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Abstract. Additive iterative methods of complete approximation for stationary
problems of mathematical physics are proposed. The convergence rate in the case
of an arbitrary number of commutative and noncommutative partition operators is
analysed. The optimal values of the iterative parameter are found and related es-
timates for the number of iterations are derived. Some applications of suggested
iterative methods are discussed.
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1 Introduction

The alternating direction implicit (ADI) method, suggested by Peaceman,
Rachford and Douglas [10, 12], is widely used as iterative method for solv-
ing stationary problems of mathematical physics. At the present time there are
many modifications of this method and schemes of its realization [11, 13, 14, 15].
It is known that the ADI method is based on special relaxation processes with
a possibility of the reduction of the complicated problem to a sequence of more
simple problems.

As a rule, it is assumed that the original operator is presented as a sum
of two simpler operators. Many papers on the ADI method are based on this
fact. In solving complicated problems of mathematical physics we often deal
with the additive partition of the original operator on larger number of terms.
We consider the representation

A =

p∑

α=1

Aα, Aα > 0, α = 1, 2, . . . , p.

We are interested in the case p > 2 (the case p = 2 is considered in detail in
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the modern literature). The trivial extensions of the ADI type algorithms and
methods of their investigation for p > 2 are not possible. In this paper we
propose a new approach for solving this problem.

2 Statement of the Problem and Numerical Algorithms

Consider the operator equation

Ay = f, (2.1)

where A : H → H is a linear operator (not necessarily discrete) acting in a
real Hilbert space H with an inner product (u, v) and the norm ‖u‖ =

√
(u, u).

Suppose that A is a self-adjoint positive definite operator, i. e., A = A∗ > cE,
c > 0. Denote by HA the space H equipped with the inner product (u, v)A =

(Au, v) and the norm ‖u‖A =
√

(Au, u).
It is well known that the Cauchy problem for the linear evolutionary equa-

tion
du

dt
+ Au = f, t > 0, u(0) = u0, (2.2)

has a solution u(t) that converges in H to the solution of Eq. (2.1) as t → ∞.
The error u(t) − y satisfies the inequality

‖u(t) − y‖ 6 e−ct‖u0 − y‖. (2.3)

The estimate (2.3) permits us to construct iterative methods for Eq. (2.1)
with the use of various finite-difference schemes. Implicit schemes are optimal
from the viewpoint of the stability and the convergence rate. For example, for
the purely implicit difference scheme

yn+1 − yn

τ
+ Ayn+1 = f, tn = nτ, y0 = u0 (2.4)

which approximates problem (2.2), we have the estimate

‖yn − u‖ 6 e−δtn‖y0 − u‖, δ = δ(τ) > 0. (2.5)

Therefore it seems natural to develop implicit economical iterative methods
which have a similar convergence rate and, on the other hand, admit efficient
implementations of the algorithm. A class of such methods is presented by
additive difference schemes.

Additive methods are based on the representation of the operator A in the
form A =

∑p
α=1 Aα where each of the operators Aα is a stationary (possibly,

degenerate) operator. Instead of equation (2.1) we consider the new equation
written in the form

∑p
α=1 Aαyα = f. If y = yα, α = 1, 2, . . . , p, then this

relation turns into (2.1).
To solve the nonstationary problem (2.2), one can use various difference

schemes. If these schemes are asymptotically stable, then they can be used
efficiently as iterative methods for stationary problem (2.1).
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The alternating direction method was extended in [1], where the difference
schemes

ŷα − yα

τ
+

α∑

β=1

Aαŷβ +

p∑

β=α+1

Aβyβ = f, yα(0) = u0, α = 1, 2, . . . , p, (2.6)

ŷα − yα

τ
+σAα

(
ŷα−yα

)
+

p∑

β=1

Aβyβ = f, yα(0) = u0, α = 1, 2, . . . , p, (2.7)

were suggested for the approximation of problem (2.2). Schemes (2.6) and (2.7)
are targeted for sequential and parallel computers, respectively.

Let us suppose that f = f(t). The following theorem is valid (see, [5]).

Theorem 1. If operators Aα > 0, α = 1, 2, . . . , p, then the difference scheme

(2.6) is stable with respect to the initial data and the right-hand side, and the

solution admits the estimate

‖yα‖ 6 ‖u0‖ + ‖Au0 − f(0)‖ + M1t max
t

‖ft̄(t)‖, (2.8)

where M1 > 0 is a constant independent of τ.

Proof. Subtracting the neighbouring equations of the algorithm (2.6) one from
another we get

yαt + τAαyαt = yα−1,t, α = 2, 3, . . . , p,

y1t + τA1y1t = y̌pt + τft̄.

Considering the inner product of these equations with yαt and taking into
account conditions Aα > 0, α = 1, 2, . . . , p, we prove that

‖yαt‖ 6 ‖y̌αt‖ + τ‖ft̄‖.

The estimate (2.8) follows trivially from this inequality. ⊓⊔

The similar theorem holds for the stability of the parallel algorithm (2.7) [2].

Theorem 2. The difference scheme (2.7) is stable with respect to the initial

data and the right-hand side if σ > p/2, Aα > 0, α = 1, 2, . . . , p, and the

solution admits the estimate

‖y‖1 6

(
‖y(0)‖2

1 +
∥∥∥

p∑

α=1

Aαyα(0) − f(0)
∥∥∥

2

+ M2t max
t

‖ft̄(t)‖2
)1/2

, (2.9)

where ‖y‖1 =
∥∥∥

∑p
α=1 Aαyα

∥∥∥ and M2 > 0 is a constant independent of τ.

As τ → 0, the solutions of both schemes under consideration converges to
the solution of the original problem (2.2) at a rate O(τ).

Math. Model. Anal., 13(3):313–326, 2008.
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Unfortunately, the analysis of the estimates (2.8) and (2.9) shows that the
algorithms (2.6) and (2.7) cannot be efficiently used as iterative methods for
solving Eq. (2.1). In particular, the convergence of the iterative vector-additive
scheme

s+1
yα −

s
yα

τ
+ σAα

(s+1
yα −

s
yα

)
+

p∑

β=1

Aβ

s
yβ = f, α = 1, 2, . . . , p, (2.10)

was proved in [6] for σ > p/2 without estimating the convergence rate (see, also
[7, 9]). All components in (2.10) quite rapidly converge to each other, but the
convergence to the original solution is rather slow. The linear combination of
the components of the solution of system (2.10) is usually used for increasing
of the convergence rate of the iterative method [6, 8, 14]. For example, as
a solution of the original problem we can take averaged components of the
discrete solution

s

ỹ =

p∑

α=1

cα

s
yα, cα > 0,

p∑

α=1

cα = 1.

Moreover, the high convergence rate is achieved if constants cα coordinate with

operators Aα, in particular, we can take cαE =
(
E +

∑p
β=1,β 6=α A−1

α Aβ

)−1

.

Below we suggest the algorithms, which possess the high convergence rate and
require no special choice of averaging of the components of the iterative method.

Consider two modified iterative multicomponent methods [3, 4]

s+1
yα −

s
y ∗

α

τ
+

α∑

β=1

Aβ

s+1
yβ +

p∑

β=α+1

Aβ

s
yβ = f, α = 1, 2, . . . , p, (2.11)

s
y ∗
1 =

s
y1,

s
y ∗

α = 0,5
(s
yα +

s
yα−1

)
, α = 2, 3, . . . , p,

s+1
yα −

s

ỹ

τ
+ σAα

(s+1
yα −

s
yα

)
+

p∑

β=1

Aβ

s
yβ = f, α = 1, 2, . . . , p, (2.12)

s

ỹ = p−1

p∑

α=1

s
yα.

Below we show that the averaging of the solution in the first term of (2.11) and
(2.12) provides a rapid convergence of all components to the averaged solution
and the convergence of the same components to each other and to the solution
of the original problem (2.1).

3 Convergence Analysis

Consider the stabilizing properties of the parallel method (2.12). This method
can be classified as a regularized iterative finite-difference scheme of additive
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type. Summing relations (2.12) over α = 1, 2, . . . , p, we obtain that

s+1

ỹ −
s

ỹ

τ
+ σ∗

p∑

α=1

Aα

s+1
yα + (1 − σ∗)

p∑

α=1

Aα

s
yα = f, (3.1)

where σ∗ = σ/p. The expression (3.1) approximates equation (2.2) with the
first-order accuracy with respect to τ for σ∗ > 1/2 and with the second-order
accuracy for σ∗ = 1/2. We can easily see that the iterative method (2.12) has
a structure similar to that of the weighted difference scheme

ŷ − y

τ
+ σ∗Aŷ + (1 − σ∗)Ay = f. (3.2)

The scheme (3.2) is asymptotically stable for τ < 2/
√

c∆, cE < A < ∆E,
∆ > 0 if σ∗ = 0,5 and for any τ > 0 if σ∗ > 0,5. In general, for these values of
σ, scheme (3.2) is the best multicomponent scheme for constructing iterative
methods for solution of (2.1). The representation of (2.12) in the form (3.1)
permits us to assume that the method (2.12) has asymptotic properties similar
to those of (3.2). In this connection, it is interesting to study the convergence
rate of the method for various values of parameter τ and to analyze the optimal
choice of the iterative parameter.

The weighted scheme (3.2) belongs to the class of two-layer difference sche-
mes [13], and its stability and convergence can easily be analysed with the use
of the general theory based on the canonical form

Byt + Ay = f.

The expression (3.1) is a canonical form of the additive-averaged algorithm
(2.12). It is similar to the scheme (3.2) only in appearance and it is a complete
additive representation of scheme (2.12). However, it is impossible to use the
expression (3.1) for solving equation (2.1). We consider the scheme (2.12) for
this aim. The following assertion is valid.

Lemma 1. If Aα > c0E, α = 1, 2, . . . , p, c0 > 0, then the iterative method

(2.12) with σ = p satisfies the inequality

Q
(s
y
)

6

(1

q

)s

Q
(◦
y
)
, (3.3)

Q
(s
y
)

= ‖r(s)‖2 + p−2τ−2‖s
v‖2

3, r(s) =

p∑

α=1

Aα

s
yα − f,

‖s
v‖2

3 =

p∑

α,β=1,α>β

(s
v (α,β),

s
v (α,β)

)
,

s
v (α,β) =

s
yα −

s
yβ , q = 1 + 2c0pτ.

Proof. Consider the inner product of equations (2.12) with τAα

s+1
yαt and let

us add these relations over α = 1, 2, . . . , p:

p∑

α=1

(s+1
yα −

s

ỹ, Aα

s+1
yαt

)
+ pτ2

p∑

α=1

∥∥∥Aα

s+1
yαt

∥∥∥
2

− 0,5τ2
∥∥∥

p∑

α=1

Aα

s+1
yαt

∥∥∥
2

+ 0,5‖r(s + 1)‖2 = 0,5‖r(s)‖2. (3.4)

Math. Model. Anal., 13(3):313–326, 2008.
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Let us transform the left-hand side of equation (3.4). We denote
s
v (α,β) =

s
yα −

s
yβ . Then we can readily see that

p∑

α=1

(s+1
yα −

s

ỹ, Aα

s+1
yαt

)
= τ

p∑

α=1

(
Aα

s+1
yαt,

s+1
yαt

)

+
1

p

p∑

α,β=1,α>β

(
s
v (α,β), Aα

s+1
yαt − Aβ

s+1
yβt

)
. (3.5)

Since

Aα

s+1
yαt − Aβ

s+1
yβt = −p−1τ−2s+1

v (α,β),

it follows that the second term on the right-hand side of Eq. (3.5) is equal to

1

p

p∑

α,β=1,α>β

(
s
v (α,β), Aα

s+1
yαt − Aβ

s+1
yβt

)
= −p−2τ−2

p∑

α,β=1,α>β

(
s
v (α,β),

s+1
v (α,β)

)

= 0,5p−2τ−2
(
τ2‖s+1

vt‖2
3 − ‖s+1

v ‖2
3 − ‖s

v‖2
3

)
,

where ‖s
v‖2

3 =
∑p

α,β=1,α>β(
s
v (α,β),

s
v (α,β)). Moreover, from the relation

0,5pτ2

p∑

α=1

∥∥∥Aα

s+1
yαt

∥∥∥
2

− 0,5τ2
∥∥∥

p∑

α=1

Aα

s+1
yαt

∥∥∥
2

= 0,5p−2τ−2‖s+1
v ‖2

3

we obtain the estimate

pτ2

p∑

α=1

∥∥∥Aα

s+1
yαt

∥∥∥
2

− 0,5τ2
∥∥∥

p∑

α=1

Aα

s+1
yαt

∥∥∥
2

> p−2τ−2‖s+1
v ‖2

3.

Taking into account the above transformations and the properties of operators
Aα, from (3.4) we obtain that

c0τ

p∑

α=1

‖
s+1
yαt‖2 + 0,5p−2τ−2‖s+1

v ‖2
3 + 0,5p−2‖s+1

vt‖2
3 + 0,5‖r(s + 1)‖2

6 0,5p−2τ−2‖s
v‖2

3 + 0,5‖r(s)‖2. (3.6)

Since
p∑

α=1

‖
s+1
yαt‖2 = p‖

s+1

ỹt‖2 + p−1‖s+1
vt‖2

3

and from expression (3.1) with σ∗ = 1

s+1

ỹt =

s+1

ỹ −
s

ỹ

τ
= −r(s + 1),
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we have the following expression for the first term in inequality (3.6)

c0τ

p∑

α=1

‖
s+1
yαt‖2 = c0τ

(
p‖r(s + 1)‖2 + p−1‖s+1

vt‖2
3

)
.

Representing the constant c0 as the sum c0 = ε1 + ε2, ε1, ε2 = const > 0, with
regard to the last relation, from (3.6) we obtain the inequality

0,5(1 + 2ε1pτ)‖r(s + 1)‖2 + ε2τ

p∑

α=1

‖
s+1
yαt‖2 + (0,5p−2 + ε1p

−1τ)‖s+1
vt‖2

3

+ 0,5p−2τ−2‖s+1
v ‖2

3 6 0,5p−2τ−2‖s
v‖2

3 + 0,5‖r(s)‖2. (3.7)

To estimate
∑p

α=1 ‖
s+1
yαt‖2 we use the identity

s+1
yαt = −

(
pτAα

s+1
yαt + p−1τ−1

p∑

β=1

(
s
yα −

s
yβ) + r(s)

)
,

which readily follows from (2.12). Considering the inner product of the last
relation with itself and summing the resulting formula over α = 1, 2, . . . , p, we
obtain that

p∑

α=1

‖
s+1
yαt‖2 = p2τ2

p∑

α=1

‖Aα

s+1
yαt‖2 + p−2τ−2

p∑

α=1

∥∥∥
p∑

β=1

(
s
yα −

s
yβ)

∥∥∥
2

+ p‖r(s)‖2

− 2

p∑

α,β=1,α>β

(
s
v (α,β), Aα

s+1
yαt − Aβ

s+1
yβt

)
+ 2pτ

p∑

α=1

(
Aα

s+1
yαt, r(s)

)

+
2

pτ

p∑

α=1

( p∑

β=1

(
s
yα −

s
yβ), r(s)

)
.

Since

p2τ2

p∑

α=1

‖Aα

s+1
yαt‖2+2pτ

p∑

α=1

(
Aα

s+1
yαt, r(s)

)
+ p ‖r(s)‖2 = p2τ2

p∑

α=1

‖Aα

s+1
yαt‖2

− pτ2
∥∥∥

p∑

α=1

Aα

s+1
yαt

∥∥∥
2

+ p‖r(s + 1)‖2 = p−1τ−2‖s+1
v ‖2

3+p‖r(s + 1)‖2,

− 2

p∑

α,β=1,α>β

(
s
v (α,β), Aα

s+1
yαt − Aβ

s+1
yβt

)
= 2p−1τ−2

p∑

α,β=1,α>β

(
s
v (α,β),

s+1
v (α,β)

)

= p−1τ−2
(
‖s+1

v ‖2
3 + ‖s

v‖2
3 − τ2‖s+1

vt‖2
3

)
,

2p−1τ−1

p∑

α=1

( p∑

β=1

(
s
yα −

s
yβ), r(s)

)
= 0,
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it follows from (3.7) that

(1+2c0pτ)‖r(s+1)‖2+p−2(1+2p(ε1−ε2)τ)‖s+1
vt‖2

3+p−2τ−2(1+4ε2pτ)‖s+1
v ‖2

3

6 ‖r(s)‖2 + p−2τ−2‖s
v‖2

3. (3.8)

By setting ε2 = 0,5c0 in (3.8), we obtain the assertion of the lemma. ⊓⊔

Lemma 1 does not necessarily imply the convergence of the iterative scheme
(2.12) to the solution of the problem (2.1) since the residual of the multicompo-

nent discrete scheme r(s) does not correlate with the natural residual
s
r = A

s
y−f

of the discretization. To estimate the convergence of the method (2.12), we in-

troduce the error function
s
ρ =

s

ỹ − y. Using the identity

s
yα =

s

ỹ +
1

p

p∑

β=1

(s
yα −

s
yβ

)
=

s

ỹ +
1

p

p∑

β=1

s
v (α,β)

and the expression for the residual r(s), we obtain that

A
s
ρ = −

p∑

α=1

Aα

(1

p

p∑

β=1

s
v (α,β)

)
+ r(s),

whence it follows that

s
ρ = −

p∑

α=1

Bα

(1

p

p∑

β=1

s
v (α,β)

)
+ A−1r(s),

where Bα = A−1Aα =
(
E +

∑p
β=1,β 6=α A−1

α Aβ

)−1

. If operators Aα, α =

1, 2, . . . , p, are pair-wise commuting, then, obviously, ‖Bα‖ < 1 and

‖
s
ρ‖ 6 c−1‖r(s)‖ + ‖s

v‖3.

From (3.3) we obtain

‖s
v‖3 6 pτ

((1

q

)s

Q
(◦
y
))1/2

, c−1‖r(s)‖ 6 c−1
((1

q

)s

Q
(◦
y
))1/2

. (3.9)

Summing up these inequalities, we get the estimate

‖
s
ρ‖ 6 (pτ + c−1)q−s/2

(
Q

(◦
y
))1/2

.

Hence the following theorem holds.

Theorem 3. Let Aα > c0E, α = 1, 2, . . . , p, c0 > 0, and the operators Aα be

pair-wise commuting. Then the additive iterative method (2.12) with σ = p
converges to the solution of (2.1) and the convergence rate can be estimated as

∥∥s

ỹ − y
∥∥ 6 c−1‖r(s)‖ + ‖s

v‖3 6
pτ + c−1

(1 + 2c0pτ)s/2
‖r(0)‖1/2. (3.10)
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The iterative method (2.12) is convergent for any τ > 0, but, by (3.9),
the optimal value of the iterative parameter is attained at τ = τ0 ∼ p−1c−1.
Therefore, the convergence rate of the additive iterative method (2.12) depends
only on the lower boundary of the spectrum of the operators A, Aα; i.e., the
estimate (3.10) is similar to the convergence rate estimate (2.5) for a purely
implicit difference scheme (2.4).

Using Theorem 3, we can estimate the number s of iterations needed to
reduce the original error by a factor of 1/ε. For this purpose it suffices to
require that (pτ + c−1)(1+2c0pτ)−s/2 6 ε and take into account the condition
c = pc0. Then for τ = p−1c−1 we have

s > s0(ε) =
2 ln (2c−1/ε)

ln (1 + 2p−1)
.

To estimate the convergence rate of the iterative method (2.12) in the case
of noncommutative operators Aα, one can use the following assertion.

Theorem 4. Let c0E 6 Aα 6 ∆0E, α = 1, 2, . . . , p, c0 > 0, and ∆0 > 0. Then

the additive iterative method (2.12) with σ = p converges to the solution of Eq.

(2.1) and the convergence rate can be estimated as

∥∥s

ỹ − y
∥∥

A
6 c−1/2‖r(s)‖ +

( p∑

α=1

∥∥∥
1

p

p∑

β=1

s
v (α,β)

∥∥∥
2

Aα

)1/2

6
(
c−1/2 + τ∆1/2

)
q−s/2‖r(0)‖1/2, (3.11)

where ∆ = p∆0.

The estimate (3.11) involves the term τ∆1/2 that contains the upper bound-
ary of the spectrum of the operator A. Thus, one needs to perform the pre-
liminary discretization of the original problem and to connect the iterative
parameter and the space grid step by the relation τ ∼ c−1/2∆−1/2. In this case
the estimate for the number of iterations gets the form

s > s0(ε) =
2 ln (2c−1/2/ε)

ln (1 + 2c1/2∆−1/2)
.

The resulting convergence condition coincides with the constraint imposed on
τ in the classical alternating direction method. Moreover, the dependence of
the number of iterations of the method on the discretization step h is given by
the formula s0(ε) = O(ln h−1).

Note that if σ > p/2 (i. e., σ∗ > 0,5), then Theorems 3 and 4 remain valid.
For σ = p/2 the convergence of the iterative process (2.12) can be proved
only for bounded operators Aα, i. e., for finite-difference or projection-difference
schemes.

Now we investigate in detail the convergence of the sequential iterative
method (2.11). We assume that Aα, α = 2, 3, . . . , p, are nonnegative operators
and the operator A1 is positive definite, i.e.,

(A1y, y) > c0‖y‖2, c0 = const > 0, Aα > 0, α = 2, 3, . . . , p.

Math. Model. Anal., 13(3):313–326, 2008.
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Considering the inner product of Eq. (2.11) with τAα

s+1
yαt and summing up

the resulting relations over α = 1, 2, . . . , p, we obtain

p∑

α=1

(s+1
yα −

s
y∗

α, Aα

s+1
yαt

)
+ 0,5τ2

p∑

α=1

∥∥∥Aα

s+1
yαt

∥∥∥
2

+ 0,5‖r(s + 1)‖2 = 0,5‖r(s)‖2,

(3.12)

where
s+1
yαt = (

s+1
yα −

s
yα)/τ. Setting

s
v (α,α−1) =

s
yα −

s
yα−1, we rewrite the first

term on the left-hand side in (3.12) in the form

p∑

α=1

(s+1
yα −

s
y ∗

α, Aα

s+1
yαt

)
= τ

p∑

α=1

(
Aα

s+1
yαt,

s+1
yαt

)
− 1

2

p∑

α=2

(
s
v (α,α−1), Aα

s+1
yαt

)
.

(3.13)
Subtracting the equations in (2.11) with indices α and α − 1 from each other,

we arrive at the relation τ−2 s+1
w (α) = Aα

s+1
yαt, where

s+1
w (2) =

s+1
v (2,1) − 0,5

s
v (2,1),

s+1
w (α) =

s+1
v (α,α−1) − 0,5

(
s
v (α,α−1) +

s
v (α−1,α−2)

)
, α = 3, 4, . . . , p.

Furthermore, we have the obvious identity for α = 3, 4, . . . , p:

s+1
v (α,α−1) = 0,5

((s+1
v (α,α−1)+

s+1
v (α−1,α−2)

)
+

(s+1
v (α,α−1)−s+1

v (α−1,α−2)
))

.

Using these relations, we represent the second term on the right-hand side in
(3.13) as the sum of two terms:

− 0,5
(

s
v (2,1), A2

s+1
y2t

)
= 0,5τ−2

(
s
v (2,1),

s+1
v (2,1)

)
− 0,25τ−2‖s

v (2,1)‖2,

− 0,5

p∑

α=3

(
s
v (α,α−1), Aα

s+1
yαt

)
= S1 + S2,

where

S1,2 = 0,25τ−2

p∑

α=3

(s+1
w (α),

s
v (α,α−1) ± s

v (α−1,α−2)
)
.

We rewrite S1 as follows:

S1 = 0,25τ−2

p∑

α=3

(
s+1
v (α,α−1),

s
v (α,α−1) +

s
v (α−1,α−2)

)

− (0,5)3τ−2

p∑

α=3

∥∥∥s
v (α,α−1) +

s
v (α−1,α−2)

∥∥∥
2

.

For S2, we have the estimate

|S2| 6 0,25τ−2

p∑

α=3

(
s+1
w (α),

s+1
w (α)

)
+ (0,25)2τ−2

p∑

α=3

∥∥∥
s
v (α,α−1) − s

v (α−1,α−2)
∥∥∥

2

.
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We represent the second term on the left-hand side in (3.12) as

0,5τ2

p∑

α=1

∥∥∥Aα

s+1
yαt

∥∥∥
2

= 0,5τ2‖A1

s+1
y1t‖2 + 0,5τ−2

(
s+1
w (2),

s+1
w (2)

)

+ 0,5τ−2

p∑

α=3

(
s+1
w (α),

s+1
w (α)

)
. (3.14)

To estimate the inner products occurring in (3.14), we use the relations

0,5τ−2
(

s+1
w (2),

s+1
w (2)

)
= 0,5τ−2

(
‖s+1

v (2,1)‖2−(
s+1
v (2,1),

s
v (2,1)) + 0,25‖s

v (2,1)‖2
)
,

0,5τ−2
(

s+1
w (α),

s+1
w (α)

)
= 0,25τ−2

(
‖s+1

w (α)‖2 + ‖s+1
v (α,α−1)‖2 + 0,25‖s

v (α,α−1)‖2

− (
s+1
v (α,α−1),

s
v(α,α−1) +

s
v(α−1,α−2))

)
, α = 3, 4, . . . , p.

Using estimates given above, we get from (3.12) the following inequality

τ

p∑

α=1

(
Aα

s+1
yαt,

s+1
yαt

)
+ 0,5τ2‖A1

s+1
y1t‖2 + 0,5τ−2‖s+1

v (2,1)‖2 + (1/8)τ−2‖s+1
v ‖2

+ 0,5‖r(s + 1)‖2
6 (1/8)τ−2‖s

v (2,1)‖2 + (1/16)τ−2‖s
v‖2 + 0,5‖r(s)‖2, (3.15)

where ‖s
v‖2 =

∑p
α=3

(s
v(α,α−1),

s
v(α,α−1)

)
.

Further, from Eq. (2.11) we obtain the relation

s+1
y1t = −

(
τA1

s
y1t + r(s)

)
,

which, together with the property
(
A1

s
y1t,

s
y1t

)
> c0‖

s
y1t‖2 of the operator A,

implies that

c0τ‖
s+1
y1t‖2 = c0τ

(
τ2‖A1

s+1
y1t‖2 + 2τ(A1

s
y1t, r(s)) + ‖r(s)‖2

)
.

Using the ε-inequality with ε = 1/4 we estimate the second term on the right-
hand side in the last relation

2τ
(
A1

s
y1t, r(s)

)
6 0,5

(
‖r(s)‖2 + 2τ2‖A1

s
y1t‖2

)
,

and from (3.15) with 0,5 − c0τ > 0, we finally obtain the relation

τ−2
(
‖s+1

v (2,1)‖2 + 0,25‖s+1
v ‖2

)
+ ‖r(s + 1)‖2

6 0,5τ−2
(
‖s
v (2,1)‖2 + 0,25‖s

v‖2
)

+ (1 − c0τ)‖r(s)‖2.

The last inequality implies the following assertion.
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Lemma 2. Let 0,5−c0τ > 0, A1 be a positive definite operator, i.e., A1 > c0E,
and let Aα, α = 2, 3, . . . , p be nonnegative operators. Then the iterative process

(2.11) satisfies the estimate

s

Q 6 qs
◦

Q, s = 1, 2, . . . , (3.16)

where
s

Q = ‖r(s)‖2 + τ−2
(
‖s
v (2,1)‖2 + 0,25‖s

v‖2
)

and q = max{0.5, 1− c0τ}.

It follows from (3.16) that
s

Q → 0 as s → ∞. The optimal rate of the conver-
gence to zero is attained at c0τ = 0,5.

Just as in the case of the parallel method (2.12), Lemma 2 is not sufficient
to prove the convergence of the iterative method (2.11). To estimate the con-

vergence in standard norms, we introduce the error function
s
ρ =

s
y1 − y. Note

that, in general, instead of
s
y1, we can choose an arbitrary

s
yα (α = 1, 2, . . . , p)

or their arbitrary average
s

ỹ = p−1
∑p

α=1

s
yα. Using the identity

s
yα =

s
y1 +

α∑

β=2

(
s
yβ −

s
yβ−1) =

s
y1 +

α∑

β=2

s
v (β,β−1)

we can readily obtain the relation

s
ρ = −

p∑

α=2

Bα

α∑

β=2

s
v (β,β−1) + A−1r(s), (3.17)

where Bα = A−1Aα =
(
E +

∑p
β=1,β 6=α A−1

α Aβ

)−1

. If the operators Aα, α =

1, 2, . . . , p, pair-wise commute, then ‖Bα‖ < 1 and inequality (3.17) implies the
estimate

‖
s
ρ‖ 6 c−1‖r(s)‖ + p‖s

v‖, cE 6 A. (3.18)

It follows from (3.16) that ‖s
v‖ 6 4τ

(
qs

◦

Q
)1/2

and c−1‖r(s)‖ 6 c−1
(
qs

◦

Q
)1/2

,

which, together with (3.18) gives the estimate ‖
s
ρ‖ 6 (4pτ + c−1)

(
qs

◦

Q
)1/2

. We

have thereby proved the following assertion.

Theorem 5. Let the assumptions of Lemma 2 be satisfied, and let the operators

Aα, α = 1, 2, . . . , p, be pair-wise commuting. Then the iterative method (2.11)
converges to the solution of the original equation (2.1), and its convergence rate

can be estimated as

‖
s
ρ‖ 6 (4pτ + c−1)qs/2‖r(0)‖. (3.19)

From (3.19), we can obtain an estimate for the number of iterations required
to achieve a given accuracy ε:

s > s0 =
2 ln

(
(4pτ + c−1)/ε

)

ln q−1
. (3.20)

If the condition of pair-wise commutativity of the operators Aα fails, then,
using (3.17), we can readily justify the following assertion.
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Theorem 6. Let the assumptions of Lemma 2 be satisfied. Then the iterative

process (2.11) is convergent, and its error can be estimated as

‖
s
ρ‖A 6

1√
c
‖r(s)‖+

( p∑

α=1

∥∥∥
p∑

β=2

s
v (β,β−1)

∥∥∥
Aα

)1/2

6(
1√
c
+4p∆1/2τ)qs/2‖r(0)‖1/2,

s > s0 =
2 ln

(
(c−1/2 + 4p∆1/2τ)/ε

)

ln q−1
, ∆E > A.

It follows from (3.19) and (3.20) that, in commutative case, the convergence
rate of the sequential method (2.11) (just as of the parallel additive method
(2.12)) depends only on the iterative parameter τ and the lower boundary of
the spectrum of the operator A and Aα.

4 Conclusive Remarks

The multicomponent iterative methods suggested above for solution of sta-
tionary problems are additive in form as well as in the implementation, in
contrast to classical splitting-up methods [11, 15], factorization methods [13],
and the alternating direction method, which are based on additive approxima-
tion principles. All these methods are related to the sequential realization of
the solution finding process, and, in addition to the partition additivity, we
have a multiplicative form of an algorithm. Moreover, the suggested approach
for constructing economical iterative methods for equations with unbounded
operators seems to be quite useful for elaborating new algorithms to solve such
problems. From our viewpoint, algorithms (2.11) and (2.12) are most effective
for iterative directional partition methods. In the noncommutative case the
advantages of these methods is that they can be applied for problems of arbi-
trary dimensions. The classical alternating direction method and its various
modifications can be applied for solution of two-dimensional problems only.
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