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Abstract. A conservative finite-difference scheme for numerical solution of the
Gross-Pitaevskii equation is proposed. The scheme preserves three invariants of
the problem: the L2 norm of the solution, the impulse functional, and the energy
functional. The advantages of the scheme are demonstrated via several numerical
examples in comparison with some other well-known and widely used methods. The
paper is organized as follows. In Section 2 we consider three main conservation laws
of GPE and derive the evolution equations for first and second moments of a solution
of GPE. In Section 3 we define the conservative finite-difference scheme and prove
the discrete analogs of conservation laws. The remainder of Section 3 consists of a
brief description of other finite-difference schemes, which will be compared with the
conservative scheme. Section 4 presents the results of numerical solutions of three
typical problems related to GPE, obtained by different methods. Comparison of the
results confirms the advantages of conservative scheme. And finally we summarize
our conclusions in Section 5.

Key words: Bose-Einstein condensate, Gross-Pitaevskii equation, conservative
finite-difference scheme.

1 Introduction

Bose-Einstein condensate (BEC) is now an actual problem for a lot of theoreti-
cal and experimental studies. In the most cases the weakly interacting boson of
the Gross-Pitaevskii theory has been invoked to describe the properties of BEC
[11]. Nowadays, one of the most spectacular research is devoted to discuss the
dynamics of BEC and the appearance of solitons [1, 5, 19, 20, 23, 30, 33, 37]
based upon the Gross-Pitaevskii equation (GPE), which was derived indepen-
dently by Gross [15, 16] and Pitaevskii [31]. Obviously, the GPE has many
common features with the nonlinear Schrodinger equation (NSE) that is widely
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investigated in connection with problems of laser physics (see, for example,
[3, 4, 24]).

Owing to the active investigations of various aspects of BEC during the last
years, GPE has been numerically treated by several methods. The comprehen-
sive list of those methods with their specific features can be found in the review
[28], for example, and in [2, 6, 29, 34]. It should be stressed that developing
of finite-difference schemes for NSE attracts many authors in past twenty five
years [7, 8, 9, 10, 12, 13, 14, 17, 25, 32, 39, 41, 43] and many other papers.

In general case, one can to distinguish two approaches to construction of
numerical methods for NSE and GPE. First of them consists in splitting the
equation into some parts, the number of final equations depends on the di-
mension and nonlinearity (and other factors) of the problem. In other words, a
method of summary approximation is used to solve the equation. Let us notice,
that this method in nonlinear optics is named usually as split-step method [14].
The advantage of this method is well-known. One can very easy to implement
the computation procedure. But it has imperfection: this method preserves
only one invariant (laser beam power) of NSE and its asymptotic stability is
bad. It should be noticed, that the split-step method does not preserve the
Hamilton function (the energy functional). In order to obtain good results on
a long distance it is necessary to choose mesh steps in a definite way. Many
authors have emphasized as well, that it is necessary to choose length of trans-
verse domain so, that boundary values of be close to zero with a good accuracy.
Only in this case the computation accuracy will satisfy the requiring conditions.

The second approach consists in designing the conservative finite-difference
schemes for NSE (the review of application of this method to various problems
of nonlinear optics are given in [22]). This approach allows one to get the preser-
vation of all invariants for NSE. However conservative finite-difference schemes
are nonlinear and require more arithmetic operations in comparison with the
split-step methods. For many years the various papers deal with comparison
of both classes of methods for NSE [17, 18, 26, 27, 28, 35, 36, 38, 40, 42]. It
is proved that for weak nonlinearity (as the rule, the Kerr nonlinear response
of medium) and for self-action of laser pulse and beam due to thermal bloom-
ing or Kerr effect, the split-step methods can have an advantages in speed of
computation in comparison with conservative finite-difference schemes. But for
soliton solution, high intense laser pulse propagation, or complicated nonlinear
response of medium the advantages of conservative methods are obvious. We
have got these results for SHG problem; propagation of laser pulse in nonlinear
photonic crystals; propagation of laser femtosecond pulse in medium, which
nonlinear response contains the time derivative of pulse; laser pulse interaction
with semiconductor [26, 27, 36, 38, 40]. It should be noticed that for laser
pulse propagation in the atmosphere with taking into account the turbulence,
the big deviation of Hamiltonian from its initial value was shown in [18] where
the split-step method was applied. The Hamiltonian deviation was up to 80%.
For many problems of laser pulse interaction with matter such error is unac-
ceptable.

Accounting of high interest to computer simulation of the BEC problems,
it is of interest to compare conservative finite-difference scheme and split-step
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methods for GPE. It is necessary to point out that the split-step method can
be improved essentially if one uses an iteration procedure on the step of solu-
tion of nonlinear part of equations [42]. We consider below this method too.
We demonstrate the advantages of the conservative finite-difference scheme for
solving of GPE. The scheme preserves all three invariants at any size of the
time and space step.

The paper is organized as follows. In Section 2 we consider ....

2 GPE and Conservation Laws

For simplicity, we will consider GPE in 1D space

i~∂tu(x, t) =
(

− ~
2

2m
∂xx + V (x, t) + g|u(x, t)|2

)

u(x, t),

where x is the space coordinate, −∞ < x < ∞; t is time, t > 0; u(x, t) is
the complex-valued macroscopic wave function in mean-field approximation;
V (x, t) is the real external potential; g is the real coupling constant (g > 0
for the repulsive interaction, and g < 0 for attractive interaction). In the
following we accept the dimensionless units with the Plank constant ~=1 and
the atomic mass m=1. We shall consider the initial-boundary value problem
for GPE at the external potential V (x, t) ≡ V (x) on the space-time domain
Ω = {−L ≤ x ≤ L, 0 ≤ t ≤ T } in the form:

i∂tu(x, t) =

(

−1

2
∂xx + V (x) + g|u(x, t)|2

)

u(x, t); (2.1)

u(x, t) x=±L = 0, u(x, t) t=0 = u0(x).

In order to consider the conservation laws, it is suitable to rewrite Eq. (2.1)
in the form

∂tu(x, t) = −iĤu(x, t), Ĥ = −1

2
∂xx + V + g|u|2,

where Ĥ is the Hamilton operator, which is symmetric in the Hilbert space of
functions u(x) ∈ L2(−L, L) with zero boundary conditions.

There are three basic conservation laws for any solution of problem (2.1) and
a violation of each of them in a numerical solution leads to incorrect evolution
of u(x, t).

1) The square of L2 norm of solution is defined as

N (t) =

∫ L

−L

|u(x, t)|2 dx. (2.2)

It is easy to see that due to symmetry of Ĥ ,

d

dt
N (t) =

∫ L

−L

(∂tu · u∗ + u · ∂tu
∗) dx =

∫ L

−L

(

−iĤu · u∗ + u · iĤu∗

)

dx = 0,

Math. Model. Anal., 14(1):109–126, 2009.
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where the u∗ denotes the complex conjugation of u. Therefore we obtain that

N (t) ≡ N (0) = const.

In the theory of BEC the quantity N is interpreted as the number of atoms in
BEC.

2) Let us consider the impulse functional (p̂ = −i∂x is the quantum me-
chanical impulse operator):

P(t) =

∫ L

−L

u∗(x, t) · (−i∂x)u(x, t) dx =
1

2

∫ L

−L

[u∗ · (−i∂xu)+(−i∂xu)∗ · u]dx.

(2.3)
Using the commutativity of operators ∂t and ∂x and the antisymmetry of ∂x,
one can obtain

d

dt
P=i

∫ L

−L

(∂tu · ∂xu∗−∂tu
∗ · ∂xu) dx= − 1

2

[

|∂xu|2
]x=L

x=−L
−

∫ L

−L

∂xV · |u|2dx.

(2.4)
In the following analysis we shall not take into account the boundary effects
described by the first term on the right hand side of Eq. (2.4). Such assumption
can be justified if the initial distribution u0(x) is finite and L is sufficiently
large so that the solution u(x, t) and its derivatives will be vanishing near the
boundary points for all t < T .

The second term on the r.h.s. of the equality has the meaning of the average
external force acting on the BEC and the equation is an analog of the second
Newton law equation. For many applications the external potential V is the
harmonic potential V (x) = 1

2kx2. In such a case Eq. (2.4) can be written as

d

dt
P = −kXc, Xc =

∫ L

−L

x|u|2dx,

where Xc is the average x-coordinate of BEC (the first moment of distribution
function |u|2).

Computing the first derivative of Xc with respect to t one could derive the
equation defining the evolution of Xc:

d

dt
Xc(t) =

∫ L

−L

(

(∂tu
∗) · xu+u∗x · (∂tu)

)

dx = i

∫ L

−L

(

xu · Ĥu∗−x · Ĥu · u∗
)

dx

= i

∫ L

−L

(

−∂xu · u∗ + x · Ĥu · u∗ − x · Ĥu · u∗

)

dx = P(t)

Therefore,
d 2

dt2
Xc + kXc = 0. (2.5)

For k > 0 one obtains from Eq. (2.5)

Xc(t) = Xc(0) cos(
√

k t) + (P(0)/
√

k) sin(
√

k t). (2.6)
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Eq. (2.6) can be a useful additional benchmark for testing the numerical solu-
tion of problem (2.1).

3) The energy functional is defined as:

E(t) =
1

2

∫ L

−L

u∗(x, t)Ĥu(x, t) dx

=
1

2

∫ L

−L

(

1

2
|∂xu(x, t)|2 + V (x) |u(x, t)|2 +

1

2
g |u(x, t)|4

)

dx. (2.7)

Computing the derivative of E with respect to t we obtain:

d

dt
E(t) =

1

2

∫ L

−L

(

Ĥu∗ · ∂tu + Ĥu · ∂tu
∗

)

dx

=
i

2

∫ L

−L

(

−Ĥu∗ · Ĥu + Ĥu · Ĥu∗

)

dx = 0.

Therefore, E(t) = E(0) = const. Let Sc denotes the second moment of the

distribution |u|2, i.e. Sc =
∫ L

−L
x2|u|2 dx. Then one has

dSc

dt
= i

∫ L

−L

x (u∂xu∗ − u∗∂xu) dx,

and

d2Sc

dt2
= 2

∫ L

−L

|∂xu|2 dx − 2

∫ L

−L

x|u|2∂x

(

V + g|u|2
)

dx

= 8E(t) − 2

∫ L

−L

(2V + x∂xV ) |u|2 dx −
∫ L

−L

g|u|4 dx.

For the harmonic potential V = 1
2kx2 the following equation takes place

d2Sc

dt2
+ 4kSc = 8E(t) −

∫ L

−L

g|u|4 dx. (2.8)

3 Finite-Difference Schemes

Let ωx = {xj = jh, j = −M, . . . , 0, . . . , M} and ωt = {tn = nτ, n =
0, 1, . . . , N} be a space and time grid with a space step h = L/M and a time
step τ = T/N , and ω = ωx × ωt is a grid in the domain Ω. Let us introduce
a grid function un

j = u(xj , tn) defined on ω. For the sake of brevity accept the
following notations:

vj = un
j , v̂j = un+1

j , v0.5
j = (v̂j + vj) /2,

and standard notations for the time and space derivatives

vt,j = (v̂j − vj)/τ, vx,j = (vj+1 − vj)/h, vx̄x,j = (vj−1 − 2vj + vj+1)/h2.

Below we present the conservative finite-difference scheme and some other
schemes usually used to solve the NSE and GPE.

Math. Model. Anal., 14(1):109–126, 2009.
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3.1 Conservative finite-difference scheme (CFDS)

For problem (2.1) we set the finite-difference problem

ivt,j = −1

2
v0.5

x̄x,j +

[

Vj +
1

2
g

(

|v̂j |2 + |vj |2
)

]

v0.5
j , j = −M+1, . . . , M−1,

u0
j = u0(xj), j = −M, . . . , M, (3.1)

un
−M = un

M = 0, n = 0, 1, . . . , N.

In the linear case equation (3.1) is the well-known semi-implicit Crank –
Nicholson scheme. In the nonlinear case this scheme is the conservative finite-
difference scheme (CFDS) first proposed by Karamzin for nonlinear optics prob-
lems (see, for example, [21, 22]). This scheme reveals three nice features, it
conserves the grid approximations of the norm (2.2), the impulse (2.3), and the
energy (2.7).

For the generalized nonlinear Schrodinger equation

i∂tu − ∂xxu + Q′(|u|2)u = 0,

with the energy functional

1

2

∫ L

L

[

|∂xu(x, t)|2 + Q(|u(x, t)|2)
]

dx

the conservative finite-difference scheme

ivt,j = −1

2
v0.5

x̄x,j +
Q(|v̂j |2) − Q(|vj |2)

|v̂j |2 − |vj |2
v0.5

j (3.2)

was proposed in [8, 12, 43]. The scheme (3.2) is equivalent to CFDS when
applied to the GPE with Q(s) = gs2/2. In application to the cubic nonlinear
Schrodinger equation the scheme (3.2) was numerically studied in [7]. We
stress, that there is a difficulty og realization of (3.2), when function in (3.2) is
close to zero.

Let define the grid approximations of (2.2), (2.3), and (2.7) in the form:

N̄ =

j=M
∑

j=−M

|vj |2h, P̄ =

j=M−1
∑

j=−M

v∗j (−ivx,j) h,

Ē =
1

2

j=M−1
∑

j=−M

(

1

2
|vx,j|2 + Vj |vj |2 +

1

2
g |vj |4

)

h.

Theorem 1. If un
j , j = −M +1, . . . , M − 1 is the solution of (3.1) with initial

data u0
j = u0(xj), j = −M + 1, . . . , M − 1 and boundary conditions un

−M =
un

M = 0, then for all n the following relations are valid

N̄t = 0; Ēt = 0; P̄t = −
j=M−1

∑

j=−M

∣

∣v0.5
j

∣

∣

2
Vx,j ,

where the last equation is true when the boundary flux terms are also equal to

zero.
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Proof. One has

N̄t =
h

τ

j=M
∑

j=−M

(

|v̂j |2 − |vj |2
)

= h

j=M
∑

j=−M

(

v̂jv
∗

t,j + v∗j vt,j

)

.

Substituting in the r.h.s. the numerical time derivative from (3.1) one obtains

N̄n+1 − N̄n = iτh

j=M−1
∑

j=−M+1

{

− v̂j(v
0.5
x̄x,j)

∗ +
[

Vj +
g

2

(

|v̂j |2+|vj |2
)]

v̂j v̄
∗

j

+ v∗j v0.5
x̄x,j−

[

Vj +
g

2

(

|v̂j |2 + |vj |2
)]

v̄jv
∗

j

}

= i
τh

2

j=M−1
∑

j=−M+1

{(1

2
|v̂x,j|2 + Vj |v̂j |2

+
g

2
|v̂j |4

)

−
(1

2
|vx,j |2 + Vj |vj |2 +

g

2
|vj |4

)}

.

Thus the following equality holds for the solution of Eq. (3.1)

N̄n+1 − N̄n = iτ
(

Ēn+1 − Ēn
)

. (3.3)

The norm N̄n and the energy Ēn are real numbers, hence Eq. (3.3) can be
satisfied if and only if N̄n+1 − N̄n = 0 and Ēn+1 − Ēn = 0 for every n.
Therefore, the quantities N̄n and Ēn are the invariants of Eq. (3.1), N̄n = N̄ 0,
Ēn = Ē0.

For the discrete analog of impulse functional one has (for a case of zero
derivatives at the domain boundary):

P̄t =

j=M
∑

j=−M+1

i
[

vt,j(v
0.5
x,j)

∗−v∗t,jv
0.5
x,j

]

h =

j=M
∑

j=−M+1

[

− 1

2

(

v0.5
x̄x,j(v

0.5
x,j)

∗ + v0.5
x,j(v

0.5
x̄x,j)

∗
)

+ Vj

(

(v0.5
j )∗v0.5

x,j + v0.5
j (v0.5

x,j)
∗
)

+
g

2

(

|v̂j |2+ |vj |2
)

(

v0.5
j (v0.5

x,j)
∗+ (v0.5

j )∗v0.5
x,j

)

]

h.

Summing by parts and omitting the boundary terms one obtains

P̄t = −
j=M
∑

j=−M+1

∣

∣v0.5
j

∣

∣

2
Vx,j.

The theorem is proved. ⊓⊔

Thus, the finite-difference equation (3.1) conserves the finite-difference ana-
logs of the invariants for problem (2.1). The similar theorem is true for the
general conservative scheme (3.2).

The equality N̄n = N̄ 0 reflects the unitarity of GPE and is a manda-
tory property of numerical solution of GPE. Practically all numerical methods
applied to solve GPE possess this property. Meanwhile the second equality,
Ēn = Ē0, is very important for accurate evolution of numerical solution, be-
cause it reflects the energy conservation in time-dependent GPE and defines
correct evolution of the wave package phase. However, in the most numerical

Math. Model. Anal., 14(1):109–126, 2009.
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methods the energy conservation property is absent. The choice of GPE non-
linear term approximation in CFDS gives the opportunity to preserve the norm
and energy of numerical solution exactly. The accuracy of N and E preserva-
tion does not depend on time step τ and space step h, but only on the accuracy
of solution of nonlinear equations (3.1) with respect to un+1.

The scheme (3.1) defines a system of 2M − 1 nonlinear algebraic equations
with 2M − 1 unknown variables v̂j , which can be written in the form

Fj(v, v̂) = Lj v̂ + fj(v, v̂) = 0, j = −M + 1, . . . , M − 1,

where L is the linear operator and f is the nonlinear function. We have solved
this system by iterations

Lj v̂
(k+1) + fj(v, v̂(k)) = 0

with v̂(0) = v. The iterations converged if the following conditions are satisfied:

|v̂(k+1)
j − v̂

(k)
j | < ε1|v̂(k)

j | + δ, j = −M + 1, . . . , M − 1.

In this paper we compare the CFDS with some other popular methods for
numerical solving of GPE. Brief sketches of those methods are presented below.

3.2 Crank-Nicholson finite-difference method (CNFD)

It is the scheme the nonlinear term is taken from lower layer [34]:

ivt,j = −1

2
v0.5

x̄x,j +
(

Vj + g |vj |2
)

v0.5
j , j = −M + 1, . . . , M − 1, (3.4)

u0
j = u0(xj), j = −M, . . . , M, un

−M = un
M = 0, n = 0, 1, . . . , N.

The scheme (3.4) differs from CFDS in the approximation of the nonlinear part
of (2.1), here |v|2 is taken from the previous time layer. This difference leads to
breakdown of the energy and impulse conservation laws and causes of incorrect
solution for long time intervals.

3.3 Split-step methods

Split-step methods are based on the approximation of solution for equation
(2.1) in the form u(t+ τ) ≈ exp[−iτ(L+M(u))] ·u(t), where L = −0.5∂xx and
M(u) = V (x) + g|u|2, and further replacing the exponent of sum of operators
by the product of exponents

exp[−iτ(L + M(u))] ≈ exp[−iτL] exp[−iτM(u)].

The last expression is exact whenever L and M commute and but otherwise
it is only first order accurate. In practice the solution in the next time step is
computed by the formula (the standard Strang [6] splitting)

u(t + τ) ≈ exp[−0.5iτM(u)] exp[−iτL] exp[−0.5iτM(u)] · u(t). (3.5)
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Thus in split-step method numerical solving of Eq. (2.1) is reduced to
successive solving of two equations: linear one

i∂tu = −1

2
∂xxu, (3.6)

and nonlinear one
i∂tu =

(

V (x) + g|u|2
)

u. (3.7)

We consider three versions of the split-step method in application to the GPE.

3.3.1 Time-splitting spectral method (TSSP)

The TSSP method for solution of the GPE with periodic boundary conditions
was proposed in [2]. It should be noticed that for nonlinear optic problems this
method was proposed by Fleck at. al. in 1976 [13, 14].

In the TSSP method equation (3.6) is discretized in space by the Fourier
spectral method and integrated in time exactly. Equation (3.7) leaves |u|2
invariant in t and for t ∈ [tn, tn+1] this equation can be replaced by

i∂tu =
(

V + g|un|2
)

u.

It changes only the phase of u and this equation can be integrated exactly

un+1 = exp
[

−i
(

V (x) + g|un|2
)

τ
]

un.

The splitting steps are combined according to the equation (3.5):

u
(1)
j = exp

[

−i
τ

2

(

Vj + g|un
j |2

)

]

un
j ,

u
(2)
j =

1

M

M/2−1
∑

l=−M/2

exp
(

−iµ2
l

τ

2

)

û
(1)
l exp(iµl(xj − L)),

un+1
j = exp

[

−i
τ

2

(

Vj + g|u(2)
j |2

)]

u
(2)
j , j = −M + 1, . . . , M − 1,

where û
(1)
l are the Fourier coefficients of u(1) and they are defined as

µl =
πl

L
, û

(1)
l =

M−1
∑

j=−M+1

u
(1)
j exp [−iµl(xj − L)] , l = −M

2
, . . . ,

M

2
− 1.

We note that the TSSP method does not preserve the energy Ē .

3.3.2 Time-splitting spectral method with iterations (TSSI)

The GPE with periodic boundary conditions is also solved in two splitting steps.
Like in TSSP one solves equation (3.6) by the Fourier spectral method (notice,
that for 1D problems usage of the factorization algorithm to solve systems of
linear equations is more preferable). But equation (3.7) is replaced with the
Crank-Nicholson nonlinear finite-difference scheme

i
v̂j − vj

τ
= Vjv

0.5
j +

g

2

(

|v̂j |2 + |vj |2
)

v0.5
j ,

Math. Model. Anal., 14(1):109–126, 2009.
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which is solved by an iteration method similar to CFDS.
The TSSI method does not preserve the energy Ē . But it allows one

to control the energy with first order of accuracy in time. For problems of
nonlinear optics this method was proposed in [42]. Its comparison with var-
ious finite-difference schemes (including conservative ones) was carried out in
[26, 27, 36, 38, 40].

3.3.3 Time-splitting Runge-Kutta method (TSRK)

This method is widely used for solving of various problems of nonlinear optics
(see, for example, references in [38]). In this method one solves the equation
(3.6) for the time step τ by the Crank-Nicholson scheme

ivt = −v0.5
x̄x , vj = un

j . (3.8)

Then one solves the nonlinear equation (3.7) by the Runge-Kutta method with
the time step τ1 = τ/n (in our experiments we choose n = 10 and a second
order Runge-Kutta method).

Note that for TSSI and TSRK methods there is no need to solve the GPE
in the form (2.1) because in this case equation (3.7) is solved exactly. But in
more general cases the potential V or the parameter g can be time dependent
and the exact solution of (3.7) is not available. So we would like to consider
these methods taking into account their wide usage for numerical solution of
problems of nonlinear optics.

3.4 Modified Visscher method (VISS)

The starting point is to express the wave function as the sum of its real and
imaginary parts, u = A + iB [39]. Then the evolution of each part is approxi-
mated by the relations:

An+1
j = An−1

j + 2Hn
jkBn

k τ, Bn+1
j = Bn−1

j − 2Hn
jkAn

kτ

with the Euler-type start-up algorithm

A1
j = A0

j + 2H0
jkB0

kτ, B1
j = B0

j − 2H0
jkA0

kτ.

Here Hn
jk is the discretized Hamiltonian and the repeating indexes define the

sum. The Visscher method is conditionally stable and also does not preserve
the energy integral.

4 Computer Simulation Results

Here we present three numerical examples demonstrating the advantages of
CFDS in comparison with methods for solving of GPE listed in the previous
section. First we solve the 1D initial-boundary problem (2.1) in the interval
(−L, L), L = 32, with the external potential V (x) = 1

2kx2, k = 0.1, the
coupling constant g = 1, and the initial condition

u0(x) =
1

(πσ2)
1/4

exp

(

− x2

2σ2

)

, (4.1)
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where σ determines effective width of the initial distribution, σ = 0.3.
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Figure 1. Upper panel: space-time plot
˛

˛

˛
un

j

˛

˛

˛
of solution (3.1) at τ = 0.001, h = 1/128.

Bottom panel: the second moment of the distribution |u|2 computed from the numerical
solution and from Eq. (2.8), the two curves coincide in the scale of graph.

The upper panel of Fig. 1 shows a space-time plot of
∣

∣un
j

∣

∣ obtained using
(3.1) with the time step τ = 0.001 and the space step h = 1/128. The system of
nonlinear equations (3.1) is solved by the method of simple iterations with the
absolute accuracy ε = 10−9, δ = 10−12. The bottom panel of Fig. 1 consists
of the graphs of the second moment Sc(t). They were obtained by numerical
integration of the exact solution x2|u(x, t)|2 over the interval −L ≤ x ≤ L, and
by numerical solution of (2.8). We see that both curves are indistinguishable
in the graph’s scale. Minimal values of Sc (minimal width of solution) coincide
with maximal values of |u|, while maximal values of Sc correspond to widest
spread of solution.

To compare solutions corresponding to different time steps we choose the
numerical solution U (0.0001) obtained using τ = 0.0001, h = 1/64, as a reference
solution. Then we solve (3.1) using different values of τ and calculate the C
and L2 norms of difference U (τ) − U (0.0001). Fig. 2 presents the graphs of
∥

∥U τ − U (0.0001)
∥

∥

C
and

∥

∥U τ − U (0.0001)
∥

∥

L2

. We see that both norms of the

difference U (0.001) − U (0.0001) are less than 10−2 at t < 100 and their graphs
almost coincide with t-axis.

The comparison of solutions obtained at different space steps are presented
in Fig.2b. The solution U(1/128) obtained at τ = 0.001 and h = 1/128 is
considered as the reference solution. Two other solutions were obtained by
using the same τ but different space steps h = 1/64 and h = 1/32. Here again
the difference between the first pair of solutions U(1/64)−U(1/128) is significantly
smaller in comparison with the second pair U(1/32) − U(1/128).

Thus, the numerical solution of (3.1) stabilizes readily enough for decreased
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Figure 2. Comparison of solutions of (3.1) obtained by CFDS at (a) h=1/64 and τ0=0.0001,
τ1=0.001, τ2=0.01, and (b) τ=0.001 and h0=1/128, h1=1/64, h2=1/32.

time and space steps, and the solution obtained at τ = 0.001, h = 1/64 can be
referred as a good approximation to the solution of problem (2.1). Comparing
Fig.1 and Fig.2 one can see, that the main deviation of solutions takes place,
when wave packet collapses to its minimum width. Obviously, this means that
it is necessary to decrease a mesh step with respect space coordinate. This
conclusion is clearly illustrated by Fig. 2.
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Figure 3. The dependence of relative deviations of invariants, δN , and δE on time at
different τ and h. (a) h=1/64, (b) τ=0.001.

Figure 3 shows the relative deviations of N̄ , δN̄ , Ē and δĒ , calculated by
the formula δf(t) = (f(t)− f(0))/f(0) at different time and space steps. Note,
that the deviation of P was zero for all these solutions, δP̄ ≡ 0. One can
see that the deviations of invariants do not depend on the space step h but
depend on time step τ nonlinearly. At τ and h being fixed the deviations of
invariants are determined by accuracy of solution of (3.1). For example, at
τ=0.001, h=1/64, the maximal values of δN̄ and δĒ in the interval 0 < t < 100
for different values of ε are presented in Fig. 4.

Simultaneous preservation of the basic invariants of GPE is the key property
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of any efficient solver. Unfortunately, the most popular methods for solution
of GPE do not possess such a property. For comparison we solved the problem
(2.1) using the other methods listed in Section 3.

To compare preservation of invariants for GPE by these methods and CFDS
we solved the problem (2.1) with the initial condition (4.1) in time interval
t ∈ [0, 100] and investigated the relative deviations of invariants. First, let us
notice that under considered conditions the Visscher scheme is unstable and it
is not considered below. The deviations δN̂ and δP̂ were very small (< 10−9)
in all computations and they are not presented here.

Fig. 5 shows the maximal deviations δĒ for the solution of problem (2.1),
(4.1) with k = 0.1, g = 1 in interval t ∈ [0, 100], obtained with different nu-
merical methods at different time and space steps. The presented data enables
one to conclude that the best results in preservation of energy invariant can be
got with the conservative scheme (3.1). While the preservation of invariants N̄
and P̄ is good enough in all methods, the Ē preservation for scheme (3.1) is at
least in five order of magnitude better than in other methods.This means that
the latter methods can give incorrect solution if time t becomes large enough.

This fact can be easily observed by computing the well-known soliton so-
lution of GPE with V ≡ 0. The energy changing during the time in non-
conservative schemes leads to incorrect evolution of numerical solution. To
illustrate this statement we give two numerical examples. The first example is
concerned with famous nonlinear Schrodinger equation (NLS) with cubic non-
linearity, which in fact coincides with GPE at k=0 and g=−1. It is well known
the NLS has the soliton solution of the form

us(x, t) =
2η exp

(

iη2t/2
)

exp (ηx) + exp (−ηx)
. (4.2)

We solved NLS with the initial data u0
j = us(xj , 0) by all listed above

methods and computed the value of the mean square of the difference between
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absolute values of the analytical solution (4.2) and numerical solution:

R(tn) =

M
∑

j=−M

(

|un
j | − |us(xj , tn)|

)2
h, n = 0, . . . , N.

Parameters of numerical schemes were chosen as L = 16, h = 1/128, τ = 0.001,
and ε = 10−9. At such values the best approximation is given by CFDS and
CNFD, here the value of R(t) is about 0.005. Very similar results of CFDS
and CNFD in this case can be explain by the fact that the module of the exact
soliton solution (4.2) does not depend on time.

All split-step methods produce insufficiently accurate solutions especially
at large time interval. Fig. 6 present the mean square difference as a function
of time for five numerical methods.
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Figure 6. The mean square difference be-
tween the absolute values of the soliton solu-
tion |us(x, t)| and numerical solutions |un

j | of
NLS obtained by different methods.
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Figure 7. The mean square difference be-
tween the absolute values of the soliton so-
lution |us(x, t)| and the numerical solutions
|un

j | of NLS obtained by TSSP in the space
intervals of different length.

The accuracy of solutions produced by time splitting methods is improved
on a larger space intervals. For example, Fig. 7 presents the changes of the mean
square difference between |us| and solution obtained by TSSP with respect to
the length L of the space interval (−L, L). One can see that the larger is the
space interval, the better approximation of solution is obtained. Therefore,
TSSP needs much more larger space intervals than CFDS to obtain a solution
that is comparable with CFDS solution in the accuracy of approximation.

The second example describes the GPE in self-focusing regime at g=−25
and k=0.1. We have solved the GPE at L=32, h=1/128, and τ=0.001 and
investigated the change of average energy Ē with respect to time.

The results of numerical experiments are shown in Fig. 8. One can see,
that only CFDS scheme (3.1) is able to give a correct solution in this case
(|δĒ | < 10−6). The deviations of energy of non-conservative solutions are too
large and the solutions can not be accepted as correct in the considered time
interval.

A solution obtained by TSSP can be improved if one takes a longer interval
L or a smaller value of τ . Fig. 9 shows the energy E of the solution of TSSP
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obtained by TSSP for three values of τ .

corresponding to three values of time step: τ = 10−3 (the same as in Fig.8),
τ = 5 × 10−4 and τ = 2.5 × 10−4. One can see, that for the last value of τ the
numerical solution is valid on the whole interval t < 100.

Note that if we replace the spectral Fourier method of solution of Eq. (3.6)
with finite-difference scheme (3.8), than the resulting method TSFD (time-
split finite difference) is more robust for such type of problems. The energy of
solution of TSFD obtained at τ = 0.001 almost coincides with the energy of
TSSP solution at τ = 2.5 × 10−4 for t < 100.

5 Conclusions

We propose the conservative finite-difference scheme for solving of 1D GPE.
The scheme preserves simultaneously the basic invariants of the GPE:

• the total number of particles N ,

• the impulse P ,

• the energy E .

The comparison of efficiency of the proposed scheme with other modern nu-
merical methods was made and the advantages of the conservative scheme were
demonstrated. This scheme enables one to solve the GPE at such conditions
when non-conservative schemes fail to give an adequate solution. The scheme
can be easily generalized to multidimensional problems.

The numerical examples considered above demonstrate, that a seemed com-
putational efficiency of the step-split method is vanished in the case of strong
nonlinearity due to necessity of using smaller time steps or longer space inter-
vals in order to achieve the same accuracy as CFDS.
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