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Abstract. A family of matrix solutions of nonlinear wave equations is extended
and its application to modelling is given. It is shown that a similarity transformation,
induced by the matrix solution, is equivalent to the rotation. Matrix solutions are
used for modelling helical motions and vortex rings, simultaneous rotations and par-
ticles collision, mapping contraction and pulsating spheres. Geometrical interpreta-
tion of the doubling of rotation angle in each step of sequential mapping contraction
is given.
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1. Introduction

In the present paper we develop some results of papers [4, 5, 6], where ma-
trix solutions w, of the order n = 2* were constructed for nonlinear wave
equations. Now we show how matrix solutions of arbitrary even or odd order
can be constructed. However, the main aim of the paper is to propose some
applications of matrix solutions. In particular, by using matrix solutions we
describe a toroidal motion in vortex rings. We also describe a helical motion
of pulsating spheres. On the base of the theorem of composition and decom-
position of simultaneous rotations we propose a model of particles collision.
We also propose a geometrical interpretation of the doubling of rotation angle
on each step of mapping contraction and we give a relation with Euler angles.

Let us remind the basic results from papers [4, 5, 6] starting from the
Klein-Gordon eguation

S~ At 2o =0, Qu)= “;(zﬁ ~1)2. (1.1)
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The corresponding sequence of matrix solutions u, (n = 2F,k = 1,2,...) is
constructed as

2k+1
Un(6,2) = cos(6) E, +asin(6) = exp(da), a= Y. a;M;, |a| =1 (1.2)
j=1

Here we use the following notation: E,, is the unit n x n-matrix, M; are unitary
M; My = E,, anti-Hermitian M} = —M;, anti-commuting n X n-matrices, *
means transposition and conjugation. The angular parameter ¢ is defined as
follows

¢ = ¢(az) = arccot(—sinh(az)), «a = puy/2/(1—v?), (1.3)

where z = z — vt is the moving frame of reference, = is an arbitrary point
along chosen direction in 3D-space of coordinates =1, 22, z3. Note that ¢ varies
from 0 to 7 to within period 7 of function cot when z varies from —oo to co.
For definiteness we assume that 0 < ¢ < 7, where boundary points 0 and
7w correspond to elementary solutions v = 1 and u = —1, respectively.We
also use functions u,(mg¢, a), of the same structure as (1.2), which satisfy a
nonlinear wave equation like (1.1) with more complicated potentials Q,,, (see
).

The complete the system 2k + 1 anti-commuting, unitary, anti-Hermitian,
linearly independent matrices M;(n) = M; of the order of n = 28 (k =
1,2,...) are constructed for k = 2,3, ... as follows:

M;(n) = <Mj(g/2) —Mj(zn/z))’ J=1,2,... 2k —1,

0 -E, 0 iE,
Mo (n) = (En/Z 0 /2) » Mapsa(n) = (iEn/z 0/2) )

For k =1 we take M;(2) = H; (j = 1,2,3), where H; are unit quaternions.

2. Additional Construction

In this section we propose a simple procedure for construction of matrices
Mj(n) of an arbitrary even or odd order.

Even order n = 2N, where 2¢ < 2N < 2¥*1 can be always represented in
the form

N =2k g k=t 1 pokTim ] <y <, < (K —1).

Hence, matrix M;(2N) can be constructed as a diagonal block matrix with
the blocks of the orders 2%,2%=% . 2F=im Tt is clear that matrices M;(2N)
are anti-commuting, unitary, anti-Hermitian, and linearly independent.

Matrices of the odd order n = 2N + 1 are constructed as follows

M;(2N +1) = diag(M;(2N), —i), j=1,2,...,2(k — i) + 1.
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These matrices are unitary and anti-Hermitian but not anti-commuting, how-
ever, as is proved below, matrix function uan11(¢, a) also satisfies (1.1) pro-
vided an additional condition on unit vector a.

Theorem 1. Function

2k—im)+1
usN+1(p,a) = Fany1cosg +asing, a= Z a;M;j(2N +1), |a|=1
j=1

satisfies equation (1.1) and it has the exponential representation

uaN+1 = exp(¢, a),

provided additional condition ) a; = %1 is valid.

Proof. Let us reduce equation (1.1) to the ordinary differential equation

d2u

2 2,02 _
The first derivative of u,, is du/dz = (—E, sin¢ + acos¢)d¢/dz. It follows
both from the definition (1.3), i.e. from cot ¢ = — sinh(az), and from equality
sin? ¢ = (1 + cot? ¢)~! that dp/dz = asin ¢. Thus we find

dun _ «

o . ) . ) o g o
Fa 2( 2F, sin ¢+Zasmq5c05¢) = 2(un(2¢,a) 1).

We identify E, with 1 both in the last term and in the term u? — 1
of equation (2.1). It follows from the definition of M;(2N + 1), the anti-
commuting property of matrices M;(2N), and from condition ) a; = %1
that equality a? = —FEsyy; is valid. Thus for n = 2N + 1 the equality
(un(¢,a))? = u,(2¢,a) is also valid. Therefore

2 2
du, o, 4 d*u,  « 9

-_-n _ = -1 =—u, ~1
dZ 2 (un )’ dZQ 2 u (u’n )
and, hence, equation (2.1) is reduced to the form
o2
(v* — N7+ )y (u2 —1) = 0. (2.2)
L ) . . . . , 27
It is evident that function usy 41 satisfies this equation, provided a* = T o2
—v

and, hence, it satisfies equation (1.1). Moreover, equation (2.2) has also the
trivial solutions u,, = 0, u, = =+1. Finally, due to the basic equality a? =
—FEsn 41, we find the following matrix expansion
¢° ¢°
exp(¢a) = E,, + da — ?En — €a+ ...=E,cos¢+ asin¢p = u,(¢,a).
The theorem is proved. B
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3. Mapping and Rotation

In this section we consider a more wide set of matrix functions u,(¢,a) for

(j =1,...,2k + 1), constructed as (1.2), provided that angular parameter ¢

can be an arbitrary real number or differentiable increasing function on time.
It is easy to verify that similarity transformation

M; — M} = up(¢,a)Myusy(d,a), j=1,2,...,2k+1 (3.1)

maps system {M;} to a similar system {}M;} which satisfies the same prop-
erties as the initial system. For example, if a = M1 and ¢ = 7/4 then
mapping (3.1) transfers system {1;(n)} to the following system:

'n) — o 0 —iM;(n/2) -
Mj(n)—M2k+1M]— (ZMJ(TL/2) 0 5 ]—172,...7216—1,

, (B2 0O , _ 0 By
M2k(n) - ( 0 —iEn/2> ) M2k+1 (TL) - <ZEn/2 0 .
Let Vi1 be a vector space spanned over basis vectors My, Mo, ..., Maj 1

and let vector b and unit vector a belong to Vay41.

Theorem 2. Mapping b — w,bu} induced by function u,(o,a) is equivalent
to rotation u,(2¢,a)b of vector b about unit vector a by angle 2¢, provided
orthogonality condition ) a;b; = 0 is valid.

Proof. It follows from the anti-commuting property of matrices M; and from
the orthogonality condition that

ba = Z biajMiMj = Zajbz(—MJMi) =+ Zajbj(_En) — —ab.
B i#j j

Thus, taking into account a®> = —E,, and (u,(¢,a))? = u,(2¢,a) we have
b — u,bu), = un (¢, a)(bcos ¢ — basin ¢) = u,(2¢, a)b.

The last term is equal to (bcos2¢ + absin2¢). It means that vector b is
turned by angle 2¢ about vector a in the plane of vectors b, ab. The theorem
is proved. W

It should be noted that when we say that u, (¢, a) accomplishes a rotation,
we mean an action u,(2¢, a)b. The angular parameter can be replaced by any
divisible by ¢ angle. Moreover, in the case of unit vector b we simply define
a rotation u,,.

Now we consider a mapping contraction. We consider a condition when
rotation u,, in Vax41 induces a rotation u, /; in V2x_1, i.e. in the space spanned
over basis vectors Mi(n/2),..., Myg_1)(n/2). It follows from the construction
of matrices M; that they have the block-diagonal form

M;(n) = diag(M; (n/2), M} (n/2)), j=1,2,...,2k - 1.
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Therefore function u,, also has a diagonal form wu,, = diag(u, 2, v, /2) provided
a=(ai,...,az_1,0,0). Remind that u’ = u,! for arbitrary index n. On this
base we define the next formula for mapping contraction.

DEFINITION 1. Let assume that orthogonality condition ) a;b; = 0 is valid.
Then mapping contraction from Vi1 to Vor_1 induced by diagonal matrix
Uy, = diag(uy, 2, u), /2) is defined in the form of linear fractional transformation

(it is denoted by symbol =):

un/2(2¢a a)
us (20, 2)

Note that in the right-hand side of this formula vectors a and b belong to
Vak—1, i.e. they are matrices of the order of n/2. The last term in the defined
formula means a rotation of vector b about vector a by angle 4¢, i.e. this
formula leads to the doubling of rotation angle. The defined linear fractional
transformation is equivalent to the similarity transformation in Va4

Un /2 (2¢7 a)bu:1/2(2¢a a) = Un/2 (4¢a a)b

The process of mapping contraction can be continued to lowering vec-
tor spaces. Namely, for orthogonal vectors a,b € V5411, of the form a =

un(2¢,a)b = b = u, /2(4¢,a)b.

(a1,a2,a3,0,...,0) and b = (b1, be,b3,0,...,0), a chain of contractions from
Vak41 to Var—1 and so on until V3 is valid in the form
un(2¢,a)b = u,/2(4¢,a)b = ... = uz(ng,a)b. (3.2)

Now we propose a geometrical interpretation of the doubling of rotation
angle in the chain (3.2). It is known that block-diagonal matrix can be repre-
sented as direct sum. Thus for a special case of vector b we have

2k—1 2k—1 2k—1
b= bMjn) =Y bMn/2)& > b;M;(n/2)=b(n/2)®b"(n/2).
j=1 J=1 J=1

Moreover, if we take the linear norm of matrices, then we find
[b(n)| = [b(n/2)| + [b*(n/2)| = 2|b(n/2)|.

Analogously on each step in chain (3.2) we find that vector b is two times
shorter than in the previous step. Let us take a unit circle C; with center
O; and take a unit vector b(n) = O1A; directed along horizontal line up to
point A; on Cj. Let Oz be a middle point of O14; and let b(n/2) = O3 A,
b*(n/2) = 020;. Let Cs be a circle with center O2. Now we turn vector b(n)
by angle 7/2 until vertical position O;B;. Simultaneously circle C5 is rolled
along C7 in such a way that diameter O;A; of Cy takes a vertical position,
i.e. point A; in the system Cs takes place of point O; of system C;. It means
that vector b(n/2) is turned from position O3A4; to O20; in the system Co,
i.e. it is turned by angle 7. Analogously in a circle C5 with center O3 (middle
point of O2A;) we find that vector b(n/4) = O3A; is turned by angle 2.
Thus, when circle Cy, is rolled along C; the vector b(2) is turned by angle
(m/2)2%~1. The geometrical interpretation is completed.
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4. Some Applications

The first application deals with modelling of vortex rings. In [5] we use matrix
solutions of a non-linear wave equation for modelling a vortex ring arising
behind acute edge of a cylindrical bar when a fluid flow is striving along the
bar in acute edge direction. In [6] matrix solutions of linear wave equation
are used for modelling well-known vortical rings of smoke when its portions
are flying out of an aperture. Let us consider how pair of solutions w; and
us of linear wave equation can be used for visual demonstration of toroidal
motion in vortex rings arising in different plastic mediums. Let us represent
solution u; = exp(i¢), where ¢ = az for linear case, by unit circle S* and
take local frame e;(j = 1,2,3) with the current point exp(i¢) as its origin.
Let unit vector a = eg lies in the plane of the circle and it is tangent to S?'.
When ¢ is increasing, matrix uy rotates arbitrary vector b (orthogonal to a)
about vector a and, hence, about circle S' which forms circular axis of torus.
As a result, an arbitrary vector b describes a helical motion around circle S?.
This is the desired toroidal motion.

Atsukovsky [1], by use of equations of fluid dynamics, describes the for-
mation of basic elementary particles (proton, neutron, electron, etc.) in the
form of stable vortex rings in gas-like ether.

The second application is a modelling of particles collision. A scheme of
collision of two particles [6] can be applied to a model of collision of many parti-
cles. For this purpose we generalize results on composition and decomposition
[6] from two simultaneous rotations onto arbitrary number of simultaneous
rotations.

Theorem 3. Arbitrary N of simultaneous rotations uz(n;j¢,a;) (j =1,...,N)
on unit sphere S? can be composed into one whole rotation uz(nod,ao),
where npag = Y.nja; and ag is a unit vector in S2; inversely, rotation
ua(nog,ap) can be decomposed on arbitrary number L of simultaneous ro-
tations uz(m;o,c;) (j = 1,...,L), where Y mj;c; = noag and c; are radial
unit vectors in S2.

Proof. It follows from Theorem 2 in [4] that rotation us(n;¢,a;) can be
decomposed into three simultaneous rotations us(n;;¢,e;) about coordinate
vectors e;(i = 1,2,3), where nja; = >°>_ nj;e;. The N of simultaneous rota-
tions about fixed e;-axis are simply composed into one rotation us(no; ¢, €i),
where ng; = ZNzl nj;. The three obtained simultaneous rotations about co-

J
ordinate axes are composed into one whole rotation us(no¢,ag) about unit

vector ag, where npag = Zle npi€; = Zle Zjvzl n;i€; = Zjvzl n;aj. By
use of an inverse procedure it is easy to show that rotation us(no¢,ag) can
be decomposed on arbitrary number L of simultaneous rotations us(m; e, c;),
where (j = 1,...,L), Y mjc; = noag and c; are radial unit vectors in S2.
Theorem is proved. B

Now by use of this result we construct a model of particles collision. The
scheme of the model is close to the scheme of Green-Schwarz-Witten [3] model
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of collision of superstrings. According to the chain (3.2) we pass from many
dimensional space, where matrix solution u,, acts, to 3D-space with mapped
function us(ne, a). Consider a model of collision of three incoming and three
outgoing particles. In spite of the opinion that three-particles collision is im-
probable there are some reactions in rotational water, described by Fominsky
[2], where such three-particles collision are natural phenomena.

Let functions ua(n;¢,a;) (j = 1,2, 3) correspond to three incoming parti-
cles, where each unit vector a; moves with its own local frame along a direc-
tion of corresponding particle motion. It follows from the rotations uz(n;¢, a;)
that for each aj-direction there exists a tube (of unit radius) as a carrier of
rotation traces. Let O be an intersection point of three a;-directions. A re-
gion of intersection of the tubes is isomorphic to unit sphere S? with center
O. Composition of simultaneous rotations us(n;¢,a;) gives a whole rotation
u2(no®, ag), where npag = > n;a; and ag is a unit vector. Furthermore, the
whole rotation can be decomposed on arbitrary number L of simultaneous
rotations. Let be L = 3 and let unit vectors c¢;(j = 1,2, 3) correspond to three
directions of outgoing particles motion. Then we denote corresponding simul-
taneous rotations by ua(m;¢,c;), where > mjc; = noag. Now it is sufficient
to take on each particle its own local frame with corresponding vector c; as
one of the basis vectors. This completes the mathematical model of particles
collision.

The third application is a modelling of pulsating spheres. As is shown in
[4] the relations xp = cos¢ and z; = a;sin¢ (j = 1,2, 3) establish the one-
to-one correspondence uy < S° for all unit radial vectors a € S? and for all
points (g, z1,22,23) € S° in 4D-space. Coordinates z;(j = 1,2,3) form a
sphere S, of radius p = | sin @|. Note that for linear wave equation, when @ in
(1.1) is replaced by Qo = —pu?u?+ Const, formula (1.3) is replaced by ¢ = az
with the same « as in (1.3). Let us show that in the linear case the sphere
S, pulsates. Indeed, S, expands to S? when ¢ increases from 0 to 7/2, then
it contracts to the point at ¢ = 7. After that coordinates z; change signs,
xj = —a;p, for m < ¢ < 2m. It means that S, transfers to the left oriented
sphere S; with local frame (—eq, —e2, —eg3), i.e. Sy turns inside out to S;.
Further, passing through point at ¢ = 2x, sphere S’; turns inside out to initial
right oriented sphere S,. This process can be continued up to infinity. We note
that matrix solution u, (¢, a) can be geometrically represented as helix in 3D-
space of coordinates E,,a, z, where a plays a role of imaginary axis. If we
combine these two representations — pulsating sphere and helical motion —
then we obtain a motion of pulsating sphere along the helix. This is close to
the phenomena what is observed in the Potapov’s heatgenerator [2]. Fominsky
[2] shows that an acceleration of water rotation in Potapov’s heatgenerator
leads to the arising a sequence of bubbles along helical streamlines. During the
many cycles of extension and contraction of bubbles a pulsating luminescence
with stable periodicity appears in each bubble. The vortical rotation of the
water leads to extra connections between the particles, in particular, to three-
particle collision, for example, deuteron-proton-electron. This reaction leads
to the increasing of output energy in the Potapov’s heatgenerator.
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5. Relation with Euler Angles

From the solid state theory it is known that one turn about some a-direction
in 3D-space can be replaced by three sequential turns by the Euler angles
Y1, 0,1 about basis vectors es, eq, es, respectively. The same turn can be
derived by transformation b — UbU* of arbitrary vector b = Z?Zl b;jHj,
where unitary 2 x 2-matrix U € SU(2). Since matrix solution uz(¢,a) is in
the one-to-one correspondence with SU(2) [4], the comparison of matrices

_( [y ([ cos¢ +iazsing (—az +iar)sin ¢
U= (—g f)’ uz(¢,2) = <(a2+ia1)381n¢ cos?zﬁ—ialgsingb)

gives the relation f = cos¢ + iagsing, g = (—a2 +iay)sin¢.
It follows from [7], p.107 that

|f| = cos(6/2), 9| = sin(0/2), arg(f) = (Y1+4¢2)/2, arg(g) = (Y1—1ha+7)/2.
Now we can easily obtain the relation between the Euler angles and the pa-
rameters of matrix solution uz(¢, a) in the form

V1= ap 0 V1-d3

aztan¢, tan 5 2 tan 5 \/m.

Solution wuy(¢$,a) describes the rotation about a-direction by angle 2¢, the
same turn by 2¢ is found after performing sequential turns by the mentioned
Euler angles 1, 0, 1)2. Solution us has a remarkable property, namely, ua (¢, a),
being decomposed into the three solutions us(¢a;, €;), gives an equivalent in-
terchangeability between the whole rotation about vector a by angle 2¢ and
three simultaneous rotations about coordinate vectors e; by angles 2¢a ;. How-
ever, this interchangeability take place in that medium, where each fraction
can have independent motion, i.e. in the plastic matter.

1+ o
an ———=

t
2
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