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Abstract. We provide multiplicity results for the Neumann boundary value prob-
lem, when the second order differential equation is of the form z” = f(z).
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1. Introduction

We consider the following boundary value problem

(1.1)

where f(z) is a continuously differentiable function which has simple zeros.
Our goal is to prove the multiplicity results for problem (1.1). They can be
generalized to the case of f(z) being a function with n simple zeros. Simi-
lar results for f(x) = —x + 2% with the Dirichlet boundary conditions were
obtained in [3].

2. Simple Cases

Let us consider problem (1.1). Our assumptions on a function f(x) are the
following: (C1) f € C*(R), (C2) f(z) has simple zeros at p; < p2 < p3 <
pa < ps, (C3) f(—o0) = —co and respectively f(4o00) = +oo0.

An example of such a function is shown in Fig. 1.

Let us consider the primitive function F'(z) = for f(s) ds, which has exactly
three local minimums at the points p; < ps < ps and consequently two local
maximums at the points p, < p4 as is shown in Fig. 2.
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Figure 1. The function f(x). Figure 2. The primitive F(z).

The phase portrait of the equivalent system

=y,
{y/ ~ () 21)

depends on properties of the function f(z) and its primitive F(z). Let us
consider the cases:

1) F(p1) < F(ps) < F(ps), 2) F(ps) < F(p3) < F(p1),
3) F(ps3) < F(p1) < F(ps), 4) F(ps) < F(ps) < F(p1).

System (2.1) has three critical points of the type “saddle” at (p1;0), (ps;0),
(ps;0) and two critical points of the type “center” at (p2;0), (p4;0).

The following phase portraits describe periodical solutions, the phase tra-
jectories of which go around one of critical points of the type “center”. There
are two homoclinic solutions (bold lines in Fig. 3 and Fig. 4) which go around
the points (p2;0), (p4;0).

Figure 3. The phase portrait of the Figure 4. The phase portrait of the
case 1. case 3.

Theorem 1. Let the conditions

n’m? < |fa(p2)| < (n+1)*7%,
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m?m? < |fo(pa)] < (m+1)*72
hold. Then the Neumann boundary value problem (1.1) has at least 2n + 2m
nonconstant solutions.

The proof is given in [1].

3. More Complicated Cases

Let us consider the following cases

1) F(p1) < F(ps) < F(ps), 2) F(ps) < F(p1) < F(ps).

These cases are symmetrical. There exist the other periodical solutions with
the property that the respective phase trajectories go around both of critical
points of the type “center” (see Figure 5).

Consider the function

1 o) ds
T(wo) = — e

2 )z  F(s) = F(zg)
which is defined in the interval (z; 28*), where x1(x¢) is the first zero to the
right of ¢ of the function F'(s) — F(x). Let us define x{ to as the first zero to
the left of the function F5 = f;s f(s)ds. Similarly define z§* be the first zero
to the left of the function F3 = [ f(s)ds. Obviously p1 < af < 25" < pa.

Figure 5. The phase portrait for the case F(p1) < F(ps) < F(ps).

Theorem 2. Let Ty, = min{T'(z) : = € (zf, z5*)}, where x1 > x¢ is the
first zero of the function (F(s) — F(x)). Suppose that there exists an integer
k such that kT pin <1 < (k+ 1)Tin. Then there are at least 4k solutions of
the Neumann boundary value problem, with trajectories going around the two
singular points of the type “center”.
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Figure 6. Phase portrait for the (4.1).

Proof. Let T(z) = min{T (z0), § < xo < x*}. Consider the Cauchy prob-
lem (1.1), (0) = =g, 2’ (0) = 0, zo € (zf;2). When z, is close to z, then
the half period T'(zg) satisfies the condition kT, < 1 < (kK + 1)Thin- On
the other hand, T'(xg) — +o00, when o — . Hence there exist at least k
solutions of the problem. A similar result is valid for the case z < m < z§*.
Hence additionally at least k solutions exist.

Define z; as the first zero of F(s) — F'(z) to the right of z. Notice that
z1 € (z2;ps). Consider the case of z(0) = n for n € (z2;21). When n is close
to z1, the condition is satisfied, and when n is close to z2, then T'(n) — +oc.
Hence there exist at least & solutions of the problem. A similar result is valid
for n € (z1;ps5). Thus we have proved that totally at least 4k solutions exist.
|

Remark 1. “Small-amplitude” solutions of the given boundary value problem
can exist in neighborhoods of the critical points of the type “center”. The
conditions for existence of such solutions are given in Theorem 1.

4. Example 1

Consider the second-order nonlinear boundary value problem

{m” 625 + 2.50% — 7623 — 7.522 + 148z + 2, 1)
X

'(0) = 2'(1) = 0.

Function f(x) = 62° 4 2.52* — 762> — 7.52% + 1482 + 2 has exactly five simple
zeros, where f’(x) > 0. The equivalent two-dimensional system has three
critical points of the type “saddle”. There are also two zeros where f/(z) < 0,
and a system has two critical points of the type “center”.

Respectively the function

F(x) = 2% 4+ 0.52° — 192* — 2.52% + 742% + 22 — 56
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has three local minimums and consequently two local maximums as is shown
in Fig. 7.

f(x), F(x)

400

Figure 7. Function f(z) (bold) and its primitive (dashed).

We notice that the condition 42 72 < 242 < 5272 holds, it follows from
fz(p2) = fz(—1.56) = —242. Then the boundary value problem (4.1) has
at least eight solutions. Similarly, if f,(ps) = f.(1.54) = —211, then the
condition 42 72 < 211 < 52 72 holds. So the boundary value problem (4.1) has

at least eight solutions (see Fig. 8).

Figure 8. Small amplitudes solutions. Figure 9. Large amplitudes solutions.

In Table 1 values of T},;, are presented.
The boundary value problem (4.1) also has at least eight “large amplitudes”
solutions as is shown in Fig. 9. Hence the boundary value problem (4.1) has

at least 24 solutions.

5. Example II
Consider the second-order nonlinear boundary value problem

2" = 2"—0.52%—13.52°4+6.52*4+42.523 — 1822 — 18z, (5.1)
2/(0) =0, 2'(1)=0. )
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Table 1. Results of numerical experiments: values of Trir,-

o T1 (Io) To

-2.58 2.84 0.44
-2.56 2.79 0.4383
-2.54 2.76 0.4364
-2.53 2.72 0.4327
-2.51 2.69 0.44
-2.47 2.63 0.46

The function
f(x) = 2" —0.52° — 13.52° + 6.50* 4 42.52% — 1827 — 18z

has seven simple zeros. A respective two-dimensional system has exactly four
critical points of the type “saddle” at the points p; = —3, p3 = —0.5, p5s = 1,
pr = 3 and three critical points of the type “center” at the points ps = —2,
ps = 0, pg = 2. The function
1 1 9 13 85
F(z) = gazg - ﬁx7 - Zxﬁ Ex5 + §x4 — 62° — 922

has 4 local minimums and consequently 3 local maximums as is shown in
Fig. 10 and Fig. 11.

fx), Fx)

Figure 10. Phase portrait for the Figure 11. Function f(z) (bold) and
(5.1). its primitive (dashed).

By computing of f.(p2) = —180, fz(ps) = —18, fa(ps) = —100 we get
that the conditions
4272 <180 < 5272, 1272 <18 < 2272, 3%7% <100 < 4272

hold. Then the boundary value problem (5.1) has at least 16 solutions.
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In Table 2 values of T,;, are presented. We get that boundary value

Table 2. Results of numerical experiments: values of Trin.

To z1(zo) To
-2.70 2.54 0.971
-2.80 2.69 0.792
-2.90 2.81 0.750
-2.95 2.84 0.746
-2.97 2.85 0.760
-2.98 2.86 0.783

problem (5.1) has at least 4 “large” solutions due to Theorem 1, hence in total
it has at least 20 solutions (see Fig. 12 and Fig. 13).

Figure 12. Solutions in the neighbor-  Figure 13. “Large amplitudes” solu-

hoods of constants p2, p4 and ps. tions.

Remark 2. As can be viewed from Fig. 10 that “very large amplitude” solutions
with closed orbits containing three “centers” exist. The respective solution of
the Neumann BVP in our example exists on larger ¢-interval (computations
show that the half-period of these solutions is greater than 1).

Remark 3. Let us mention that considering functions f(x) with arbitrary large
numbers of simple zeros we can obtain a hierarchy of solutions with phase
trajectories going around numerous critical points.

Remark 4. The results for f(x) with n simple zeros are given in [2].
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