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Abstract. We propose a piecewise polynomial collocation method for solving linear
Volterra integral equations of the second kind with kernels which, in addition to a
weak diagonal singularity, may have a weak boundary singularity. Global convergence
estimates are derived and a collection of numerical results is given.
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1 Introduction

Let Ck(Ω) be the set of all k times continuously differentiable functions on Ω,
C0(Ω) = C(Ω). Let b ∈ R = (−∞,∞), b > 0,

Db = {(x, y) : 0 ≤ x ≤ b, 0 < y < x}, Db = {(x, y) : 0 ≤ y ≤ x ≤ b}.

In many practical applications (see, for example, [3, 5]) there arise integral
equations of the form

u(x) =

∫ x

0

K(x, y)u(y)dy + f(x), 0 ≤ x ≤ b, (1.1)

with f ∈ Cm[0, b], K(x, y) = g(x, y)(x − y)−ν , 0 < ν < 1, g ∈ Cm(Db),
m ∈ N = {1, 2, . . .}. The solution u(x) to (1.1) is typically non-smooth at
x = 0 where its derivatives become unbounded (see, for example, [3, 4, 5, 9]).
In collocation methods the singular behaviour of the solution u(x) can be taken
into account by using polynomial splines on special graded grids

∆r
N = {x0, . . . , xN : 0 = x0 < . . . < xN = b}

∗ This work was supported by EstSF grant No. 7353

http://dx.doi.org/10.3846/1392-6292.2009.14.79-89
http://www.vgtu.lt/mma/
mailto:marek.kolk@ut.ee
mailto:arvet.pedas@ut.ee


80 M. Kolk and A. Pedas

with the nodes

xi = b(i/N)r, i = 0, . . . , N, N ∈ N, r ∈ R, r ≥ 1. (1.2)

The parameter r characterizes the degree of non-uniformity of the grid ∆r
N : if

r > 1, then the nodes x0, . . . , xN of the grid ∆r
N are more densely clustered near

the left endpoint of the interval [0, b] where u(x) may be singular. By using a
collocation method based on the grid ∆r

N and piecewise polynomials of degree
at most m−1 one can reach a convergence of order O(N−m) for r ≥ m/(1−ν),
see [3, 4, 5]. However, although the piecewise polynomial collocation method
on ∆r

N turns out to be stable for solving weakly singular integral equations
(see [8]), the realization of this method in case of strongly graded grids ∆r

N by
large values of r may lead to unstable behaviour of numerical results.

To avoid problems associated with the use of strongly graded grids the
following approach for solving (1.1) can be used: first we perform in (1.1) a
change of variables so that the singularities of the derivatives of the solution
will be milder or disappear and after that we solve the transformed equation
by a collocation method on a mildly graded or uniform grid. We refer to [13]
for details (see also [2, 7, 12]). Note that in [10, 15] similar ideas for solving
Fredholm integral equations have been used (see also [6, 11, 16]).

In the present paper we extend the domain of applicability of this approach.
To this aim, we examine a more complicated situation for equation (1.1) where
the kernel K(x, y), in addition to a diagonal singularity (a singularity as y → x),
may have a boundary singularity (a singularity as y → 0). Actually, we assume
that the kernel K(x, y) has the form

K(x, y) = g(x, y)(x− y)−νy−λ, (x, y) ∈ Db, 0 < ν < 1, 0 ≤ λ < 1, (1.3)

where g ∈ Cm(Db), m ∈ {0} ∪ N. The set of kernels satisfying (1.3) will be
denoted by Wm,ν,λ(Db).

Throughout the paper c denotes a positive constant which may have diffe-
rent values by different occurrences.

2 Regularity of the Solution

For given m ∈ N and 0 < θ < 1 let Cm,θ(0, b] be the set of functions u ∈
C[0, b] ∩ Cm(0, b] such that

|u(j)(x)| ≤ cx1−θ−j , 0 < x ≤ b, j = 1, . . . , m. (2.1)

It follows from [14] that the regularity of the solution to (1.1) can be charac-
terized by the following result.

Lemma 1. Assume that K ∈ Wm,ν,λ(Db) and f ∈ Cm,ν+λ(0, b] where m ∈ N,

0 < ν < 1, 0 ≤ λ < 1, ν + λ < 1. Then equation (1.1) has a unique solution

u ∈ Cm,ν+λ(0, b].
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3 Smoothing Transformation

For given ̺ ∈ [1,∞) denote

ϕ(s) = b1−̺s̺, 0 ≤ s ≤ b. (3.1)

Clearly, ϕ ∈ C[0, b], ϕ(0) = 0, ϕ(b) = b and ϕ′(s) > 0 for 0 < s ≤ b. Thus, ϕ
maps [0, b] onto [0, b] and has a continuous inverse ϕ−1 : [0, b] → [0, b],

ϕ−1(x) = b(̺−1)/̺x1/̺, 0 ≤ x ≤ b.

Note that ϕ(s) ≡ s for ̺ = 1. We are interested in a transformation (3.1) with
̺ > 1 since it possesses a smoothing property for u(ϕ(s)) with singularities of
u′(x), . . . , u(m)(x) at x = 0 (see Lemma 2).

Lemma 2. Let u ∈ Cm,θ(0, b], m ∈ N, 0 < θ < 1, and let ϕ be the transforma-

tion (3.1). Furthermore, let

uϕ(s) = u(ϕ(s)), 0 ≤ s ≤ b.

Then uϕ ∈ C[0, b] ∩ Cm(0, b] and

|u(j)
ϕ (s)| ≤ cs̺(1−θ)−j, 0 < s ≤ b, j = 1, . . . , m. (3.2)

Proof. The smoothness claim is clear. Further, for the derivatives of the
composite function uϕ = u ◦ ϕ, we have the Faà di Bruno’s representation

u(j)
ϕ (s) =

∑ j!

n1! . . . nj !
u(n)(ϕ(s))

(
ϕ′(s)

1!

)n1

. . .

(
ϕ(j)(s)

j!

)nj

, (3.3)

where 0 < s ≤ b, n = n1 + . . . + nj and the sum is taken over all n1, . . . , nj ∈
{0}∪N for which n1 + 2n2 + . . . + jnj = j, j = 1, . . . , m. It follows from (2.1),
(3.1), n = n1 + . . . + nj and n1 + 2n2 + . . . + jnj = j that

∣∣∣u(n)(ϕ(s))(ϕ′(s))n1 . . . (ϕ(j)(s))nj

∣∣∣ ≤ cs̺(1−θ)−j, 0 < s ≤ b.

This together with (3.3) yields (3.2). ⊓⊔

Remark 1. Instead of (3.1) other transformations are possible. We refer to [13]
for a general discussion in this connection.

4 Numerical Method

Using (3.1) we introduce in (1.1) the change of variables y = ϕ(s), x = ϕ(t),
s, t ∈ [0, b]. We obtain an integral equation of the form

uϕ(t) =

∫ t

0

Kϕ(t, s)uϕ(s)ds + fϕ(t) , 0 ≤ t ≤ b , (4.1)

where
fϕ(t) = f(ϕ(t)), Kϕ(t, s) = K(ϕ(t), ϕ(s))ϕ′(s)

Math. Model. Anal., 14(1):79–89, 2009.
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are given functions and uϕ(t) = u(ϕ(t)) is a function which we have to find.
For given integers m, N ∈ N let

S
(−1)
m−1(∆

r
N ) =

{
vN : vN

∣∣
[xj−1,xj]

∈ πm−1, j = 1, . . . , N
}
,

S
(0)
m−1(∆

r
N ) = {vN ∈ C[0, b] : vN

∣∣
[xj−1,xj]

∈ πm−1, j = 1, . . . , N}

be the underlying spline spaces of piecewise polynomial functions on the grid
∆r

N with the nodes (1.2). Here vN

∣∣
[xj−1,xj]

(j = 1, . . . , N) is the restriction

of vN (t), t ∈ [0, b], to the subinterval [xj−1, xj ] ⊂ [0, b] and πm−1 denotes the
set of polynomials of degree not exceeding m − 1. Note that the elements of

S
(−1)
m−1(∆

r
N ) may have jump discontinuities at the interior knots x1, . . . , xN−1

of the grid ∆r
N . In every subinterval [xj−1, xj ] (j = 1, . . . , N) we introduce

m ∈ N interpolation (collocation) points

xjl = xj−1 + ηl(xj − xj−1) , l = 1, . . . , m; j = 1, . . . , N , (4.2)

where η1, . . . ., ηm are some fixed (collocation) parameters such that

0 ≤ η1 < . . . < ηm ≤ 1. (4.3)

We find an approximation vN = vN,m,r,ϕ to uϕ, the solution of equation
(4.1) (under the conditions of Theorem 1 below the equations (1.1) and (4.1)
are uniquely solvable), by collocation method from the following conditions:

vN ∈ S
(−1)
m−1(∆

r
N ) , N, m ∈ N, r ≥ 1 , (4.4)

vN (xjl) =

∫ xjl

0

Kϕ(xjl, s)vN (s) ds + fϕ(xjl), l = 1, . . . , m; j = 1, . . . , N, (4.5)

with xjl, l = 1, . . . , m; j = 1, . . . , N , given by formula (4.2).
Having determined the approximation vN for uϕ, we determine an approx-

imation uN = uN,m,r,ϕ for u, the solution of equation (1.1), setting

uN(x) = vN (ϕ−1(x)) , 0 ≤ x ≤ b. (4.6)

Remark 2. The choice of nodes (4.2) with η1 = 0, ηm = 1 in (4.5) actually
implies that the resulting collocation approximation vN belongs to the smoother

spline space S
(0)
m−1(∆

r
N ) than it is stated by the condition (4.4).

Remark 3. The settings (4.4), (4.5) form a linear system of algebraic equations

whose exact form is determined by the choice of a basis in S
(−1)
m−1(∆

r
N ). We

refer to [13] for a convenient choice of it.

5 Convergence Results

Let X and Y be Banach spaces. By L(X, Y ) we denote the Banach space of
all linear continuous operators A : X → Y with the norm

‖A‖L(X,Y ) = sup{‖Az‖Y : z ∈ X, ‖z‖X ≤ 1}.

By C[a, b] we denote the Banach space of continuous functions z on [a, b] with
the usual norm ‖z‖ = max{|z(t)| : t ∈ [a, b]}.
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Theorem 1. Let f ∈ C[0, b] and K ∈ W 0,ν,λ(Db), 0 < ν < 1, 0 ≤ λ < 1 − ν.

Furthermore, assume that ϕ is the transformation (3.1) and the interpolation

nodes (4.2) with grid points (1.2) and parameters (4.3) are used. Then equation

(1.1) has a unique solution u ∈ C[0, b], the settings (4.4)–(4.6) determine for

sufficiently large N a unique approximation uN for u and

‖uN − u‖∞ → 0 as N → ∞ , (5.1)

where ‖uN − u‖∞ = sup
0≤x≤b

|uN (x) − u(x)|.

Proof. We write (4.1) in the form uϕ = Tϕuϕ + fϕ where Tϕ is defined by
formula

(Tϕz)(t) =

∫ t

0

Kϕ(t, s)z(s) ds, 0 ≤ t ≤ b.

It follows from (1.3) and (3.1) that Kϕ(t, s) is continuous in Db and

|Kϕ(t, s)| ≤ c(t − s)−νs−λ, (t, s) ∈ Db.

Since ν + λ < 1, Tϕ is compact as an operator from L∞(0, b) into C[0, b], see
[14]. This together with fϕ ∈ C[0, b] yields that equation uϕ = Tϕuϕ + fϕ

(equation (4.1)) has a unique solution uϕ ∈ C[0, b]. In particular, (1.1) has a
unique solution u ∈ C[0, b].

Further, conditions (4.4), (4.5) have the operator equation representation

vN = PNTϕvN + PNfϕ, (5.2)

where PN is an operator which assigns to every continuous function z ∈ C[0, b]

its piecewise polynomial function PNz ∈ S
(−1)
m−1(∆

r
N ) such that (PNz)(xjl) =

z(xjl), l = 1, . . . , m; j = 1, . . . , N . It follows from [17] that the norms of
PN ∈ L(C[0, b], L∞(0, b)) are bounded by a constant c which is independent of
N ,

‖PN‖L(C[0,b],L∞(0,b)) ≤ c, (5.3)

and
‖z − PNz‖∞ → 0 as N → ∞ for every z ∈ C[0, b]. (5.4)

Using a standard argumentation (cf. [13, 15, 17]) we obtain that equation
(5.2) has for sufficiently large values of N , say N ≥ N0, a unique solution

vN ∈ S
(−1)
m−1(∆

r
N ) and

‖vN − uϕ‖∞ ≤ c‖uϕ − PNuϕ‖∞, N ≥ N0. (5.5)

Here uϕ is the solution of equation (4.1) and c is a positive constant not depend-
ing on N . Since uϕ ∈ C[0, b], we get from (5.4) and (5.5) that ‖vN −uϕ‖∞ → 0
as N → ∞. This together with

‖uN − u‖∞ = ‖vN − uϕ‖∞ (5.6)

yields (5.1). ⊓⊔

Next we establish a global convergence result for method (4.4)–(4.6).

Math. Model. Anal., 14(1):79–89, 2009.
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Theorem 2. Let the following conditions be fulfilled:

1. K ∈ Wm,ν,λ(Db), f ∈ Cm,ν+λ(0, b], m ∈ N, 0 < ν < 1, 0 ≤ λ < 1 − ν;

2. ϕ is the transformation (3.1);

3. the interpolation nodes (4.2) with grid points (1.2) and parameters (4.3)
are used.

Then the settings (4.4)–(4.6) determine for N ≥ N0 a unique approximation

uN to u, the solution to (1.1), and

‖uN − u‖∞ ≤ c

{
N−r̺(1−ν−λ) for 1 ≤ r < m

̺(1−ν−λ) ,

N−m for r ≥ m
̺(1−ν−λ) , r ≥ 1,

(5.7)

where c is a positive constant not depending on N.

Proof. On the basis of Lemmas 1 and 2 we find that uϕ ∈ C[0, b] ∩ Cm(0, b]
and for every s ∈ (0, b] and j = 1, . . . , m,

|u(j)
ϕ (s)| ≤ c

{
1 if j ≤ ̺(1 − ν − λ),

s̺(1−ν−λ)−j if j > ̺(1 − ν − λ).
(5.8)

For a spline wN ∈ S
(−1)
m−1(∆

r
N ) denote wN,j = wN

∣∣
[xj−1,xj]

, j = 1, . . . , N . Due

to (5.3) we get the estimate

‖uϕ − PNuϕ‖∞ = ‖uϕ − wN − PN (uϕ − wN )‖∞
≤ c max

j=1,...,N
max

xj−1≤x≤xj

|uϕ(x) − wN,j(x)|, (5.9)

with a positive constant c which is independent of N . We fix wN,j as a Taylor
polynomial for uϕ(x) at x = xj :

wN,j(x) =
m−1∑

k=0

u
(k)
ϕ (xj)

k!
(x − xj)

k, xj−1 ≤ x ≤ xj .

The integral form of the reminder term of the (m− 1)th order Taylor approxi-
mation of uϕ(x) at x = xj and the estimate (5.8) gives us for all x ∈ [xj−1, xj ]
(j = 1, . . . , N) the inequality

|uϕ(x)−wN,j(x)| ≤ c

xj∫

x

(s−x)m−1

{
1 if m ≤ ̺(1 − ν − λ)

s̺(1−ν−λ)−m if m > ̺(1 − ν − λ)

}
ds.

(5.10)
Due to (1.2),

xj − xj−1 ≤ brN−1, j = 1, . . . , N. (5.11)

If m ≤ ̺(1 − ν − λ), then we obtain from (5.10) and (5.11) that

|uϕ(x) − wN,j(x)| ≤ cN−m, xj−1 ≤ x ≤ xj , j = 1, . . . , N, (5.12)
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where c is a positive constant not depending on N .

In the case m > ̺(1 − ν − λ) we have

max
0≤x≤x1

∫ x1

x

(s − x)m−1s̺(1−ν−λ)−mds ≤ max
0≤x≤x1

∫ x1

x

(s − x)̺(1−ν−λ)−1ds

≤ c1

{
N−̺r(1−ν−λ) for 1 ≤ r < m

̺(1−ν−λ) ,

N−m for r ≥ m
̺(1−ν−λ) , r ≥ 1,

(5.13)

max
j=2,...,N

max
xj−1≤x≤xj

∫ xj

x

(s − x)m−1s̺(1−ν−λ)−mds

≤ max
j=2,...,N

max
xj−1≤x≤xj

x̺(1−ν−λ)−m

∫ xj

x

(s − x)m−1ds

≤ c2

{
N−̺r(1−ν−λ) for 1 ≤ r < m

̺(1−ν−λ) ,

N−m for r ≥ m
̺(1−ν−λ) , r ≥ 1,

(5.14)

where c1 and c2 are some positive constants not depending on N . It follows
from (5.9), (5.10) and (5.12)–(5.14) that

‖uϕ − PNuϕ‖∞ ≤ c

{
N−r̺(1−ν−λ) for 1 ≤ r < m

̺(1−ν−λ) ,

N−m for r ≥ m
̺(1−ν−λ) , r ≥ 1,

with a positive constant c which is independent of N . This together with (5.5)
and (5.6) yields (5.7). ⊓⊔

Remark 4. It follows from Theorem 2 that the accuracy ‖uN−u‖∞ ≤ cN−m can
be achieved on a mildly graded or uniform grid. As an example, if we assume
that ν = 2/5, λ = 1/5, m = 3 (the case of piecewise quadratic polynomials),
̺ ≥ 15/2, the maximal convergence order ‖uN − u‖∞ ≤ cN−3 is available for
r ≥ 1. In particular, the uniform grid with nodes (1.2), r = 1, may be used.

Remark 5. In addition to Theorem 2, assuming some additional smoothness of
f and g (see (1.3)) and choosing more carefully the collocation parameters (4.3),
the superconvergence of vN at the collocation points (4.2) can be established, cf.
[1, 3, 4, 5, 13, 17]. More precisely, let K ∈ Wm+1,ν,λ(Db), f ∈ Cm+1,ν+λ(0, b],
m ∈ N, 0 < ν < 1, 0 ≤ λ < 1 − ν, and let the interpolation nodes (4.2)
be generated by the grid points (1.2) and by the node points η1, . . . , ηm of a
quadrature approximation

∫ 1

0

z(s)ds ≈
m∑

l=1

wlz(ηl), 0 ≤ η1 < . . . < ηm ≤ 1, (5.15)

which, with appropriate weights {wl}, is exact for all polynomials of degree m.

Math. Model. Anal., 14(1):79–89, 2009.
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Then it turns out that for sufficiently large N ,

max
l=1,...,m;

j=1,...,N

|uN (ϕ(xjl)) − u(ϕ(xjl))| = max
l=1,...,m;

j=1,...,N

|vN (xjl) − uϕ(xjl)|

≤ c

{
N−2̺r(1−ν−λ) for 1 ≤ r < m+1−ν

2̺(1−ν−λ) ,

N−m−(1−ν) for r ≥ m+1−ν
2̺(1−ν−λ) , r ≥ 1.

(5.16)

We will investigate this question in a forthcoming paper where a more general
class of integral equations with diagonal and boundary singularities will be
discussed.

6 Numerical Example

Let us consider the following equation:

u(x) =

∫ x

0

(x − y)−νy−λu(y) dy + f(x) , 0 ≤ x ≤ 1, (6.1)

where 0 < ν < 1 , 0 ≤ λ < 1, ν + λ < 1. The forcing function f is selected so
that u(x) = x1−ν−λ is the exact solution to (6.1). Actually, this is a problem
of the form (1.1), (1.3) where b = 1, g(x, y) ≡ 1, K(x, y) = (x − y)−νy−λ,

f(x) = x1−ν−λ − x2(1−ν−λ) Γ (1 − ν)Γ (2(1 − λ) − ν)

Γ (3 − 2(ν + λ))
, 0 ≤ x ≤ 1,

Γ (t) =

∞∫

0

e−s st−1 ds , t > 0 .

It is easy to check that in this case K ∈ Wm,ν,λ(D1) and f ∈ Cm,ν+λ(0, 1] for
arbitrary m ∈ N.

Equation (6.1) was solved numerically by method (4.4)–(4.6) for ν = 2/5,
λ = 1/5, m = 3, η1 = (5 −

√
15)/10, η2 = 1/2, η3 = (5 +

√
15)/10. Here

η1, η2, η3 are the node points of the Gauss-Legendre quadrature rule (5.15)
by m = 3. This formula is exact for all polynomials of degree not exceeding
2m − 1 = 5.

In Tables 1 and 2 some results for different values of the parameters N , ̺

and r are presented. The quantities ε
(̺,r)
N in Table 1 are approximate values of

the norm ‖uN − u‖∞, calculated as follows:

ε
(̺,r)
N = max

l=0,...,10
j=1,...,N

|uN ((τ
(r)
jl )̺) − u((τ

(r)
jl )̺)| ,

where τ
(r)
jl = xj−1 + l(xj − xj−1)/10, l = 0, . . . , 10; j = 1, . . . , N, with the

grid points xj , defined by formula (1.2) for b = 1.
Table 2 shows the dependence of

γ
(̺,r)
N = max

l=1,...,m;

j=1,...,N

|uN (ϕ(xjl)) − u(ϕ(xjl))| = max
l=1,...,m;

j=1,...,N

|vN (xjl) − uϕ(xjl)|
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on the parameters N , ̺ and r (see (5.16)). The ratios δ
(̺,r)
N = ε

(̺,r)
N/2

/
ε
(̺,r)
N ,

δ̃
(̺,r)
N = γ

(̺,r)
N/2

/
γ

(̺,r)
N , characterizing the observed convergence rate, are also

presented. From Theorem 2 it follows that for sufficiently large N ,

ε
(̺,r)
N ≈ ‖uN − u‖∞ ≤ c

{
N−2̺r/5 if 1 ≤ ̺r < 15/2,

N−3 if ̺r ≥ 15/2 .
(6.2)

Table 1. (m = 3, ν = 2
5
, λ = 1

5
, η1 = 5−

√
15

10
, η2 = 1

2
, η3 = 5+

√
15

10
)

N ε
(1,1)
N ε

(3,1)
N ε

(7/2, 3/2)
N ε

(15/2, 1)
N ε

(15/4, 2)
N

δ
(1,1)
N δ

(3,1)
N δ

(7/2, 3/2)
N δ

(15/2, 1)
N δ

(15/4, 2)
N

32 7.7 E - 2 3.1 E - 4 1.7 E - 5 1.8 E - 6 9.2 E - 7
1.35 2.30 4.29 8.64 8.75

64 5.8 E - 2 1.3 E - 4 3.9 E - 6 2.1 E - 7 1.1 E - 7
1.34 2.30 4.29 8.47 8.05

128 4.3 E - 2 5.8 E - 5 9.1 E - 7 2.6 E - 8 1.4 E - 8
1.33 2.30 4.29 8.32 8.00

256 3.2 E - 2 2.5 E - 5 2.1 E - 7 3.1 E - 9 1.8 E - 9
1.33 2.30 4.29 8.22 8.00

512 2.4 E - 2 1.1 E - 5 4.9 E - 8 3.9 E - 10 2.2 E - 10
1.33 2.30 4.29 8.14 8.00

1.33 2.30 4.29 8.00 8.00

Due to (6.2), the ratio δ
(̺,r)
N ought to be approximately

(N/2)−2̺r/5/N−2̺r/5 = 22̺r/5 for 1 ≤ ̺r <
15

2

and 8 for ̺r ≥ 15/2. In particular, δ
(1,1)
N , δ

(3,1)
N , δ

( 7
2
, 3
2
)

N , δ
( 15

2
,1)

N and δ
( 15

4
,2)

N ought
to be approximately 1.33, 2.30, 4.29, 8.00 and 8.00, respectively. These values

of δ
(̺,r)
N are given in the last row of Table 1.

Table 2. (m = 3, ν = 2
5
, λ = 1

5
, η1 = 5−

√
15

10
, η2 = 1

2
, η3 = 5+

√
15

10
)

N γ
(1,1)
N γ

(3,1)
N γ

(4,1)
N γ

(3, 3/2)
N γ

(4,2)
N

eδ
(1,1)
N

eδ
(3,1)
N

eδ
(4,1)
N

eδ
(3, 3/2)
N

eδ
(4,2)
N

32 1.4 E - 2 3.5 E - 7 3.8 E - 8 1.7 E - 8 8.0 E - 8
2.30 5.34 9.23 11.74 11.91

64 6.3 E - 3 6.5 E - 8 4.2 E - 9 1.4 E - 9 6.8 E - 9
2.30 5.28 9.20 11.95 11.81

128 2.7 E - 3 1.2 E - 8 4.5 E - 10 1.2 E - 10 5.7 E - 10
2.30 5.28 9.19 12.04 11.92

256 1.2 E - 3 2.4 E - 9 4.9 E - 11 9.6 E - 12 4.7 E - 11
2.30 5.28 9.19 12.08 12.01

512 5.2 E - 4 4.5 E - 10 5.4 E - 12 7.9 E - 13 3.9 E - 12
2.30 5.28 9.19 12.10 12.06

1.74 5.28 9.19 12.13 12.13
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In a similar way we obtain from (5.16) that δ̃
(1,1)
N , δ̃

(3,1)
N ,δ̃

(4,1)
N , δ̃

(3, 3
2
)

N and

δ̃
(4,2)
N ought to be approximately 1.74, 5.28, 9.19, 12.13 and 12.13, respectively.

These values of δ̃
(̺,r)
N are given in the last row of Table 2.

As we can see from Tables 1 and 2, the numerical results are in good agree-

ment with the theoretical estimates. In Table 2 only the decrease of γ
(1,1)
N

is faster than it is indicated by theoretical estimates: the predicted value for

δ̃
(1,1)
N is equal to 1.74, but the current experiment gave for δ̃

(1,1)
N a stable value

2.30. This phenomenon notifies that the local order of convergence of proposed
algorithms needs further theoretical and numerical study.
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