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Abstract. We consider stationary linear problems on non-connected layers with
distinct material properties. Well posedness and the maximum principle (MP) for
the differential problems are proved. A version of the finite element method (FEM)
is used for discretization of the continuous problems. Also, the MP and convergence
for the discrete solutions are established. An efficient algorithm for solution of the
FEM algebraic equations is proposed. Numerical experiments for linear and nonlinear
problems are discussed.
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1 Introduction and Problem Formulation

We consider one-dimensional (1D) problem in the interval r1 ≤ x ≤ r2, where
r1 < 0 and r2 > 0. The interval (r1, r2) is divided into three non-overlapping
subintervals: Ω1 ≡ (r1,−t), ΩL ≡ (−t, t) and Ω2 ≡ (t, r2). A second order
differential equation is considered in each of the region

− (k1(x)u′
1)

′ + s1(x)u1 = f1(x), in Ω1, (1.1)

− (k2(x)u′
2)

′ + s2(x)u2 = f2(x), in Ω2, (1.2)

− kLu′′
L + sLuL = fL(x), in ΩL, (1.3)

where

ki(x) ≥ kimin > 0, si(x) ≥ simin > 0, i = 1, 2
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and kL, sL are nonnegative constants. The following external boundary condi-
tions are also imposed:

u1(r1) = ϕ1, u2(r2) = ϕ2, (1.4)

where ϕ1, ϕ2 are given constants.

The layer ΩL may have a structural role (as in the case of glue), a thermal
role (as in the case of a thin thermal insulator), an electromagnetic or optical
role, depending on the application. On the two ends of the layer one can
impose different, physical possible interface (jump), relations and in some sense
independent jump conditions. All these conditions could be classified in four
groups:

• Perfect contact (PC): [u]Γ = 0, [w]Γ = 0;

• Non-perfect contact (NPC): w|Γ = µ[u]Γ , [w]Γ = 0;

• Outer concentrated source (OCS): [u]Γ = 0, [w]Γ = ν;

• Own source (OS): [u]Γ = 0, [w]Γ = µu|Γ ,

where u is the solution of the given differential problem, w = ku′ is the flux, µ
and ν are given constants.

The interface problems are objects of intensive investigations and numeri-
cal methods construction during the past years, see [1, 2, 3, 4, 5, 9, 10, 11, 12,
13, 14, 18] and references given there. In [1], the solution of a general inter-
face problem is reduced to the solution of simpler interface problems of type
(PC), (OCS). Conservative difference schemes are studied in [2, 10], while the
immersed interface method is developed in [12, 14].

Let us consider the case (PC). Then on Γ = {−t, t}, we have

[u](−t) = uL(−t) − u1(−t) = 0, [u](t) = u2(t) − uL(t) = 0, (1.5)

[ku′](−t) = 0, [ku′](t) = 0. (1.6)

The condition (1.5) enforces the continuity of the primary variable u (e.g.,
temperature), whereas the conditions in (1.6) requires the continuity of the
flux w = ku′.

Traditionally, there are two ways of handling such layers in the numerical
modelling: either they are fully modelled or they are totally ignored. We use
the idea of D. Givoli [9] (see also [6]) to replace the layer in which the process is
well known, by a fictitious interface, namely a point in 1D case. Special jump
conditions are imposed on this interface to model the effect of the layer.

In the layer the problem can be solved analytically. Suppose that fL(x) is
continuous function. Then, the general solution in the layer is of the form

uL(x) = AF (x) + B G(x), (1.7)

where F and G are known functions, A and B are unknown constants. Using
(1.7), we can write conditions (PC)–(OS) in the following general form

k1(−t)u′
1(−t) = α̃u1(−t) + β̃u2(t) + λ̃, (1.8)

k2(t)u
′
2(t) = γ̃u1(−t) + δ̃u2(t) + ρ̃. (1.9)
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In [9], for (PC) the values of six unknown coefficients in (1.8), (1.9) are obtained,
which are determined in terms of kL, F (t), F (−t), G(t) and G(−t):

α̃ = α, β̃ = β, γ̃ = γ, δ̃ = δ, λ̃ = 0, ρ̃ = 0,

α =
kL

△
[F ′(−t)G(t) − G′(−t)G(−t)] , β =

kL

△
[−F (t)F ′(−t) + F (−t)G′(−t)] ,

γ =
kL

△
[F ′(t)G(t) − G(−t)G′(t)] , δ =

kL

△
[F (−t)G′(t) − F (t)F ′(t)] ,

△ = F (−t)G(t) − F (t)G(−t).

Thus the equations

k1(−t)u′
1(−t) = αu1(−t) + βu2(t), (1.10)

k2(t)u
′
2(t) = γu1(−t) + δu2(t), (1.11)

are equivalent to the original conditions (1.5), (1.6) in the case of (PC).

In the case of (NPC) we obtain

α̃ =
1

D

[
α +

αδ

µ
+

γ2

µ

]
, β̃ =

1

D

[
β +

βδ

µ
+

γδ

µ

]
, γ̃ =

1

D

[
γ −

αγ

µ
−

αβ

µ

]
,

δ̃ =
1

D

[
δ −

αδ

µ
−

β2

µ

]
, λ̃ = 0, ρ̃ = 0, D =

(
1 −

α

µ

)(
1 +

δ

µ

)
+

βγ

µ2
.

In the case (OCS) we derive for the coefficients of the equations (1.8), (1.9):

α̃ = α, β̃ = β, γ̃ = γ, δ̃ = δ, λ̃ = −ν, ρ̃ = ν,

and in the case (OS) we have:

α̃ = (α − µ), β̃ = β, γ̃ = γ, δ̃ = (δ + µ), λ̃ = 0, ρ̃ = 0.

In this paper we shall concentrate on the conditions (PC). The other cases
could be treated in a similar way. Thus, we shall solve numerically the equa-
tions (1.1), (1.2), subjected to the boundary conditions (1.4) and Robin’s type
interface conditions (1.10), (1.11).

The remaining part of this paper is organized as follows. In Section 2 we
discuss the differential problem. In Section 3 the FEM solution is obtained. In
Section 4 we present an efficient approach for solving the generated algebraic
equation. The stability and correctness of the proposed algorithm are proved.
Also, the FEM solution is analyzed: validation of the discrete MP and the
convergence of the discrete solution are established. Numerical results are
given in Section 5.

Math. Model. Anal., 13(3):383–400, 2008.
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2 Well Posedness of the Differential Problem

In this section, we investigate the well posedness of the problem (1.1), (1.2),
(1.4), (1.10), (1.11). Let assume, that for i = 1, 2, the data satisfy the usual
regularity and ellipticity conditions:

ki(x), si(x) ∈ L∞(Ωi), (2.1)

0 ≤ k0i ≤ ki(x), 0 ≤ si(x) in Ωi, i = 1, 2 (2.2)

and the sign conditions:

α < 0, β > 0, γ < 0, δ > 0. (2.3)

Assuming that conditions (2.3) hold, let us consider the special product
space L = L2(Ω1) × L2(Ω2), endowed with the inner product and associated
norm

(u, v)L = −γ(u1, v1)L2(Ω1) + β(u2, v2)L2(Ω2), ‖v‖L = (v, v)
1/2
L ,

where (ui, vi)L2(Ωi) =
∫

Ωi

uivi dx, i = 1, 2. We can identify v ∈ L with a

scalar function in Ω = Ω1 ∪ Ω2, by v : Ω → R, v|Ωi
= vi, i = 1, 2. We

introduce the product space

H1 = {v = (v1, v2) | vi ∈ H1(Ωi) and v1(r1) = 0, v2(r2) = 0},

endowed with the inner product

(u, v)H1 = −γ

[
(u1, v1)L2(Ω1) +

(
du1

dx
,
dv1

dx

)

L2(Ω1)

]

+β

[
(u2, v2)L2(Ω2) +

(du2

dx
,
dv2

dx

)

L2(Ω2)

]

and the associated norm. We also use the energy inner product and norm

[u, v] = −γ[u1, v1]1 + β[u2, v2]2, |[v]| = [v, v]1/2,

where

[ui, vi]i =

∫

Ωi

(
ki

dui

dx

dvi

dx
+ siuivi

)
dx, i = 1, 2.

First, we derive the weak form of the problem, consisting of (1.1), (1.2), (1.4)
and (1.10), (1.11). In Ω1 the weak form of the equation (1.1) is to find u1(x) ∈
H1(Ω1), such that

[u1, v1] − αu1(−t)v1(−t) − βu2(t)v1(t) = d1(f1, v1), ∀v1 ∈ H1(Ω1). (2.4)

Analogically, for u2(x) ∈ H1(Ω2) we obtain

[u2, v2] + γu1(−t)v2(t) + δu2(t)v2(t) = d2(f2, v2), ∀v2 ∈ H1(Ω2), (2.5)

where di(fi, v) =
∫

Ωi

fiv dx, i = 1, 2.
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To obtain a symmetric formulation, we multiply (2.4) by (−γ) and (2.5) by
β, and add the obtained equalities:

A(u, v) = d(f, v) ∀v ∈ H1, (2.6)

where

A(u, v) ≡ [u, v] + Z(u, v), (2.7)

Z(u, v) ≡ γαu1(−t)v1(−t) + βδu2(t)v2(t) + βγ[u1(−t)v2(t) + u2(t)v1(−t)],

d(f, v) = −γd1(f1, v1) + βd2(f2, v2).

This leads to the symmetric finite element matrix problem, investigated in
Section 3. Thus, under appropriate regularity conditions, the classical problem
(1.1), (1.2), (1.4), (1.8), (1.9) is equivalent to the variational problem (2.6).

We state the following important properties of the spaces H1 and L.

• H1 and L are Hilbert spaces,

• H1 is compactly embedded in L.

In the following lemma we deal with some properties of the bilinear form
A(u, v).

Lemma 1. Under the conditions (2.1)–(2.3) and

β γ ≤ α δ (2.8)

the bilinear form A(u, v), defined by (2.6), (2.7), is symmetric and bounded on
H1×H1. Moreover, this form is also coercive, i.e. there exist a constant c0 > 0
such that

A(v, v) ≥ c0‖v‖
2
H1 , ∀ v ∈ H1.

Proof. The symmetry of A is obvious, while its boundedness follows from (2.8)
and the imbeddings H1(Ωi) ⊂ C(Ωi), i = 1, 2. Under condition (2.8) we have

Z(v, v) = αγv2
1(−t) + βδv2

2(t) + 2βγv1(−t)v2(t) ≥ 0,

which together with (2.2) and the Friedrichs type inequality
∫

Ω1

v2
1(x) dx ≤

(t + r1)
2

2

∫

Ω1

(dv1

dx

)2

dx (2.9)

and similar one for v2(x) ensures the coerciveness of A. ⊓⊔

Theorem 1. If fi ∈ L2(Ωi), ϕi ≥ 0, i = 1, 2, and conditions (2.3), (2.8)
are satisfied, then the problem (1.1), (1.2), (1.4), (1.10), (1.11) has the unique
weak solution u ∈ H1(Ω1)×H1(Ω2). If ki ∈ C1(Ωi), si ∈ C1(Ωi), fi ∈ C(Ωi),
i = 1, 2, then the weak solution belongs to the space C2(Ω1) × C2(Ω2) and is
the unique classical solution of the problem (1.1), (1.2), (1.4), (1.10), (1.11),
which satisfies the following (MP): if fi ≤ 0, i = 1, 2, then

max
i=1,2

(max
Ωi

ui) ≤ max{0, ϕ1, ϕ2}. (2.10)

Math. Model. Anal., 13(3):383–400, 2008.
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Proof. Lemma 1 allows us to recast the problem (2.6) into the general theory
of abstract bilinear forms in Hilbert spaces, see [15]. This ensures the existence
and uniqueness of the weak solution. The proof that the weak solution is a
classical solution follows from [15, p. 232], for the classical two-point boundary
value problems and we omit it.

We follow the theory in [8]. Let M := max{ϕ1, ϕ2} and introduce the
piecewise C1 functions wi := max{ui − M, 0}, i = 1, 2. Then we have wi ≥ 0
and w1(r1) = 0, w2(r2) = 0. Further, we have ui(x) = wi(x) + M for any
x ∈ Ωi unless wi(x) = 0. Hence, for this w = (w1, w2), the left hand side of
(2.6) satisfies

−γ

−t∫

r1

[
k1(w

′
1)

2 + s1(w1 + M)w1

]
dx + β

r2∫

t

[
k2(w

′
2)

2 + s2(w2 + M)w2

]
dx

+ αγ(w1(−t) + M)w1(−t) + βδ(w2(t) + M)w2(t)

+ βγ
[
(w1(−t) + M)w2(t) + (w2(t) + M)w1(−t)

]
≥ 0.

The non-negativity of the first two addends is obvious. The non-negativity
of the remained terms of the sum follows from (2.8). The assumption fi ≤ 0,
i = 1, 2 implies that for this w, the right hand side of (2.6) satisfies

−γ

−t∫

r1

f1w1 + β

r2∫

t

f2w2 ≤ 0,

hence, altogether we have

−t∫

r1

[
k1(w

′
1)

2 + s1(w1 + M)w1

]
dx = 0,

r2∫

t

[
k2(w

′
2)

2 + s2(w2 + M)w2

]
dx = 0.

Therefore w′
1 = 0 and w′

2 = 0, i.e. wi, i = 1, 2 are constants. We have seen
that w1(r1) = 0 and w2(r2) = 0, hence we obtain wi = 0, i = 1, 2, which means
that (2.10) holds. ⊓⊔

Remark 1. If ϕi ≥ 0, i = 1, 2, then max(max
Ω1

u1, max
Ω2

u2) = max(ϕ1, ϕ2), and if

ϕi ≤ 0, i = 1, 2, we have the non-positivity property

max
Ωi

ui ≤ 0, i = 1, 2.

3 Finite Element Method

We consider the uniform partition of the domains Ωi, i = 1, 2:

Ωh
1 = {xi = r1 + (i − 1)h1, i = 1, . . . , M ; h1 =

−t − r1

M − 1
, x1 = r1, xM = −t},
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Ωh
2 = {xi+M = t+(i−1)h2, i = 1, . . . , N ; h2 =

r2 − t

N − 1
, xM+1 = t, xM+N = r2}.

Thus the domain Ωh ≡ Ωh
1 ∪Ωh

2 consists of M +N −2 elements Ki = [xi, xi+1],
i = 1, 2, . . . , M −1, M +1, M +2, . . . , M +N −2. Every element Ki is assigned
a polynomial degree p, p = 1, 2, 3. The corresponding standard finite element
space of piecewise-polynomial functions Vhp ⊂ V = V1 ∪ V2 has the form

Vhp = {vhp ∈ V ; vhp ∈ P p(Ki), i = 1, 2, . . . , M + N − 2},

where P p(Ki) stands for the space of polynomials of degree p on the element
Ki. The problem is to find uhp ∈ Vhp satisfying

A(uhp, vhp) = d(f, vhp), ∀vhp ∈ Vhp. (3.1)

The Galerkin FEM approximation leads to the system of algebraic equations

AY = F, uhp(x) =

M+N∑

i=1

yiΦi(x), f =

M+N∑

i=1

f(xi)Φi(x),

Φi(x) is the p-order basis of Vhp(x), Φ1 = ΦM+N = 0. The matrix A has the
forms, given in Figures 1-3.




⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

. . . 0

⋆ ⋆ ⋆

i = M → • • ◦

◦ • • ← i = M + 1

⋆ ⋆ ⋆

0
. .

.

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆




Figure 1. The matrix A of the linear FEM (p = 1).

In these figures dots denote coefficients in the equations, corresponding to
the interface nodes: xM and xM+1, black dots (•) denote the coefficients of
the unknown solution at grid nodes, which belong to: Ωh

1 for 1 ≤ i ≤ M or
Ωh

2 for M + 1 ≤ i ≤ M + N , blank dots (◦) denote the coefficients of the
unknown solution at grid nodes, which belong to: Ωh

2 for 1 ≤ i ≤ M or Ωh
1 for

M + 1 ≤ i ≤ M + N .

Math. Model. Anal., 13(3):383–400, 2008.
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


⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆

. . . 0
⋆ ⋆ ⋆

⋆ ⋆ ⋆

i = M → • • • ◦

◦ • • • ← i = M + 1

⋆ ⋆ ⋆

⋆ ⋆ ⋆

0
. . .

⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆




Figure 2. The matrix A of the quadratic FEM (p = 2).




⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

. . . 0
⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

i = M → • • • • ◦

◦ • • • • ← i = M + 1

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

0
. .

.

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆




Figure 3. The matrix A of the cubic FEM (p = 3).

4 Analysis of the FEM

4.1 Algorithm for solution of the FEM algebraic equations

Numerical experiments show that the error accumulates at interface grid nodes.
This way, the idea is to separate the problem into two independent discrete
problems and using the right and left Thomas method, to compute the solution
at the interface nodes to be determined. We shall show the procedure in the
case of quadratic FEM. For linear and cubic FEM the same approach is used.
The formulas are very long, but standard and they are not given in the present
work.

Let us write the system Ay = F in details for quadratic FEM in the case
when ki, si, i = 1, 2 are constant,

f =

{
−γf1(x), x ∈ Ωh

1 ,

βf2(x), x ∈ Ωh
2 ,

, fi = f(xi),
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fi± 1

2

= f(xi ± h/2), for h =

{
h1 in Ωh

1 ,

h2 in Ωh
2 ,

f1 = ϕ1, fM+N = ϕ2,

↓





y1 = f1

A1y1 + B1y 3

2

+ C1y2 =2
3h1f 3

2

,

A1y1 + B1y 3

2

+ C1y2 + B1y 5

2

+ A1y3 =1
3h1f2,

}

A1yi−1 + B1yi− 1

2

+ C1yi =2
3h1fi− 1

2

,

A1yi−1 + B1yi− 1

2

+ C1yi + B1yi+ 1

2

+ A1yi+1 =1
3h1fi,

i=3,. . . , M-1

}

A1yM−1 + B1yM− 1

2

− C1yM = 2
3h1fM− 1

2

,

A1yM−1 + B1yM− 1

2

+ C1yM + βγyM+1 = 1
6h1fM ,

}

(4.1)

↑






βγyM + C2yM+1 + B2yM+ 3

2

+ A2yM+2 =1
6h2fM+1

C2yM+1 + B2yM+ 3

2

+ A2yM+2 =2
3h2fM+ 3

2

,

}

A2yi−1 + B2yi− 1

2

+ C2yi + B2yi+ 1

2

+ A2yi+1 = 1
3h2fi,

C2yi + B2yi+ 1

2

+ A2yi+1 = 2
3h2fi+ 1

2

,

i=M+2,. . . , M+N-1

}

yM+N = fM+N ,

(4.2)

where

A1=γ

(
8k1

3h1
−

2s1h1

30

)
, B1 = γ

(
−

16k1

3h1
−

16s1h1

30

)
, C1 = A1,

A1=γ

(
−

k1

3h1
+

s1h1

30

)
, B1=γ

(
8k1

3h1
−

2s1h1

30

)
, C1=γ

(
−

14k1

3h1
−

8s1h1

30

)
,

A2=β

(
−

8k2

3h2
+

2s2h2

30

)
, B2=β

(
16k2

3h2
+

16s2h2

30

)
, C2 = A2,

A2=β

(
k2

3h2
−

s12h2

30

)
, B2=β

(
−

8k2

3h2
+

2s2h2

30

)
, C2=β

(
14k2

3h2
+

8s2h2

30

)
,

C1=
C1

2
+γα, C2=

C2

2
+βδ.

It is clear that

|Bi| ≥ |Ai| + |Ci|, i = 1, 2, (4.3)

|Ci| ≥ |Ai| + |Bi|, |Bi| > |Ai|, i = 1, 2. (4.4)

Moreover for small hi, i = 1, 2 we observe that

Ai < 0, Bi > 0, Ci < 0, Ai > 0, Bi < 0, Ci > 0, Ci > 0, i = 1, 2. (4.5)
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We shall choose the mesh step size, according to the following restrictions:

h2
i ≤

5ki

3si
, i = 1, 2. (4.6)

Now, taking into account (4.3)–(4.6), we seek the solution in the form

yi− 1

2

= ξ1
i yi + δ1

i ,

yi = ξ2
i yi+ 1

2

+ η2
i yi+1 + δ2

i m,

}
i = M − 1, . . . , 2,

yM− 1

2

= ξ1
MyM + δ1

M ,

yM+ 3

2

= ξ̃1
M+1yM+1 + δ̃1

M+1,

yi = ξ̃2
i yi− 1

2

+ η̃2
i yi−1 + δ̃2

i ,

yi+ 1

2

= ξ̃1
i yi + δ̃1

i ,

}
i = M + 2, . . . , M + N − 1.

The unknown coefficients are calculated as follows:

ξ2
1 = 0, η2

1 = 0, δ2
1 = f1 = ϕ1,

ξ1
i =

−C1 − A1η
2
i−1

△1
i−1

, δ1
i =

2
3h1fi− 1

2

− A1δ
2
i−1

△1
i−1

,

△1
i−1 = A1ξ

2
i−1 + B1, i = 2, . . . , M ;

ξ2
i =

−B1

△2
i−1

, η2
i =

−A1

△2
i−1

, δ2
i =

1
3h1fi − A1δ

2
i−1 − δ1

i (A1ξ
2
i−1 + B1)

△2
i−1

,

△2
i−1 = ξ1

i (A1ξ
2
i−1 + B1) + A1η

2
i−1 + C1, i = 2, . . . , M − 1;

ξ̃2
M+N = 0, η̃2

M+N = 0, δ̃2
M+N = fM+N = ϕ2,

ξ̃1
i =

−C2 − A2η̃
2
i+1

△̃1
i+1

, δ̃1
i =

2
3h2fi+ 1

2

− A2δ̃
2
i+1

△̃1
i+1

,

△̃1
i+1 = A2ξ̃

2
i+1 + B2 i = M + N − 1, . . . , M + 1;

ξ̃2
i =

−B2

△̃2
i+1

, η̃2
i =

−A2

△̃2
i+1

, δ̃2
i =

1
3h2fi − A2δ̃

2
i+1 − δ̃1

i (A2ξ̃
2
i+1 + B2)

△̃2
i+1

,

△̃2
i+1 = ξ̃1

i (A2ξ̃
2
i+1 + B2) + A2η̃

2
i+1 + C2, i = M + N − 1, . . . , M + 2.

Therefore, if we substitute yM− 1

2

= ξ1
MyM + δ1

M , yM−1 = ξ2
M−1(ξ

1
MyM +

δ1
M ) + η2

M−1yM + δ2
M−1 in (4.1) and yM+ 3

2

= ξ̃1
M+1yM+1 + δ̃1

M+1, yM+2 =

ξ̃2
M+2(ξ̃

1
M+1yM+1 + δ̃1

M+1) + η̃2
M+2yM+1 + δ̃2

M+2 in (4.2), we obtain

[
yM

yM+1

]
= H−1

[
1
6h1fM − δ1

M (B1 + A1ξ
2
M−1) − A1δ

2
M−1

1
6h2fM+1 − δ̃1

M+1(B2 + A2ξ̃
2
M+2) − A2δ̃

2
M+2

]
,

where

H=



ξ1
M (B1+A1ξ

2
M−1)+A1η

2
M−1+C1 βγ

βγ ξ̃1
M+1(B2+A2ξ̃

2
M+2)+A2η̃

2
M+2+C2



 .
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The existence of the inverse matrix H−1 is ensured by the conditions (2.8),
(4.4)–(4.6).

Although A is not a diagonal dominant matrix, which is a classical require-
ment, see [16, 17], for the correctness and stability of the Thomas method, we
can prove the following statement.

Theorem 2. The algorithm described above is correct and stable.

Proof. For linear FEM solution, the details are given in [13]. For quadratic
FEM, using (4.3)–(4.6), just as in the classical theory, [16, 17] and applying
the full induction method, we can prove the inequalities

|ξ1
i | ≤ 1, ξ1

i > 0, △1
i−1 > 0, i = 2, . . . , M,

|ξ2
i | ≤ 1, ξ2

i >0, |η2
i | ≤ 1, η2

i <0, △2
i−1>0, i=2, . . . , M − 1,

(4.7)

0 < ξ1
i ξ2

i−1 + η2
i−1 < 1, i = 2, . . . , M − 1, (4.8)

|ξ̃1
i | ≤ 1, ξ̃1

i > 0, △̃1
i+1 > 0, i = M + N − 1, . . . , M + 1;

|ξ̃2
i | ≤ 1, ξ̃2

i > 0, |η̃2
i | ≤ 1, η̃2

i < 0, △̃2
i+1 > 0,

(4.9)

0 < ξ̃1
i ξ̃2

i+1 + η̃2
i+1 < 1, i = M + N − 1, . . . , M + 2. (4.10)

Correctness. We shall note that existence of H−1 is provided from the
assertion: det(H) > 0. Indeed, using the coefficients of the solution of the left
and right Thomas method, (2.8) and (4.6), we have

det(H) =
(
−

B1

ξ2
M

−
C1

2
+ αγ

)(
−

B2

ξ̃2
M

−
C2

2
+ βδ

)
− β2γ2 > 0.

Now, taking into account the inequalities for △ in (4.7) and (4.9) we prove that
the algorithm is correct.

Stability. We have to show that computing the solution, the error does
not increase. Suppose that there has been a mistake ε, for some i. Thus, for
example, from the right Thomas method we have

yi− 1

2

= ξ1
1(yi + ε) + δ1

i ,

yi−1 = ξ2
i−1yi− 1

2

+ η2
i−1(yi + ε) + δ2

i−1

= ξ2
i−1[ξ

1
1(yi + ε) + δ1

i ] + η2
i−1(yi + ε) + δ2

i−1

= (ξ1
i ξ2

i−1 + η2
i−1)yi + (ξ1

i ξ2
i−1 + η2

i−1)ε + ξ2
i−1δ

1
i + δ2

i−1.

Now, the stability of the algorithm follows from (4.7)–(4.10).
Finally, we note that the same approach and argumentation can be applied

for the cubic FEM. ⊓⊔

Now, the problem can be solved separately in domains Ω1 and Ω2. Nu-
merical experiments show that in the case of one layer, there is no essential
difference in the results, using FEM on the whole interval Ω or computing the
solution in Ω1 and Ω2 separately, applying the above approach. The effect
(computational time and accuracy) of such separation into independent prob-
lems comes when the computational domains are very large or/and in the case
of multilayer domain.
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4.2 Discrete MP and Convergence

The preservation of characteristic qualitative properties of different phenomena
becomes a more and more important requirement to the construction of reliable
numerical models, [7]. In this section we discuss the discrete version of the
continuous maximum principle given in Theorem 1.

Definition 1. We say that the problem (3.1) satisfies the discrete maximum
principle if for any right-hand side f ∈ L2(Ω) and ϕi ≥ 0, i = 1, 2 it holds

f ≥ 0 in Ω ⇒ uhp ≥ 0 in Ω.

Theorem 3. If the requirements of Theorem 1 and Lemma 1 are fulfilled, then
the problem (3.1) satisfies the discrete maximum principle and the following
estimate is true for all f and ϕi, i = 1, 2

‖y‖C ≤ M‖f‖C, (4.11)

where

M = max

{
1 −

(r1 − t)2

24γk1
, 1 −

(r2 − t)2

24γk2

}
, ‖z‖C = max

Ω
h

|z|.

The error at the mesh points satisfies

‖u(xi) − y(xi)‖C ≤ Ch4, i = 1, . . . , M + N, (4.12)

where the constant C is independent of h, h = max{h1, h2}.

Proof. The proof is achieved taking advantage of the classical approach, see
[16, 17], to analyze the Thomas method solution by means of the corresponding
coefficients. We shall discuss in details the solution, obtained by quadratic
FEM. The same analysis can be applied for the linear and cubic FEM solutions.

First, as before, using the full induction method, (4.3)–(4.5), (4.7)–(4.10)
and the obvious inequality BiAi ≥ AiBi, we prove (for h arbitrary small):

δ1
i > 0, i = 2, . . . , M and δ̃1

i > 0, i = M + N − 1, . . . , M + 1, (4.13)

δ2
i > 0, i = 2, . . . , M and δ̃2

i > 0, i = M + N − 1, . . . , M + 1. (4.14)

Next, we observe that yM > 0 and yM+1 > 0. Actually, the matrix H is
diagonally dominant and the sign condition (positive elements in the main
diagonal and negative elements in upper and lower diagonal) is satisfied, owing
to (4.3)–(4.6) and (2.8). Moreover, the right hand side of the system for yM

and yM+1 is positive, taking into account that fi > 0, i = 1, . . . , M + N and
(4.13), (4.14).

First, we use consequently the formulas of the solution of the right Thomas
method, starting with yM− 1

2

. From (4.7) and (4.13), it is evidently that
yM− 1

2

> 0. Next, for yM−1 we have

yM−1 = ξ2
M−1yM− 1

2

+ η2
M−1yM + δ2

M

= ξ2
M−1(ξ

1
MyM + δ1

M ) + η2
M−1yM + δ2

M

= (ξ2
M−1ξ

1
M + η2

M−1)yM + ξ2
M−1δ

1
M + δ2

M .
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Thus, (4.7), (4.8), (4.13) and (4.14) implies that yM−1 > 0. Further, for yM− 3

2

,

using (4.7) and (4.13) we obtain yM− 3

2

= ξ1
M−1yM−1 + δ1

M−1 > 0. Next, in the
same manner, we prove for yM−2, yM− 5

2

, yM−3, yM− 7

2

, . . . , y2, y 3

2

that they all
are positive. For the left Thomas method we apply the same arguments.

Next, we substitute the solution at half grid nodes in the solution at integer
grid nodes, denote ζi := ξ2

i ξ1
i+1 +η2

i , ζ̃i := ξ2
i δ1

i+1 +δ2
i and for the right Thomas

solution we obtain

yi = ζiyi+1 + ζ̃i, i = M − 1, . . . , 2 (4.15)

yi− 1

2

= ξ1
i yi + δ1

i , i = M, . . . , 2, (4.16)

at half grid nodes.

Let y = y◦ + y∗, where y◦ is the solution of the left and right Thomas
method for ϕ1 = ϕ2 = 0, fi 6= 0, i = 2, . . . , M + N − 1 and y∗ is obtained for
fi = 0, i = 2, . . . , M + N − 1, ϕ1 6= 0, ϕ2 6= 0.

For (4.15), from (4.8), we have

|yi| ≤ |ζi||yi+1| + |ζ̃i| ≤ |yi+1| + |ζ̃i|

and hence

|yi| ≤

M−1∑

k=i

|ζ̃k|, 2 ≤ i ≤ M − 1, (4.17)

where

|ζ̃i| ≤ |ξ2
i ||δ

1
i+1| + |δ2

i | ≤ |δ1
i+1| + |δ2

i |.

First we estimate y◦. For δ1
i+1 =

1

A1ξ2
i + B1

(
2
3h1fi+ 1

2

− A1δ
2
i

)
we find

|δ1
i+1| ≤

1

|B1| − |A1|

(∣∣∣∣
2

3
h1fi+ 1

2

∣∣∣∣+ |A1δ
2
i |

)

≤
1

|B1| − |A1|

(∣∣∣∣
2

3
h1fi+ 1

2

∣∣∣∣+
∣∣∣∣

A1

A1ξ2
i−1 + B1

∣∣∣∣
∣∣∣∣
2

3
h1fi− 1

2

+ A1δ
2
i−1

∣∣∣∣
)

≤
1

|B1| − |A1|

(∣∣∣∣
2

3
h1fi+ 1

2

∣∣∣∣+
∣∣∣∣
2

3
h1fi− 1

2

+ A1δ
2
i−1

∣∣∣∣
)

≤ . . .

≤
2h1

3(|B1| − |A1|)

i∑

k=1

|fk+ 1

2

|. (4.18)

Next, substituting δ1
i in δ2

i , we have

δ2
i =

1
3h1fi − A1δ

2
i−1 + (2

3h1fi− 1

2

− A1δ
2
i−1)

−A1ξ2

i−1
−B1

A1ξ2

i−1
+B1

ξ1
i (A1ξ2

i−1 + B1) + A1η2
i−1 + C1

.
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From (4.3), (4.4), (4.7), (4.9) and the obvious relations |Bi| > Bi, Ai > |Ai|,
|Bi| > Ai, Bi > |Ai| it follows that

|δ2
i | ≤

1

|C1|−|B1|

∣∣∣∣
1

3
h1fi+

2

3
h1fi− 1

2

∣∣∣∣+
∣∣∣∣∣

A1

ξ1
i (A1ξ2

i−1 + B1) + A1η2
i−1 + C1

∣∣∣∣∣
∣∣δ2

i−1

∣∣

≤
1

|C1| − |B1|

(∣∣∣∣
1

3
h1fi

∣∣∣∣+
∣∣∣∣
2

3
h1fi− 1

2

∣∣∣∣
)

+
∣∣δ2

i−1

∣∣ .

Consequently, we obtain

|δ2
i | ≤

h1

3(|C1| − |B1|)

(
i−1∑

k=1

|fk+1| + 2

i−1∑

k=1

|fk+ 1

2

|

)
. (4.19)

Solution of (4.16) leads to the similar estimate with δ2
i = 0.

Substituting (4.18) and (4.19) in (4.17) we arrive at the next inequality

‖y◦‖C ≤
h1

3(|C1| − |B1|)

M−1∑

i=2

(
i−1∑

k=1

|fk+1| + 4

i−1∑

k=1

|fk+ 1

2

| + 2|fi+ 1

2

|

)
. (4.20)

Similarly, for y∗ we obtain

‖y∗‖C ≤ |ϕ1|. (4.21)

Summing (4.20) and (4.21) we get the estimate for the solution of the right
Thomas method

‖y‖C ≤ |ϕ1| +
h1

3(|C1| − |B1|)

M−1∑

i=2

(
i−1∑

k=1

|fk+1| + 4

i∑

k=1

|fk+ 1

2

|

)
. (4.22)

The same arguments can be applied for the left Thomas method solution to
obtain

‖y‖C ≤ |ϕ2| +
h2

3(|C2| − |B2|)

M+N−1∑

i=M+2

(
i−1∑

k=1

|fk+1| + 4

i∑

k=1

|fk+ 1

2

|

)
. (4.23)

Combining (4.22) and (4.23) we obtain

‖y‖C ≤max{|ϕ1|, |ϕ2|}+
1

3
max

{
h1

|C1|−|B1|

M−1∑

i=2

(
i−1∑

k=1

|fk+1|+4

i∑

k=1

|fk+ 1

2

|

)
,

h2

|C2| − |B2|

M+N−1∑

i=M+2

(
i−1∑

k=1

|fk+1| + 4
i∑

k=1

|fk+ 1

2

|

)}

and hence we arrive at (4.11). The estimate (4.12) follows straightforward from
(4.11). ⊓⊔
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5 Numerical Results

Example 1. (Linear case) Let’s take the following data:

r1 = −6, t = 1, r2 = 3.5, f1(x) = mex(s1 − k1) + s1e
−t, ϕ1 = e−t + mer1 ,

f2(x) = ne−x(s2 − k2) + 2s2e
−t, ϕ2 = 2e−t + ne−r2 .

The exact solution of the problem (1.1),(1.2),(1.4),(1.8),(1.9) with α = −6,
β = 1, γ = −1, δ = 2, k1(x) = 4, k2(x) = 2, s1(x) = 4, s2(x) = 2 is

u(x) = e−t + mex in Ω1, u(x) = 2e−t + ne−x in Ω2.

The mesh step size is h1 = h2 = h, m = −0.4872, n = −0.8718. The com-
putational results (i.e. the errors and the convergence rate) are given in Table
1.

Table 1. Error in the maximal discrete norm Eh
∞

and CR (written in brackets).

h Linear FEM Quadratic FEM Cubic FEM

0.1 8.2736e-5 2.7259e-8 6.3498e-9
0.05 2.0682e-5 (2.0001) 1.7780e-9 (3.9384) 4.0458e-10 (3.9722)

0.025 5.1708e-6 (1.9999) 1.1399e-10 (3.9633) 2.5172e-11 (4.0065)
0.0125 1.2928e-6 (1.9999) 8.1375e-12 (3.8082) 1.5709e-12 (4.0022)
0.00625 3.2319e-7 (2.0000) 5.5288e-13 (3.8795) 9.8011e-14 (4.0025)

The convergence rate (CR) is calculated using double mesh principle:

CR = log2

Eh
∞

E
h

2

∞

, Eh
∞ = max

1≤i≤M+N
|uhp(xi) − u(xi)|.

In Figure 4(a) we have plotted the exact solution and the numerical solution,
computed with quadratic FEM. The results of experiments confirm the theo-
retical estimate (4.12).

Example 2. (Nonlinear case) For applications, it is interesting to com-
pute the solution of problem (1.1),(1.2),(1.4),(1.10),(1.11), where the Poisson-
Boltzmann equation is solved

fi = Ki sinh(ui − ϕi), i = 1, 2.

In this example, the parameters are:

K1 = K2 = −1, ϕ1 = 1, ϕ2 = 2, k1 = s1 = 4,

k2 = s2 = 2, α = −6, β = 1, γ = −1, δ = 2.

We use the Newton method for solving the obtained nonlinear system. Having
in mind the Taylor series of function sinh(·), the most appropriate initial solu-
tion (for starting the Newton iterations) is the solution of the linear problem
(1.1),(1.2),(1.4),(1.10),(1.11) with fi = Ki(ui − ϕi), i = 1, 2.

Math. Model. Anal., 13(3):383–400, 2008.



398 M. Koleva

−6 −5 −4 −3 −2 −1 0 1 2 3 4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

so
lu

tio
n

 

 

Numerical in [−t,r
1
]

Numerical in [t,r
2
]

Exact

−6 −5 −4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

N
um

er
ic

al
 s

ol
ut

io
n

Initial solution, x∈  [r
1
,−t]

Initial solution, x ∈  [t,r
2
]

Numerical solution, x∈  [r
1
,−t]

Numerical solution, x∈  [t,r
2
]

a) b)

Figure 4. a) Exact and numerical solution, h = 0.1, r1 = −6, t = 1, r2 = 3.5; b) Initial
and numerical solution, h = 0.1, r1 = −6, t = 1, r2 = 3.5.

Table 2. Error in the maximal discrete norm (Eh
∞

) and CR values.

h Linear FEM Quadratic FEM Cubic FEM

0.1 3.51930e-4 1.38425e-7 8.22015e-8
0.05 8.80811e-5 (1.9983) 9.51208e-9 (3.8632) 5.26157e-9 (3.9656)

0.025 2.20262e-5 (1.9996) 6.12831e-10 (3.9562) 3.31664e-10 (3.9877)

0.0125 5.50668e-6 (2.0000) 3.90228e-11 (3.9731) 2.07909e-11 (3.9957)

0.00625 1.37643e-6 (2.0003) 2.46561e-12 (3.9843) 1.29943e-12 (4.0000)

0.003125 3.43848e-7 (2.0011) 1.54229e-13 (3.9988) 8.11861e-14 (4.0005)

The results are presented in Table 2, for r1 = −2.5, t = 1, r2 = 2. As
an exact solution we take the numerical solution, computed with a very small
mesh step h = 0.0001, i.e. M = 15001 and N = 10001.

The experiment shows, that the algorithm can be applied also to solve
nonlinear problems and the estimate (4.12) is still valid.

In Figure 4(b) we have plotted the initial solution and the numerical solu-
tion, computed with the quadratic FEM, h = 0.1, r1 = −6, t = 1, r2 = 3.5.

6 Conclusions

Interface problems of the following types have attracted a lot of attention from
both theoretical and numerical analysts over the last years:

• The differential equation/system has discontinuous, but bounded coeffi-
cients;

• The differential equation/system has singular source term, such as Dirac-
delta functions;

• The interface can be fixed or moving with time;

• There are one or several interfaces;

• Problems that are defined on irregular domains.
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In all of the cases above, usually the differential problems are defined on
joint domains for which the interfaces are internal boundaries.

The present work discusses a type of interface problems defined on dis-
joint intervals, namely with nonlocal jump conditions. Well posedness and
maximum principle for the differential problems are proved. We performed
FEM discretizations, based on linear, quadratic and cubic bases. The discrete
maximum principle and convergence results for the discrete problems are stud-
ied. Also, an economic algorithm for solution of the generated FEM algebraic
systems of equations is realized. Correctness and stability of the proposed algo-
rithm are proved. The numerical results for linear and nonlinear test examples
give a good agreement with the theoretical ones.

It is interesting to be considered problems in which the nonlocal jump condi-
tions (1.8) – (1.9) are coupled together through some nonlinear relations. Also,
it is desirable to develop the FEM for parabolic interface problems on disjoint
domains, as well as for elliptic and parabolic two-dimensional problems.
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