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Abstract. Multidimensional generalizations of the Cauchy—Riemann systems and
two different types of analogues of the Riemann-Hilbert boundary value problems
for these systems are considered.
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1. Introduction

The analyticity of complex function f(z) = u(x,y)+iv(z,y), where z = x +iy
is equivalent to the validity of system of differential equations

Uy — Uy =0, uy+v, =0, (1.1)

which is known under the name of the Cauchy—Riemann system. When C' is a
piecewise — smooth curve inside some domain of analyticity of function f(z),
the well-known Cauchy integral formula

1 f(z)
f(z0) = 2wt ] z— 2z dz
c
is valid for any zy that lies inside the curve C.
The Riemann—Hilbert problem for the Cauchy—Riemann system is the fol-
lowing: in a given domain S C R? find a regular solution (u(z,y),v(z,y)) of
system (1.1), which satisfies boundary conditions

(au+ Bv)las = ¢, o + > #0, (1.2)

where a(x,y), B(x,y), f(x,y) are given in S functions.
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Various generalizations of this problem were investigated. For instance, a
problem of finding an analytic function f(z) = u(z)+iv(z), z € S, z = z+iy,
which is defined in a given domain S C C and satisfies boundary conditions

Re[A(2)f(2)llas = ¢(2),

where A(z), ¢(z) are given in S functions, is considered in [1, 5]. Multidi-
mensional analogues of such problems were studied in papers [2, 4].

We consider two multidimensional structural generalizations of the Cauchy
— Riemann system and formulate analogues of the Riemann—Hilbert problems
for these systems. Our main goal is to demonstrate the differences in the
characters of solvability of the obtained problems.

2. Multidimensional Analogues of the Cauchy—Riemann
System

Let’s consider m = 2l—dimensional system of equations
LU =0, (2.1)
where

U= (U, U)7, U = (ui1, .- uw), Us = (u21, . .., uar),
X:(Xl,XQ), Xlz(xl,...,a:r), X2=($T+1,...,332T),

and, by analogy with [7], L is given by a block-matrix

Dy —Ds
L=|_ _ , (2.2)
Dy D,
where
8 r—1 (9 8 r—1 8
Dy =1-— M Dy=1——-)Y M
! 0z * ; k@xkﬂ’ ! 01 ; k@xkﬂ’
8 r—1 8 . a r—1 8
Dy =1 + Ny—m, Dyo=1——— Ny—m,
? 333r+1 1; k333k+r+1 ? 3$r+1 kZ:l k3$k+r+1

I is m x m identity matrix and m x m real constant matrices M}, N}, satisfy
equations

My Mj + MMy = =201, (2.3)
NkNj + Nij = —25kjf, (24)

MkNj ZNij, k,j:l,...n, (25)
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where 4;; is the Kronecker symbol.
The maximal number of real constant m x m matrices My, that satisfy
equations (2.3), equals
p=8b+2°—1,

where m = (2a + 1)24**¢, see [3]. Matrices Ny, satisfying properties (2.4) and
(2.5), could be defined as below:

N =M yxMory, k=1,....,r, reN, 2r<p.

Of course, these equations are not necessary for matrices Ny.

Let’s denote = = x1,y = 22, Uy = u,Us = v, then in case of [ = r = 1
system (2.1) coincides with the Cauchy—Riemann system (1.1) and

—= 0 —= 0
.D]_:Dl:%, D2:D2:8—y.

We get a four-dimensional system of type (2.1) by using matrices

10 0 1
I= , My = , (2.6)
01 -1 0
where r =2, [ = 2.

If we denote w11 = u,u12 = v, T = x1,y = x2, the Cauchy—Riemann
system (1.1) can be written as the matrix equation

DU, = 0.

Let’s denote X = (21,29,...,2,) (now n = 2r) and let’s suppose that
n > 2. By a regular solution of system (2.1) we will understand continuously
differentiable function U(X) which satisfies (2.1) in a given domain S and is
continuous in a closure of the domain 05S.

Statement 1. The following equations are valid:
DDy = DyDn, D1 Dy = D, Dy, DDy = DyDy,
D1Dy = D, D, DiDy =14, DyDy = 1A,

where by A, we have denoted the Laplace operator of variables Xy, k= 1,2,
respectively.

Proof.  The validity of these equations is simply verified using the definitions
of operators Dy, Dy, k = 1,2 and properties (2.3), (2.4) and (2.5) of matrices
My, N, k=1,2,...,r — 1. Let’s denote

_ Dy Dy
L = o ,
—Dy Dy

then we get the equalities
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_ IA 0
LL=LL= , A=A+ As.
0 IA

Corollary 1. (2.1) is an elliptic system of equations.
Statement 2. Function U = (U1, Us)T, where
Uy =DiH, U,=-D,H, (2.7)

and H(X) = (h1, ..., hym) is arbitrary harmonic function of variables X, sat-
isfies (2.1).

Proof. Substituting U = (D1 H, —D,H)" into system (2.1) and using equa-
tions of Statement 1, we prove that equations of (2.1) are satisfied. B

Let’s consider a boundary value problem: to find a regular solution U (X) of
system (2.1), which is defined in domain S and satisfies the following boundary
condition:

Uilos = F, (2.8)

where F(X) = (f1,..., fi) is given on 95 function. In case of

0 0

a a_ = ]-u = Oa
83;1 8x2 @ 5
problem (2.1), (2.8) coincides with problem (1.1), (1.2). Thus, (2.1), (2.8) can
be treated as a generalized Riemann—Hilbert boundary value problem.

Let us suppose that F(X) = 0 and consider homogeneous problem (2.1),
(2.8).

Statement 3. Homogeneous problem (2.1), (2.8) has infinitely many lin-
early independent solutions.

r=1, Dy =D; = , Dy =Dy =

Proof. By substitution of U into system (2.1) we find that functions U =
(Uy,Usz)T, where

Uy = D1H, U,=—D,H,

satisfy equations (2.1) and the boundary condition Uy|gps = 0 when H(X) =
@1 (X;) P2(X2), where &1(X7) and Po(X;) are arbitrary functions satisfying

E1¢1(X1) = Ag@g(Xl) =0.

Remark 1.1t is clear that nonhomogeneous problem (2.1), (2.8) has solution
not for arbitrary boundary value function F'(X).
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3. The Other Type of Multidimensional Analogues of
the Cauchy—Riemann Equations

In this section we consider system (1.1) and represent it in the following form:

0 0
ngwﬁa)mmT:Q
where I and M; are given by (2.6). As M? = —1I, this system is equivalent to
the matrix equation

DU = 0O, (3.1)
where O is 2 x 2 zero matrix and differential matrix operator D is defined by

D:LQ+M23

If we denote z = Iz + Myy, then U(z,y) = ITu(x,y) + Myv(z,y) can be
treated as a function of a complex variable z = Ix + My with the real I
and the imaginary M; units. Let’s denote the conjugate complex number by

Z = Iz — My and the conjugate differential operator by D = I 83 — M, 86
€ Y
Then
02 0?
DD = DD_.I(82 EE)_IA
If we define D;, Dy, D; and D, as below:
0 0 — 0 0
D =I1—+M Dy = [— — M;—
! 69c1 + Y 92a 5‘%2 ! 5%1 ! 65C2 ’
0 0 — 0 0
Dy = [— + N1— Dy = I— — N
2 Oxs + 83: 2 O3 Y ox, Oxy’

where Ny = M, we will find equations (2.3), (2.4), (2.5) being satisfied and
will see that elliptic differential operator L given by (2.2) can be represented
as:

9 ) ) 9
L=1—+M M. M.
prs + My— 9 + Mo— O3 + Mg— D11
Here I is 4 x 4 identity,

010 0 0 010 00 01
~100 0 0 001 00-10
My = 000-1 | M=|_1 000 M= 01 00
001 0 0-100 ~10 00

Matrices M1, Mo, Ms satisfy (2.3) and, additionally, equations

MMy = Mz, MMz =—M,, MyMs3= M. (3.2)



210 E. Paliokas
Let us denote L by D, then equation
D(Iu1 + M1U,2 + MQU/3 + M3U,4) =0 (33)

where O is 4 x 4 zero matrix, in case of uz = u4 = 0 is equivalent to equation
(3.1) and, consequently, to the Cauchy-Riemann system (1.1). Due to (2.3)
and (3.2), matrices I, My, My, M3 can play a role of matrix representation
of quaternion basis. When considering z = (z1, 2,3, z4) as a quaternion
variable

z = x11 + oMy + 22 Mo 4 23Ms3,

equation (3.3) coincides with the Fueter conditions, see [8]. If w1, us, us, uyg are
complex functions, system (3.3) is equivalent to the homogeneous Maxwell’s
equations, see [6].

Statement 4. Equation (3.3) is equivalent to the system of equations
DU =0,

where U(2) = (u1,ug,u3,us)?, 2 = (21,22, 73,24), 0 is the 4-dimensional zero
vector.

Proof. Due to (2.3), matrices I, M1, Mo, M5 are linearly independent, thus
the validity of a statement is implied by the following matrix

0 0 0

0
B ‘f’]\fl(9 +My—+Mz— )(U1[+u2M1+U3Mg+U4M3)

Ox3 Oy
=wil +wo My + w3Ms + wyMs

(I—

and vector

D(ula —U2, —uUs, _u4)T = (w17 —w2, —ws, _w4)T

equations. B

Let us denote by

the conjugate operator to D. Then DD = DD = IA, where the Laplace
operator of variables x1,xs, 3, x4 is denoted by A. Variable z in a matrix
form

Ty T2 T3 T4
—T2 X1 —T4 I3
—T3 Ty X1 —X2
—T4 —X3 T2 1

7z =

represents the 4-dimensional Hadamard matrix of the Williamson type. This
type matrices appear in statistics, engineering, optical communications and
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other areas. Considering the following sample of the 8-dimensional Hadamard
matrix of the Williamson type

T To X3 X4 I3 Tg X7 I8
—T2 X1 T4 I3 —Tg X5 Ig —T7
—x3 T4 X1 —X2 —T7 —Xg I5 T
—Xy4 —T3 X9 XT1 —T8 X7 —Tg Ip
—T5 Xg X7 XY X1 —A2 —T3 —X4
—Tg —T5 g —T7 X2 I Tyg —T3
—T7 —T8 —xXy Tg X3 —Tg4 T X2
—xrg Ty —Teg —xy T4 X3 —T2 T1

we can represent it as a sum of matrices:

7

7z =1z, + Z Mz,
k=1
where [ is 8 x 8 identity and matrices My, k= 1,2,...,7 can be found from

a previous expression of z. They satisfy (2.3) and together with I they can
be used as a basis of a right-hand matrix representation of octonions. Matrix
equation

DU = (I— + Z My —— ) (ru + Z Miugir) =0, (3.4)

=1

where O is a 8 x 8 zero matrix, is equivalent to (3.3) when ux, =0, k=5,...,8
and operator D has properties analogous to properties of D.

Remark 2. The analogue of a Statement 4 with respect to equation (3.4) is
not valid.

Let Mg, k=1,...,n—1 be any m x m real constant matrices, satisfying
(2.3), I is m x m identity, and let’s consider matrix equation

) (|u1 " nf Mkukﬂ) -0, (3.5)
k=1

where O is m x m zero matrix. Operator L of equation (2.1) is also an operator
of type of D:

DU:(aml—kng

D= ( 0x1 + Z 8xk+l)

k=1

where m =2, n=2r,and for k #r+1,k=1,2,...,n—1

O -1 M, —N,
M1 = (I 0)’ My = (—Nkk —M];)’

O and [ are [ x [ zero and identity matrices correspondingly. Let us denote by
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n—1

Z =lxy + Z Mipzkir, Z =lzg — Z Mizpy1,
k=1

n—1

Re(Z) =z, Im(Z)=> M1, {Z} =1

k=1
where z, € R, k=1,...,n and
n—1
U=lui+) Miugsi, =lu; — Zlvlkukﬂ,
k=1
— 0 0
—|— D=I—— M i
Z 5$k+1 5%1 ; kakarl

Let’s consider the following problem: find twice continuously differentiable in
a given domain S C Z solution U(z) of equation (15), satisfying boundary
value condition

ReU| = f(a). (3.6)

where f(z) is given in 0S function. This boundary value problem in case of
m = n = 1 is equivalent to the problem (1.1), (1.2), where « = 1, 8 = 0,
consequently, problem (3.5), (3.6) is a multidimensional analogue of Riemann—
Hilbert problem for the Cauchy—Riemann equations.

Let S be any star-shaped domain of type
S={ZeZ vVte|0,1)= (tZ) € Z}.

The given below statement follows ideas of quaternion analysis.

Statement 5. Let v(Z) be any real-valued twice continuously differentiable
harmonic in given domain S function. Then equation (3.5) has solution U(Z),
which satisfies condition

ReU(Z) =v(2).

Proof. Function
1 p—
UZ)=Iv2Z)+ Im/ " 2(Dv)(12)Z dr,
0

satisfies (3.5). Really,

ov

1 1
n=2(D = Re — (7
Re/o 2DV (rZ)Zdr = R /0 2 (r2)

n—1 n—1
ov
— M Z | M dr
Z o (t2))( 581—!—2 kTh41)

k=1




Multidimensional Analogues of the Riemann—Hilbert Problem 213

n—1

! v v
o n—2 §
B Re/o T Oz (r2)+ =1 s OTg 41 (r2)) dr

= /1 7”72@617'(7'2) dr=v(Z)—(n—-2) /1 T”flv(TZ) dr.
0 0
Therefore
Uz) = /0 "7 2(DV)(12)Z dr + |(n — 2) /0 ™ (rZ)dr.

Since v and Dv have continuous derivatives in S, derivatives of integrals could
be replaced with the integrals of derivatives of the integrands. Applying prop-
erties (2.3) of matrices My, we have:

DU(Z):/0 T"*2D(BV(TZ))ZdT+/O ™ 2((Dv)(12)

n—1 1
+ (Dv)(72) Z Mkz) dr + (n — 2)/ "= 2(Du)(rZ) dr.
k=1 0

Since v(Z) is a harmonic function in a given domain S, we have:
D((Dv)(7Z)) = IT(Av)(1Z) = 0.

This and the equations

n—1

(Dv)(tZ) + (Dv)(t2) Z Mi? = —(n —2)(Dv)(72)
k=1

imply that DU(Z) =0. 1

Corollary 2. Problem (3.5), (3.6) in a star-shaped domain S has a solution
when scalar Dirichlet problem for Laplace equation with respect to variables
Tr1,T2,...,T, has a solution with the same initial data.

Remark 3. Homogeneous boundary value problem (3.5), (3.6) has infinitely
many linearly independent solutions. Really, any function U(Z) = DU(Z),
where

n—1
U(z) = Z Mpugy1,
k=1

is arbitrary harmonic function of variables Z, satisfies (3.5) and boundary

conditions ReU =0.
as
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