case of strongly graded grids A}, by
large values of » may lead to unstable behaviour of numerical results.

To avoid problems associated with the use of strongly graded grids the
following approach for solving (1.1) can be used: first we perform in (1.1) a
change of variables so that the singularities of the derivatives of the solution
will be milder or disappear and after that we solve the transformed equation
by a collocation method on a mildly graded or uniform grid. We refer to [13]
for details (see also [2, 7, 12]). Note that in [10, 15| similar ideas for solving
Fredholm integral equations have been used (see also [6, 11, 16]).

In the present paper we extend the domain of applicability of this approach.
To this aim, we examine a more complicated situation for equation (1.1) where
the kernel K (x,y), in addition to a diagonal singularity (a singularity asy — x),
may have a boundary singularity (a singularity as y — 0). Actually, we assume
that the kernel K (z,y) has the form

K(z,y) = g(z,y)(x —y) "y, (r,9) €Dy, 0<v<1l, 0<A<1, (1.3)
where g € C™(Dy), m € {0} UN. The set of kernels satisfying (1.3) will be
denoted by W™V (Dy).

Throughout the paper ¢ denotes a positive constant which may have diffe-
rent values by different occurrences.

2 Regularity of the Solution

For given m € N and 0 < 6 < 1 let C™%(0,b] be the set of functions u €
C'10,b] N C™(0,b] such that

WD ()| < a9, 0<az<b, j=1,...,m. (2.1)

It follows from [14] that the regularity of the solution to (1.1) can be charac-
terized by the following result.

Lemma 1. Assume that K € W™ (Dy,) and f € C™"+*(0,b] where m € N,
0<v<1l,0<A<1, v+ A<1. Then equation (1.1) has a unique solution
u € C™VT(0,)].
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3 Smoothing Transformation
For given p € [1,00) denote
o(s) = bl=es, 0<s<b. (3.1)

Clearly, ¢ € C[0,b], ©(0) =0, ¢(b) = b and ¢'(s) > 0 for 0 < s < b. Thus, ¢
maps [0,b] onto [0, ] and has a continuous inverse =1 : [0, 5] — [0, b],

(pfl(l-) — b(@*l)/gl.l/g7 0<z<b.

Note that ¢(s) = s for o = 1. We are interested in a transformation (3.1) with
o > 1 since it possesses a smoothing property for u(y(s)) with singularities of
u'(x),...,ul™(x) at 2 = 0 (see Lemma 2).

Lemma 2. Let u € C™%(0,b], m €N, 0 < 0 < 1, and let ¢ be the transforma-
tion (3.1). Furthermore, let

upls) = u(pls), 0<s<b
Then u, € C[0,b) N C™(0,b] and
|u§0j)(s)| <es?U070 0 0<s<b, j=1,...,m. (3.2)

Proof. The smoothness claim is clear. Further, for the derivatives of the
composite function u, = u o ¢, we have the Faa di Bruno’s representation

u (s) = Zﬁw(@(s)) (‘Pl—(f))n (%)n (3.3)

where 0 < s < b, n =n; + ...+ n; and the sum is taken over all ny,...,n; €
{0} UN for which ny +2ns+...+jn; =4, j =1,...,m. It follows from (2.1),
(3.1),n=n1+...+n; and ny + 2ne + ... + jn; = j that

u™ () (@ ()™ - (0P (5))™

This together with (3.3) yields (3.2). O

< 059(170)7]-, 0<s<hb.

Remark 1. Instead of (3.1) other transformations are possible. We refer to [13]
for a general discussion in this connection.

4 Numerical Method

Using (3.1) we introduce in (1.1) the change of variables y = ¢(s), x = ¢(t),
s,t € [0,b]. We obtain an integral equation of the form

Uy(t) = /Ot K, (t, s)up(s)ds + fo(t), 0<t<b, (4.1)

where

fo(t) = f(o(D),  Ko(ts) = K(p(t), o(5))#' (5)

Math. Model. Anal., 14(1):79-89, 2009.
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are given functions and u,(t) = u(¢(t)) is a function which we have to find.
For given integers m, N € N let

S’r(‘r;—li(A}‘V) = {UN : ,UN’[:EJ-,L:EJ-] € ﬂ-m—laj = 13"'7N}a
Syl i(Ax) ={vw € C10,B s o, Emno1,i=1,...,N}

zj

be the underlying spline spaces of piecewise polynomial functions on the grid
A%, with the nodes (1.2). Here vN}[zj,l,mj] (j = 1,...,N) is the restriction
of vy (t), t € [0,b], to the subinterval [x;_1,z;] C [0,b] and m,,_; denotes the
set of polynomials of degree not exceeding m — 1. Note that the elements of
Sﬁ;_li (A%) may have jump discontinuities at the interior knots z1,...,zn_1
of the grid A’%. In every subinterval [z;_1,z;] (j = 1,...,N) we introduce
m € N interpolation (collocation) points

.le:l'j_l-i-m(l'j—l'j_l), l:l,...,m;j:l,...,N, (42)
where 71, . ..., 1, are some fixed (collocation) parameters such that
0<m<...<mm < 1. (4.3)

We find an approximation vy = VN m,re t0 Uy, the solution of equation
(4.1) (under the conditions of Theorem 1 below the equations (1.1) and (4.1)
are uniquely solvable), by collocation method from the following conditions:

oy € SC AR, NomeN, r>1, (4.4)
T j

on(Tji) = | Koz, s)un(s)ds + fo(zj), 1=1,...,m; j=1,...,N, (45)
0

with z;;,1=1,...,m; j=1,...,N, given by formula (4.2).
Having determined the approximation vy for u,, we determine an approx-
imation uN = UN m,re for u, the solution of equation (1.1)7 setting

un(x) :UN(tp_l(ac)), 0<z<hb. (4.6)

Remark 2. The choice of nodes (4.2) with 1 = 0, 7, = 1 in (4.5) actually
implies that the resulting collocation approximation vy belongs to the smoother

spline space S’,(,?)_l(AR,) than it is stated by the condition (4.4).

Remark 3. The settings (4.4), (4.5) form a linear system of algebraic equations

whose exact form is determined by the choice of a basis in ST(n_li (A%). We
refer to [13] for a convenient choice of it.

5 Convergence Results

Let X and Y be Banach spaces. By £(X,Y) we denote the Banach space of
all linear continuous operators A : X — Y with the norm

[Allzxyy) =sup{[|[Az]ly = 2 € X, lz]lx <1}

By Cla,b] we denote the Banach space of continuous functions z on [a,b] with
the usual norm ||z|| = max{|z(t)| : t € [a, b]}.
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Theorem 1. Let f € C[0,b] and K € WO"*(Dy), 0<v <1,0< A <1—v.
Furthermore, assume that ¢ is the transformation (3.1) and the interpolation
nodes (4.2) with grid points (1.2) and parameters (4.3) are used. Then equation
(1.1) has a unique solution u € C[0,b], the settings (4.4)—(4.6) determine for
sufficiently large N a unique approzimation uy for u and

luny —ulloo = 0 as N — oo, (5.1)

where ||uny — ul|loo = sup |un(x) — u(x)].
0<z<b

Proof. We write (4.1) in the form u, = T, u, + f, where T, is defined by
formula

t
(Tpz)(t) = / K,(t,s)z(s)ds, 0<t<b.
0
It follows from (1.3) and (3.1) that K (¢, s) is continuous in Dj and
|K,(t,s)| <c(t—s)""s™, (t,s) € Dy.

Since v + A < 1, T, is compact as an operator from L*°(0,b) into C10,b], see
[14]. This together with f, € C[0,b] yields that equation u, = Ty,u, + f,
(equation (4.1)) has a unique solution u, € C[0,b]. In particular, (1.1) has a
unique solution u € C[0, b].

Further, conditions (4.4), (4.5) have the operator equation representation

UN = PNsz'UN + PNfg,, (52)

where Py is an operator which assigns to every continuous function z € C[0, b]
its piecewise polynomial function Pyz € an_f% (A%) such that (Pyz)(zj) =
z(xj), 1 =1,...,m; 5 = 1,...,N. It follows from [17] that the norms of

Py € L(C10,b], L>(0,b)) are bounded by a constant ¢ which is independent of
N

PN | 2(cpo,), ¢ (0,6)) < € (5.3)
and
|z — Pnzlloo— 0 as N — oo forevery ze CJ0,0]. (5.4)

Using a standard argumentation (cf. [13, 15, 17]) we obtain that equation
(5.2) has for sufficiently large values of N, say N > Ny, a unique solution

N € Sf,:%(A}"V) and
lon = uglloo < €llug = Prtglloc, N = No. (5.5)

Here u,, is the solution of equation (4.1) and ¢ is a positive constant not depend-
ing on N. Since u, € C|0,b], we get from (5.4) and (5.5) that ||y —ug||ec — 0
as N — oo. This together with

lun = ulloo = llon — gl (5.6)

yields (5.1). O
Next we establish a global convergence result for method (4.4)-(4.6).

Math. Model. Anal., 14(1):79-89, 2009.
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Theorem 2. Let the following conditions be fulfilled:
1. K e WA (Dy), f€ O™ 20,0, meN,0<v<1,0<A<1—v;
2. ¢ is the transformation (3.1);

3. the interpolation nodes (4.2) with grid points (1.2) and parameters (4.3)
are used.

Then the settings (4.4)—(4.6) determine for N > Ny a unique approximation
un to u, the solution to (1.1), and

N-re(l=v=2) " for 1 <r <

N—™ forr >

__m
o(1—v—2X\)"

5.7
o1, (5.7)

[un = ufloe < C{

m
o(1-—v=2X)’

where ¢ is a positive constant not depending on N.

Proof.  On the basis of Lemmas 1 and 2 we find that u, € C[0,b] N C™ (0, b]
and for every s € (0,b] and j =1,...,m,

_ 1 if j<o(l-v—2A)
(4) < 4 7 5.8
|ug, (s)| < C{ sel=v=X=j if ;> o(l—v—=2N). (58)

For a spline wy € S,(n_li(Ayv) denote wy ; = wN’[ac' ]’ j=1,...,N. Due
J—1»%7

to (5.3) we get the estimate

H“sa - PNU«/}HOO = ||u<p —WN — PN(“«/D —wn )|l

(5.9)
< _ .

S max omax up () — wn,;(@)],

with a positive constant ¢ which is independent of N. We fix wy ; as a Taylor
polynomial for u,(z) at z = x;:

m-1 (k)
uy (x5
wn,;(z) = Z %(z - xj)k, zji_1 <z <uzj.
k=0 ’

The integral form of the reminder term of the (m — 1)th order Taylor approxi-
mation of u,(x) at * = x; and the estimate (5.8) gives us for all z € [x;_1, x}]
(j =1,...,N) the inequality

T

1 if m<o(l—v—2\
|“90($)_'LUN,J‘($)| < C/(s—x)mfl { < o ) }ds.

seU=v=2=m if up > o1 —v—N)
(5.10)

x

Due to (1.2),
rj—zj_1 <brN', j=1,...,N. (5.11)

If m < o(1 — v — A), then we obtain from (5.10) and (5.11) that

lup(z) —wnj(x)| <eN™™, zj1<z<z;, j=1,...,N, (5.12)
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where c is a positive constant not depending on N.
In the case m > o(1 — v — \) we have

max / (s — z)mLse=r=N=mgs < max / (s —z)ed=v=N=1(s

0<z<z; 0<z<z1
N-er(=v=2 for 1<pr< 1
> T—0v—\)’
<ad ) (5.13)
N for r Z m, r Z 1,
Tj
max max / (s —z)mLgellmv=A=mgg
Jj=2,....Nz;_1<z<z; J.
Zj
< max max acg(l_”_’\)_m/ (s —x)™ 'ds
Jj=2,..., Naxj 1<x<xz; z
N—er(l=v=2) for 1<r< #V_A),
<ol K (5.14)
N for r Z m, r Z 1,

where ¢; and co are some positive constants not depending on N. It follows
from (5.9), (5.10) and (5.12)—(5.14) that

N-re(l=v=2) for1<r< #u—k)’

u, — Pyu <c
o = P o { L

N—™ for r > ﬁ,
with a positive constant ¢ which is independent of N. This together with (5.5)
and (5.6) yields (5.7). O

Remark 4. It follows from Theorem 2 that the accuracy ||uy —ul|co < cN~" can
be achieved on a mildly graded or uniform grid. As an example, if we assume
that v = 2/5, A = 1/5, m = 3 (the case of piecewise quadratic polynomials),
0 > 15/2, the maximal convergence order ||uy — u|joc < ¢ N3 is available for
r > 1. In particular, the uniform grid with nodes (1.2), » = 1, may be used.

Remark 5. In addition to Theorem 2, assuming some additional smoothness of
f and g (see (1.3)) and choosing more carefully the collocation parameters (4.3),
the superconvergence of vy at the collocation points (4.2) can be established, cf.
[1, 3, 4, 5, 13, 17]. More precisely, let K € WmHLvA(Dy), f € CmHLv+2(0, ),
meN 0<v<1,0<XA<1-—vr, and let the interpolation nodes (4.2)
be generated by the grid points (1.2) and by the node points 71,..., 7, of a
quadrature approximation

1 m
/ z(s)ds%Zwlz(m), 0<m<...<mm <1, (5.15)
0 =1

which, with appropriate weights {w; }, is exact for all polynomials of degree m.

Math. Model. Anal., 14(1):79-89, 2009.
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Then it turns out that for sufficiently large N,

,hnax lun (o(z)1) — ule(zn))| = ,Jhax luw (@50) — up(z1)]
j=1,.N j=1,. N
N—QQr(l—u—k) for 1< r< m+1—v , (516)
S ¢ —m—(1-v) B 2975114:111:1//\)
N fOI' T Z m, T Z 1

We will investigate this question in a forthcoming paper where a more general
class of integral equations with diagonal and boundary singularities will be
discussed.

6 Numerical Example

Let us consider the following equation:

u(z) = / C@—w) ) dy +f@), 0<e<l (6)

where 0 <v <1, 0<A<1,v+ <1 The forcing function f is selected so
that u(x) = 2!~ is the exact solution to (6.1). Actually, this is a problem
of the form (1.1), (1.3) where b = 1, g(x,y) = 1, K(z,y) = (x —y) Yy,

l—v=X _ ,2(1-v=2) Irl—v)I'21-A —-v)

_ <z<l1
f(@) =2 TB_20w+n) - '=rsh
F(t):/efsstflds, t>0.

0

It is easy to check that in this case K € W™"*(Dy) and f € C™*+*(0, 1] for
arbitrary m € N.

Equation (6.1) was solved numerically by method (4.4)-(4.6) for v = 2/5,
A=1/5m =3, m = (5—15)/10, 12 = 1/2, n3 = (5+ /15)/10. Here
71,M2,m3 are the node points of the Gauss-Legendre quadrature rule (5.15)
by m = 3. This formula is exact for all polynomials of degree not exceeding
2m —1=25.

In Tables 1 and 2 some results for different values of the parameters N, o
and r are presented. The quantities 55\?’” in Table 1 are approximate values of
the norm |juy — ||, calculated as follows:

7 = max fun(757)9) (7)),

where T;lr) =z;_1+(x; —xj—1)/10, 1=0,...,10; j=1,...,N, with the

grid points z;, defined by formula (1.2) for b = 1.
Table 2 shows the dependence of
Y = max Jun(p(ep) = ulelen)| = max fon (@) = up(a;)]
j=1,...,N j=1,...,N
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on the parameters N, g and r (see (5.16)). The ratios 5%”” = 555'/’2) 555’T),

0N =y

presented. From Theorem 2 it follows that for sufficiently large N,

,r .o .
/ 71(5' ), characterizing the observed convergence rate, are also

(o) N=2er/5 if 1< or <15/2,
en & un —ufle <c 3 : (6.2)
N if or>15/2.

Table 1. (m =3,v= 2,A= L gy = =05y — 1y — 54V15)

1,1 3,1 7/2,3/2 15/2,1 15/4, 2

N LD @ STz sz (15/42)

51D 5@ s/ sz 015/4.2)

32 TTE-2 31E-4 1.7E-5 18E-6 92E-7
1.35 2.30 4.29 8.64 8.75

64 58E-2 1.3E-4 39E-6 21E-7 1.1E-7
1.34 2.30 4.29 8.47 8.05

128 43E-2 58E-5 91E-7 26 E-8 14E-8
1.33 2.30 4.29 8.32 8.00

256 32E-2 25E-5 21E-7 31E-9 1.8E-9
1.33 2.30 4.29 8.22 8.00

512 24E-2 1.1E-5 49E-8 39E-10 22E-10
1.33 2.30 4.29 8.14 8.00
1.33 2.30 4.29 8.00 8.00

Due to (6.2), the ratio 555’T) ought to be approximately
15
(Nj2)=2er/5 N =2er/5 = 92er/5 for 1 < gr < )

(1,1) <(3,1) (Z,3) (2.1) (%2,2)
and 8 for pr > 15/2. In particular, 65, 057, 0,227, 652 and 05" "~ ought
to be approximately 1.33, 2.30, 4.29, 8.00 and 8.00, respectively. These values
of (51(5'” are given in the last row of Table 1.

Table 2. (m =3,v= 2, A= 1,5 = 3=VI5 ), — 1y — 5415

1,1 3,1 4,1 3,3/2 4,2
N (D) A3 D) £ (3:3/2) &)
(1,1 <(3,1) <(4,1) <(3,3/2) (4,2
s 5@ 5 538/ 52

32 14E-2 35E-7 38E-8 17E-8 8O0E-8
2.30 5.34 9.23 11.74 11.91

64 63E-3 65E-8 42E-9  14E-9  68E-9
2.30 5.28 9.20 11.95 11.81

128 27E-3 12E-8 45E-10 12E-10 57E-10
2.30 5.28 9.19 12.04 11.92

256 12E-3 24E-9 49E-11 96E-12 47E-11
2.30 5.28 9.19 12.08 12.01

512 52E-4 45E-10 54E-12 79E-13 39E-12
2.30 5.28 9.19 12.10 12.06
1.74 5.28 9.19 12.13 12.13

Math. Model. Anal., 14(1):79-89, 2009.
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~ ~ ~ ~3.3

In a similar way we obtain from (5.16) that 51(\}’1), 51(3’1),553’1), 51(3’2) and
61(\4,1’2) ought to be approximately 1.74, 5.28, 9.19, 12.13 and 12.13, respectively.
These values of 51(\?” are given in the last row of Table 2.

As we can see from Tables 1 and 2, the numerical results are in good agree-
ment with the theoretical estimates. In Table 2 only the decrease of fy](\}’l)
is faster than it is indicated by theoretical estimates: the predicted value for
gg\}’l) is equal to 1.74, but the current experiment gave for gg\},l) a stable value
2.30. This phenomenon notifies that the local order of convergence of proposed

algorithms needs further theoretical and numerical study.
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