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Abstract. Positive eigenvalues and corresponding eigenfunctions of the linear
Sturm-Liouville problem with one classical boundary condition and another non-
local two-point boundary condition are considered in this paper. Four cases of non-
local two-point boundary conditions are analysed. We get positive eigenfunctions
existence domain for each case of these problems. This domain depends on the pa-
rameters of the nonlocal boundary problem and it gives necessary and sufficient
conditions for existing positive eigenvalues with positive eigenfunctions.
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1. Introduction

Investigation of the spectrums of differential equations with nonlocal con-
ditions is quite a new area in scientific literature. Eigenvalue problems for
differential operators with the nonlocal boundary conditions are consider-
ably less investigated than cases of classical boundary conditions. Eigenvalue
problems with nonlocal conditions are closely linked with boundary problems
for differential equations with nonlocal conditions [5, 6, 7, 8]. In the papers
[1, 2, 4, 12, 13] the similar problems are investigated for the operators with
nonlocal integral condition. In papers [6, 7, 8, 11, 14, 15] problems with nonlo-
cal boundary condition of Samarskii-Bitsadze type are analysed. Existence of
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positive solutions of stationary problem was investigated in [3, 9, 10]. Eigen-
values and corresponding eigenfunctions were analysed in [§].

In various papers eigenvalues and eigenfunctions of selfajoint and non-
selfajoint Sturm-Liouville problem are investigated in complex and real cases.
Differential problems of this type are among investigations analysed by G. In-
fante in paper [6]. In this paper he studied the existence of eigenvalues of a
Hammerstein integral equation

xu(t):/Gk(t, $)f(s, u(s)) ds.

Here G is a compact set in R™, k£ and f > 0 are allowed to be discontinuous,
and k£ may change the sign. The obtained results are applied to the second
order differential equation

M () + f(tu(t) =0, ae tel0,1], (1.1)

with classical boundary condition (the first or the second type) on the left
side of interval (¢ = 0) and various nonlocal two-point boundary conditions in
the right side point:

w(0) =0, wu(l)=~yu'(&); (Casel) (1.21)
u(0) =0, wu(l) =~u(é); ( Case 2) (1.25)
u'(0) =0, u(l)=n~u(&); (Case 3) (1.23)
w'(0) =0, u(l)=~yu(). ( Case 4) (1.24)

Note that the index in references denotes the case. If the positive function
f(s,u) satisfies some additional conditions (for more details, see [6]) then:

e the problem (1.1), (1.21) has a positive eigenvalue when v < 0 and 0 <
v < 1—¢ and a corresponding eigenfunction that is positive on (0, £] when
v<0,and on (0,1 —v] when 0 <y < 1-¢;

e the problem (1.1), (1.23) has a positive eigenvalue when v¢ < 0 and 0 <
7€ < 1 and a corresponding eigenfunction that is positive on (0,¢] when
~v€ < 0, and (0,1] when 0 < ¢ < 1, as well as this problem has a negative
eigenvalue when v¢ > 1 and a corresponding eigenfunction that is negative
on [¢,1];

e the problem (1.1), (1.23) has a positive eigenvalue when v < 0 and 0 <
v < 1—¢ and a corresponding eigenfunction that is positive on [0, 1) when
v<0,and on [0,&] when 0 <y <1—¢;

e the problem (1.1), (1.24) has a positive eigenvalue when v < 0 and 0 <
v < 1 and a corresponding eigenfunction that is positive on [0, ] when
v < 0 and [0,1] when 0 < v < 1. This problem has a negative eigenvalue
when v > 1 and a corresponding eigenfunction that is negative on [a, b],
where a = £, b € (§,1].

In this paper we present analogous results for the linear Sturm-Liouville
problem with four cases of nonlocal two-point boundary conditions. Here the
existence of positive eigenvalues and eigenfunctions is analysed.
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2. Positive Eigenvalues and Positive Eigenfunctions of
the Linear Sturm-Liouville Problem

We will analyze the Sturm-Liouville problem
—u"(t) = \u(t), te(0,1), (2.1)

with one classical boundary condition and another nonlocal two-point bound-
ary condition (1.2) with the parameters v € R and £ € (0, 1).

Remark 1. The linear problem is not a separate case of equation (1.1), because
in [6] the function f(¢,u) must satisfy some additional conditions and must
be positive.

When v = 0 in problem (2.1), (1.2), we get a problem with classical bound-
ary conditions. Then eigenvalues and eigenfunctions do not depend on the
parameter &:

e = (1k)?, ug(t) = sin(wkt), kEeN:={1,2,...}, (2.212)
A =72 (k — %)2, up(t) = cos (m(k — 3)t), keN. (2.23.4)

If u(t) is eigenfunction of the linear problem (2.1) then functions cu(t),
0 # ¢ € R will be eigenfunction too. We say that this problem has positive
eigenfunction u(t) in the interval (a,b) C (0,1) if eigenfunction u(t) > 0 or
u(t) < 0 (in this case —u(t) > 0) exists for all t € (a,b).

2.1. Eigenvalues, constant eigenvalues and characteristic function

In previous papers [11, 15] it is proved that the eigenvalue A = 0 exists if and
only if v = % (Case 1,2) and v = 1 (Case 4).

Lemma 1. The eigenvalue X\ = 0 does not exist in problem (2.1), (1.23).

Proof. We will search for a general solution of equation (2.1) in the form
u(t) = c1t + ¢o. Computing the derivative of the solution and using (1.23) we
get that ¢; = 0, 1. e. u(t) = co. It follows from (1.23) that c; = ~0, i.e. u(t) =0
and a zero eigenvalue does not exist. l

For \ = 0 we always have positive eigenfunction w(¢) = ¢ in (0,1) in Case 1,2
and u(t) =1 in Case 4.

In the general case, for A # 0, eigenfunctions are u(t) = sin(qt) (Case 1,2)
and u(t) = cos(qt) (Case 3,4) and eigenvalues are A = ¢, where q € C,,

C,:={qeC|Reqg>0o0r Req=0,Img>0o0r g=0}.
We can find ¢ from characteristic equations[11, 15] with ¢ € C,

sin g = g cos(£q); sin ¢ = vsin({q); (2.31;2)
cosq = —ygsin(£q); cosq = 7y cos(£q). (2.33.4)
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Let g. be a solution of a system

sin ¢ =0, sin ¢ =0, (2.41.)
cos(§q) = 0; sin(§q) = 0; o
cos q =0, cos q =0, (2.45.0)
sin(ég) = 0; cos(§g) =0. o

In this case we say that q. is a constant eigenvalues point, and constant
eigenvalues \ = ¢ exist for all 7. In all cases constant eigenvalues are positive
real numbers and exist only for some rational £.

We can get all nonconstant eigenvalues (which depend on the parameter )
as square of the y-points of complex-real characteristic function v : C; — R,
D(v) ={q € C; |Im~y(q) = 0}, (see, [11], Cases 1 and 2):

sin ¢ sin ¢

v(q) = QCT(SCI); v(q) = m; (2.51.2)
o COoS q . - COS q
’Y(Q) - qsin({q)’ Y Q) - COS(&C]) . (2'53;4)

We name these ~-points of the function v as eigenvalues points. Negative
and nonconstant positive eigenvalues points we find as y-points of real (first
type) characteristic function v1 : R — R:

v—(x) :=~(iz) for x <0,
y(z) =< limy_o7(q) for z = 0, if the limit exists, (2.6)
vy (z) :==~v(z) for x > 0.
If x_ is such a negative eigenvalue point then corresponding eigenvalue \_ =

—2% . If z is such a positive eigenvalue point then corresponding eigenvalue
A = 22 . For the problem (2.1)-(1.2) we have

1-la) = o e = s (2)
1-(@) = e Tela) = s, (.72
1) = ro 1a) = s (27
1) = o ) = s @7

Properties of these functions were investigated in papers [11] (Case 1,4) and
[15](Case 2). Graphs of v (z) for various values of parameter ¢ are presented
in Fig. 1. In our paper [11] we investigated Sturm-Liuville problem (2.1) with

boundary conditions u(0) = 0 and v/(1) = yu(§) and investigated character-
¥ Cosx

sin(£x)

teristic function in Case 3 we get that many properties of the characteristic

istic function vy (x) = . If we compare this function and the charac-
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Figure 1. Function vi(x7). Vertical lines describe constant eigenvalues.

function related with constant eigenvalues, zeroes and poles are investigated

in [11]. We note that all zeroes and poles of the characteristic function are

nonnegative real numbers.
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Lemma 2. Constant eigenvalues do not exist for irrational &, while for ra-
tional £ = r = T € [0,1] they exist for even m and odd n and constant

eigenvalues are equal to Ay, = ¢, cp = m(k — %)n, ke N.

When ~ is real, multiple and complex eigenvalues can exist for all v # 0 and
for all £ € (0,1). In the case £ = 1 (the classical third type condition) we

is monotone

. . coshz

have one negative eigenvalue for v > 0, because function —;
xsinhz
increasing function when x € (—o00,0) and the other eigenvalues are positive
cos T

and simple, because function ( — ) is monotone increasing function

rsing
when z € (w(k—1),7k), k € N. We formulate a lemma on negative eigenvalues

in Case 3.

Lemma 3. If £ € (0,1), then there exists v. = z.(£) <0 and v = v_(z4) €
(0, +00) such that there exists one double negative eigenvalue for v = v, and
two negative eigenvalues exist for v € (v«, +00), and negative eigenvalues do
not exist for v < ..

Proof. Function y;(x) := tanhz — 1/z is a monotone increasing function
when z € (0, +-00), because 4/ (x) := 1/ cosh®(z) +1/2? > 0 and ¥, (0) = —oo,
y1(+00) = 1. So, there exist xp ~ 1.199678 such that y1 (z¢) = 0 and y1(x) <0
for x € (0,m0), y1(z) > 0 for x > xp. Function ys(x) := tanhz is a positive
monotone increasing function when x € (0, +00). In paper [11] we proved that
function tanh(éx)/tanhx (and function ys(z;§) := tanh(§x)/tanhz /) is a
positive increasing function when = € (0, 1) for all £ € (0,1). Then function

nhx —1
W) = i = n@n ()
is a positive monotone increasing function when = > zy and it is negative
when z € (0,z0) and y(0;§) = —1, y(zo;&) = 0, y(+o00;&) = 1/€. So, there
exists only one point z. = z.(§) € (xg, +00) such that y(x.) = 1.

Function y4(t) := tanht/t is a monotone decreasing function when ¢ €
(0,+00), because yj(t) = (2t — sinh(2t))/(2t>cosh®t) < 0. Since x¢ €
(0,400), we have that function tanh(éz)/(£z) (and functions ys(z,§), y(x;€)
too) are monotone decreasing function when ¢ € (0,1) for all fixed z. So,
Tx = x1 ~ 2.065338 where x; is the root of equation y(z1;0) = 1, i.e.
r1 tanh xq1 = 2.

Since £z coth(€x) > 0 function f(x;€) := xtanh —1 — £x coth(x) < 0 for
z € (0,24()), f(#:€) > 0 for z € (2.(S), +00) and f(x+(£); &) = 0. Finally,
we have

d coshz _ coshz

dz zsinh(éx) fs&) 22 sinh(x)
The function vy_(z;&), + € R is an even function. Therefore, monotonicity
properties of the function v_(xz;¢), © < 0 follow from the properties of the
function f(x;&): if £ € (0,1), then there exists Tmin = —z«(§) < x1 such that
~v—(z;€) is a decreasing function for < @min and v_(z;€) is an increasing
function for i, < x <0forall £ € (0,1). A
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d) z =wva(y), T, e) T =T, T =24 f)x=0"(y), T"

Figure 2. Functions y(z), " (y), v (v), va(y), v (y), domains T, T", I = (0, +00).

For the negative eigenvalue A = —z2 eigenfunction is u(t) = sin(xt) (Case
1,2) and u(t) = cos(xt) (Case 3,4). So, all eigenfunctions are positive or neg-
ative in the interval (0, 1).

Remark 2. For all v € R the least positive eigenvalue exists.

Proof. Let characteristic function is not an entire function. In Case 1,2,3,4 we
have the first order poles and between two poles (or between pole and constant
eigenvalues point) finite number (> 0) zeroes exist. Let z_ and z; are two
next zeroes for the pole p and z_ < p < z4, then 4 ([2—, z4]) = R. So, the
least positive eigenvalue exists. If characteristic function is an entire function
then a positive constant eigenvalue exists and the least positive eigenvalue
exists, too. l

2.2. Visible from the right functions

We introduce a few definitions which we use to describe positive eigenfunctions
intervals for positive eigenvalues.

Suppose that function y : I — R, where I = [a,b], (a,b), [a,)), (a,)),
a,b € R := RU {£oc0}, a domain of this function is D C I and a range of
this function is a set R C R (see, Fig. 2a). We call the point (x,,v,) of the
functions y(z) graph wvisible from the right point, if y, = y(z,) # y(z) for
all z € (z",b] N D (see, Fig. 2b). In this figure V is visible from the right
point, and N, S are not such points. If such point exists it is the rightmost
point of the function y(z) graph for fixed y,. Let R be a set of the points
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y» € R such that exists visible from the right point (z,,%,). In Fig. 2b 3, € R,
but ys ¢ R. For each y € R" we can assign only one visible from the right
point z,(y), i. e. we can define single-valued function =" : y, — x, and this
function is bijection between R and D" := z"(R) C D. If y, € R" \ R"
then y,-value of the function y(z) is obtained in the interval (a,b] infinitely
many times. In this case we assign value v} (ys) := sup,c;npile|y(z) = ys}. If
y € R", then v (y) := 2" (y) (see, Fig. 2,c). Finally, we define v, (y) := v} (y)
for y € R and v’ (y) := a for y ¢ R. So, we have the function v" : R — [a, b]
and a set T) := {(z,y) € RZ |a < 2 < v}(y)} (see, Fig. 2d). We call this
function as wvisible from the right function generated by function y = y(z). Let
[c, zq] € [a,b]. Then we consider truncated visible from the right function
(see, Fig. 2e,f) v"(y) := max{z., min{zq, v (y)} }. I

T = {(z,y) € Riy la <z <z}, Tj:={(zy)e€ Ri)y la<x<xq}
then domain

T = {(z,y) €ERZ |a<z<v (y)} =T NT;)UT,.
Y

2.3. Positive eigenfunctions for positive eigenvalues

Eigenfunctions for positive eigenvalues of the linear problem (2.1)-(1.2) are
u(t) = sin(xt) (Case 1, 2) and u(t) = cos(zt) (Case 3, 4). Function sin(xt)
is positive iff zt € (0,7) and function cos(zt) is positive iff zt € (0,7/2).
The interval is biggest when x = x where x, is the least positive eigenvalue.
This eigenvalue can be constant or nonconstant. If the right side of the interval
(where eigenfunction is positive) is ¢t = y then x; = m (Case 1,2) and x4 = o
(Case 3, 4).
Let define real (second type) characteristic function voy : Ry — R:

sinZ sin Z
Yo+ (y) =114 (5) = Wéﬁ); Yo+ (y) =114 (f) = Sm(éf;); (2.81:2)
Yy Yy Y
o () = () = B () = () = —— 2 (284,0)
Y 2y Sm(ﬁ@) v cos(§Q—y)

The function v = 724 (y) generates function y = v/ (y) which is visible from
the right and domain 7. If constant eigenvalues exist then truncated visible
from the right function y = v"(y) we construct with y. = 7~ (Case 1,2) or
Ye = 55— (Case 3,4) and yq = 1, else we take y. = 0 and yq = 1. The graphs
of functions y2+(y), v" () and domain 7" are presented in Fig. 3 for various &
(see legend in Fig. 3a). In these figures a part of a graph of functions 24 (y)
is hidden in the vicinity of a zero. If the point (y,~) € T" then there exists
positive eigenvalue A = 72 /(v"(7))? (Case 1,2) or A = 72 /(20" (v))? (Case 3,4)
for this 4 and corresponding eigenfunctions are positive when ¢ € (0,y) (Case
1,2) or t € [0,y) (Case 3,4).

Further, we describe intervals of eigenfunctions, where positive eigenval-
ues exist and eigenfunctions for these eigenvalues are positive. Graphs of the
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Figure 3. Functions v24(y), v" () and domain 7.
functions o4 (black dashed), v" (solid line)

Fig. 3.



224 S. Peciulyté, A. Stikonas

c) Case 3 d) Case 4

Figure 4. The positive eigenfunctions existence domain in the interval (0, 1).
O<y<1 when 0 < v <1,

IS S ST for € € (0, 1);
0<y<v(v;€) otherwise,

T"=(0,1) xR for £ = 1;

= for € € (3,1).

T 0<y<v'(7;€§) when0<y<1,
O<y<l1 otherwise,

Positive eigenfunctions exist in the interval (0,1) when 0 < v < 1, £ <
7<0,6210ry>1, &> 5 (see, Fig. 4a).

1
501‘

Corollary 1. Positive in the interval (0, 1) for all £ € (0, 1) eigenfunctions exist
only when v = 0 (see, Fig. 4a).
Case 2. For the problem (2.1)—(1.23) domain 77 is equal (see, Fig. 3d-f):

<
TT:{0<y<1 When0\7<1/§7 f0r§€(071)

0<y<v(v;€) otherwise,

Positive eigenfunctions in the interval (0,1) exist when v¢ < 1 (see, Fig. 4b).

Corollary 2. Positive in the interval (0, 1) for all £ € (0, 1) eigenfunctions exist
only when 0 < v < 1 (see, Fig. 4b).

Case 3. For the problem (2.1)—(1.23) domain 7™ is equal (see, Fig. 3g-i):
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f € (0,1).
0<y<v(v;€) otherwise, ree 0l

TT—{O<y<1 when — oo < v <0,
Corollary 3. Positive in the interval (0,1) for all £ € (0, 1) eigenfunctions exist
when v < 0 (see, Fig. 4c).

Case 4. For the problem (2.1)-(1.24) domain 7" is equal (see, Fig. 3j-1):

1 hen 0 <~ < 1,

T O<y< wenO‘ v < for € € (0,1).
0<y<v(v;€) otherwise,

Corollary 4. Positive in the interval (0, 1) for all £ € (0, 1) eigenfunctions exist
when 0 < v < 1 (see, Fig. 4d).

Theorem 1. For the problems (2.1), (1.2) positive eigenvalue exists and cor-
responding eigenfunction is positive on (0,y) iff (y,v) € T".

Remark 3. In the case of the linear Sturm-Liouville problem, domain 7" de-
scribes necessary and sufficient conditions for the existence of positive eigen-
functions for positive eigenvalues.

3. Conclusions

e We obtain positive eigenfunctions existence intervals of Sturm-Liouville
problem with nonlocal two-point boundary condition.

e We find the values of parameter v when positive eigenfunctions exist in
interval (0, 1) for each & € (0,1).

e We get necessary and sufficient conditions when at least one positive eigen-
value and corresponding eigenfunction exists.

e Some new results on negative eigenvalues in Case 3 of nonlocal boundary
conditions are proved.
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