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Abstract. It is well known that not only the classical model of PERT/CPM but
its later improvements treat a resource planning in the project scheduling in a
very limited way. Using them it is possible to calculate the optimum amount of
resources taken from outside or financial expenses for separate operations but it is
quite impossible to share internal resources between parallel operations. Instead of
these models a new one is introduced. It combines relationships concerning shar-
ing resources-capacities and works dynamics and perhaps other ones that express
the use of materials and funds, inventory control and so on. Non-strict work prece-
dence conditions may be used as well. The model as a whole slightly differs from
the model of resource planning in complex industrial systems proposed by the au-
thor and retains its general properties, notably the form of optimality conditions. A
decomposition method of the project optimum fulfillment is proposed.

Key words: project, scheduling, work, precedence, resource-capacity, control, op-
timum, decomposition

1. Introduction

A few approaches to project scheduling with the use of deterministic models
and methods are known:

1. Critical path technique (PERT/CPM): resources-capacities are a priori
attached to works; waste of materials is not considered at all; the sequence
of works using the same capacity is predetermined;

2. Optimization of funds usage for temporary leasing of capacities (Kelley

and Walker 1959, Fulkerson 1961, see [3]);

Local continuous-valued optimization of resources usage;

Discrete optimization of resources usage [5];

5. Heuristic approaches based on the idea of work priorities;
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6. Local optimization with optimum control methods (Zimin, Ivanilov, Petrov
1971-1973 [5]).

Instead of these models we propose a new one, which treats the project fulfill-
ment as a discrete-continuous process. Models of such kind were introduced
recently for various domains [8, 9]. Their methods are based on the optimum
control theory of discontinuous systems [1]. This form of a model enables the
development of optimum control methods for solving the problem of sharing
capacities among simultaneous works probably taking into account some other
aspects, such as the optimum use of materials and inventory control.

2. The Model Formalization

First we list main features of the project scheduling problem. The project is
decomposed into a set of n works. There is a relation of precedence connecting
pairs of works. Resources-capacities are shared between several works. Works
may be done with a varying intensity. Material requirements for the work
fulfillment may be significant; these materials may be supplied continuously
with a limited rate or discretely at a given set of instants and stored. Each
i-th work has the set of immediately preceding works I; divided into two
subsets of works with strict and non-strict precedence, respectively I;; and
I;». For beginning of the i-th work the termination of all the works from I;;
is necessary; for the works from I;5 it is necessary that a certain amount of
each is fulfilled.

The current work state and its change in time have the following charac-
teristics: quantitative z; — the amount of work done (in units of time or other
corresponding to the work type); qualitative d;: 0 — “not begun®, because some
of preceding works are not terminated; 1 — “in performance®, 2 — “terminated®;
the total amount of the work is denoted by xr;.

The period is divided into N (non-fixed number) stages with events of
works beginning/termination (or some other types of events). We add the
argument k for all values belonging to k-th stage. For the k-th stage the
time interval is denoted as [T'(k), T'(k+1)=T(k) +t(k)), vectors of qualitative
state d(k) € Ap (where Ap is a finite set) and of control u(k) € R™ are
constant; the state of works (depots) is represented with the state vectors:
initial 2°(k) = 2(T'(k), k) and final 2'(k) = 2(T(k + 1), k).

The base model regarded here is given as follows: within each stage the
works in operation are fulfilled at a constant rate

WD) e
0 < Umini < ul(k) < Umaxi, ¢ € Il(k)7 uz(k) =0, ¢ Il(k) (2.1)

Here we denote sets of works I;(k) = {i € {1,...,n} | di(k) = 1} for | =
0,1,2,3. Ny types of capacities are shared between works in performance.

Zui(k)gum, l:].,...7NR. (22)
el
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The relationship between x!(k) and 2?(k), u;(k) has the form of difference
equations:
i (k) = @ (k) + ui(k)t(k); (2.3)

the final state for k-th stage and initial stage for (k-+1)-th stage are the same:
2V(k+1) =z} (k). (2.4)

The condition of the stage termination from which the set of terminated works
S(k) C {1,...,n} is determined is given by

xi(k) =z, i€ S(k) C Li(k), xf(k)<zri, i€ Li(k)\Sk). (2.5)

The change of qualitative states of works at the beginning of (k+1)-th
stage is defined as

2 if i e S(k),

1 if d;(k) = 0&I2(k) U S(k) D I;1. (2.6)

di(k+1) = {

The project ends if I, (N) C {1,...,n} and I,(N + 1) = {1,...,n}. The
target functional is
T(N +1) — min. (2.7)

Let us consider some generalizations of the base model (2.1)—(2.7). Taking
into account the usage of materials we get a more general equation instead of
(2.3):

i (k) = 23 (k) + fi(ui(k), wir (K), . . . wirc (k) (K),

where u;1 (k), .. ., u;x (k) are intensities of materials usage. We may introduce
as well the dynamics of materials storage
w3p; (k) = 285 (k) + (unrj (k) —uij(k) — ... —un;(k)) t(k),

where uar;(k) is the intensity of j-th material supply. If the material supply
is a series of batches of the amount z sy, received either in the fixed instants
or when the storage contents reduces to the threshold value, then uaz;(k) =0
and the event of the material income is determined by using the following
conditions

T(k+1) =T;(l;(k)) or xy;(k) = 2 min;-

Then x)7; and the number of received batches /; are updated as
2 (k+1) = @y (k) + 2awg, Lk +1) = L(k) + 1.
In all other cases we have
2 (k+1) =z k), Lk +1) = (k).

For the case of materials with a permanent supply the following condition
must be satisfied:
T M min j < m}\/[j(k) < LM max j -
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In many cases the project is assumed as containing passive processes with
fixed durations interrelated by precedence conditions with other works and
not demanding any resources. For such a kind of processes the state variable
is the time from its beginning, so its dynamics and termination are determined
by the equations (2.4) and

wi (k) = a7 (k) + t(k), @i (k) =T

The same type of processes is used to represent the condition of non-strict
precedence in time between two works. The second work j may begin ¢;; days
later than the first (i-th) one. If precedence is measured as k;;z;(t, k) —x;(t, k)
and the minimum precedence is Z,,ini;, then the condition of achievement the
necessary precedence looks like the condition of the work termination:

@i (k) = Taminij / ij-
When both works are fulfilled, then the condition of precedence is defined as
wj (k) < kija; (k) — tmingg if di(k) =1, dj(k) = 1.

And, finally, restrictions on terms of beginning and/or termination of certain
works or passive processes may exist as well as some restrictions on a duration
of works.

Thus we must emphasize that all variants of the models presented here
fully correspond to the general model M, determined below with the set of
relationships (3.1)—(3.8).

3. The Process Scenario and Its Change

Let us present the main features of the model (2.1)—(2.7). The qualitative
dynamics is described with difference equations (2.3) connecting initial and
final states of the stage. In general they are represented as

z' (k) = Y (d(k),2° (k), u(k), t(k)) (3.1)

where Y (d(k),2°(k),u(k),0) = 2°(k) for any d(k),2°(k),u(k). Transforma-
tion equations (2.4) for shifts from one stage to the next one are described
by

¥ (k+1) = X(S(k), d(k),z" ()). (3.2)

A general formulation of the condition for a stage termination with a certain
set of events S(k) C {1,..., L} is given by

7"2?5) (z(k)) = x%(s) (k) — x50 =0, s € S(k), (3.3)
it can be applied for any type of the event s with the only state variable x; ()
increasing monotonously with respect to t(k). For other types of events the
following inequality holds
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r%s) (z'(k)) <0, s¢S(k). (3.4)

A qualitative state vector changes at the end of each stage as a result of events
d(k+1) = D(S(k),d(k)). (3.5)

There are some restrictions on the control vector depending on the value of
d(k), in general they can be described by
¥ (d(k),u(k)) <0, je Ji(d(k)). (3.6)

J

The value of the target functional depends on the final state Fy(z'(N)).
Further we assume that another type of restrictions may be included in the
model, namely

Y (2 (k) <0, j € Ko(d(k)), (3.7

ry (x' (k) <0, jeKi(d(k),S(k)). (3.8)

We assume further that the model (3.1)—(3.8) satisfies some general properties.
They are satisfied for the base model and it is likely that the additional form
of models relationships listed below do not violate them.

Condition 1. For any d(k) € Ap the set Uy(d(k)) of u(k) satisfying (3.6)
is non-empty and bounded.
Note for the base model it is sufficient to assume that

§ Uming < URj-

i€lRy
Condition 2. For all the d' € Ap, 2’ € R, t' > 0,

W € Upa(d) = {u” € R™ |7V (d' ") < A,j € Ji(d)},

where A > 0 is a constant, the functions Y;(d', z’, ', '), ¥ (d', '), r) (z') are
defined, continuously differentiable with respect to =/, u’, t’ and all their first

order partial derivatives satisfy the Lipschitz condition

l9(y") — 9l < Klly" - yll,
where y = (z,u,t), vy = (2/,u/,t') and K > 0.

Condition 8. For all s=1, ..., L,d € Ap, the following statements are
valid:
1) The inequalities
s (@°(1) <0 (3.9)

i(s
are satisfied;
2) For all 2’ € R", u' € Upa(d) the function 7} (Y(d', a',u’, t)) rises
monotonously with respect to ¢;
3) For all S C {1, ..., L} for which s € S’ and all 2/ € R" satisfying
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"o (@) = 0 the inequality

e (XS, d ")) =re < 0; (3.10)

is valid;
4) For all §', s ¢ S’ and all 2/ € R"

Tite (X(S', ', 2")) = 1) (2"). (3.11)

Each possible process of the project fulfillment is characterized with the
control v, or a succession of vectors v(k) = (u(k),t(k)), the scenario, or a
succession of sets S = (S(1),...,S(NV)), the trajectory x = (2°(1), z*(1),...,
2°(N), 2z} (N)) and the discrete trajectory d = (d(1),...,d(N)). According
to (3.5) the discrete trajectory is the function of the scenario and accord-
ing to (3.1) and (3.2) the trajectory is the function of the scenario and
the control. Subdividing the whole set of possible processes into the sets
of processes with the definite scenario we determine V5(S) as the set of all
possible v where u(k) € Uy(d(k)) for any k that generates the trajectory
satisfying restrictions (3.3), (3.4), (3.6)—(3.8). Conditions (3.4), (3.9)—(3.11)
guarantee that r) (¢°(k)) < 0 for all s = 1,...,L, k = 1,...,N. So from
r}ES) (Y (d(k),z%(k),u(k),t(k))) =0, s € S(k), we conclude that the obligatory
relationship ¢(k) > 0 takes place.

But V5(S) is not a closed set and for v* = limv(™, »(") € V4(S) we can

say that for the corresponding z* the inequality TXS) (z*1(k)) <0, s ¢ S(k)
is valid. So we determine another model M; with the set of relationships
(3.1)—(3.3), (3.5)—(3.8) and

r%s) (xl(k)) <0, sé¢S(k). (3.12)

Analogously for the model M; we conclude formally that ¢(k) > 0 for any
k. According to the property of Y (d(k),z"(k),u(k),0) the values of u(k) for
stages with ¢(k)=0 do not affect the sequence of 2°(k), z (k) for stages with
t(k) > 0. So for any control corresponding to the scenario having dim S(k) > 1
for a certain k& we can use the other scenario representations. Both properties
are used in the iterative search of the optimum scenario.

The other representation of the model M; is given by the model Ms de-
termined with the set of relationships (3.1)—(3.3), (3.5)—(3.8) and
t(k) >0, k=1,...,N, (3.13)

and (3.12) for k = N. For M; and M, the sets V1(S) and V5(.5) are determined
analogously to V(S). The equivalence of both representation is asserted by
the following lemma.

Lemma 1. The following equality V1(S) = V5(S) is valid.
Proof. Let V1(S) # 0 and v € V4(S). Then t(k) > 0 for any k, so v € Va(S).

Let V5(S) # 0 and v € V5(S). If s € S(k) and s € S(k'), k' < k, then for
E'=kK+1,...,k—1
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e (@K +1)) << (2°(K) <l (2 (K)) (3.14)

=7 (@O (K" + 1)) <l (2 (K" + 1)) < vl (2 (k) =0

is valid due to Condition 3. If s € S(k) and s ¢ S(k”) for all k" < k, then for
E'=1,...,k—1 (3.14) is valid as well. And if s ¢ S(k”) for all ¥ then for
k'=1,..., N we get

ris (@' (") = iy @ (K" + 1)) < v (' (K" + 1)) < ... < (2" (V) < 0.

So 7}y (z' (k")) < Oforall K”=1,..., N and for all s ¢ S(k"), therefore (3.12)
is valid for all the k", thus v € V1(S). B

For a given scenario the set of relationships of model M, defines the op-
timization problem for a discrete-time process with known optimality condi-
tions [1, 2, 4] and efficient numerical methods including [6, 7]. However, we
are interested in the project optimization regardless of events succession.

We consider two aims related to the scenario change for a given v € V5(S):

e First, to separate two simultaneous events sets S; = S(k’ — 1) and Ss =
S (k") for which ¢(k") = 0 with a short stage.

e Second, to make simultaneous two events sets S; = S(k’ — 1) and Sy =
S(K') initially separated with a short stage.

To reach both aims we seek to find v4 € V5(S) for which

va(k) = v(k) +edv(k) +O(?), k#k;

ua(k') =u' € Ug(D(S(K' — 1),d(k' —1))), ta(k)=c¢

for the first aim and w4 (k") = u(k’), ta(k')=0 for the second aim.
The set of the model restrictions for a given scenario may be represented
in the following general form:

Fi(v,S) <0, jeh(S), Fiv, S)=0, jeI(S). (3.15)

The target functional is treated as Fy(v,S) as well. Let us denote (for a feasible
control v and € > 0) the set of e—active restrictions for any J; C I;(S) as

Jie(v,8) = {j S J1|Fj(U,S) > —8}.

We define I (v, S) as I1. (v, S)UI(S) and introduce obvious notation IY (k, S)
and IY(k,S) = Ji(d(k)). For J C I,(S) U I5(S), v" € Va(S) we denote by
F(v',S,J) the vector Fj(v',S), j € J, and let b;(k;v',S) = Vyu) Fj(v',S),
B;(v', S) be the vector resulting from concatenation of all b;(k;v’, S), k # k'.
B(v', S, J) denotes the matrix which rows are B;(v',S), j € J. We suppose
that B;(v',S), j € J, are linearly independent that is guaranteed if the fol-
lowing condition is satisfied.
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Condition 4(regularity condition).

1) For an arbitrary v € Vu(S) vectors Fj, (v, S), j € Ip(v, S), are linearly
independent;

2) For an arbitrary u(k) satisfying (3.6) vectors Fj,(d(k),u(k)), j €
J1o(d(k)), are linearly independent.

If Condition 4 is valid then ¢( exists, such that for any 0 < ¢ < ¢( the
regularity conditions are valid not only for O-active restrictions but for e-
active ones as well. For the base problem (2.1)—(2.7) the regularity conditions
are valid for all possible S unless the problem parameters satisfy a certain
equation set.

Let C(v',S,J) be a dim(J) x dim(J) submatrix of B(v',S,J) with the
minimum inverse matrix norm. The Condition 4 yields ¢;y, > 0 for which

I(C@', S, J) || < ciny forall v € Vo(S), JC I.(v,5), 0<e<e.

For both aims v (k') satisfy the respective restrictions (3.6), (3.13). All
other restrictions (3.15) will be satisfied provided that ||dv|| < ny if for a
e < eo/ny a control vy satisfies the equations set for the given v:

G;(va,S) = F(va,S) — Fj(v,8) =0, j € I' = I.(v,S) \ Ji(d(k")).

We propose a Newton-like method of its solution with initial v(®) where
vO (k) = v(k), k # k', v (k') = va(K') and recursive relationships

B(v™, S, 1)) (v — o) = —G (v, S, IV), (3.16)

from which the vector v€("+1) of v("+1) components corresponding to columns
of C' may be determined as

v —(C(w™, 8, 1) G, 8, IL),
the rest components being zeros that yields the unique solution v("*1),

Complying (C(v(", S, 1))~ with zero columns to the dim(J) x M matrix
Q(v("), S, I') we represent (3.16) as

ot = o) = (v, 8, 1) G (v, 5, 11),
thus

G (v, 8) = O(IG, IHI?), je L,

IG (Y, 8, 1) | = O(|G™, 5, 1)[?),

hence the iteration process (3.16) converges superlinearly if ¢ is sufficiently
small and ||(C(v(", S, 1/))7'|| < ciny for all 7. In that case we can write

v* =limv™; o — oW < K* (cino |G (v, S, I;)H)2 < K**e?

o0
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To determine Fj,(v',S) we can use the formula for j € {0} U IY (k;,S) (see,

[4]):
k;

0F; = (pj(S, k'), 62 (k) + > (99(S, k), Yy (d(k), 2 (k), v(k)) v (k)), (3.17)
k=k'+1

where ko = N and for conjugate variables p)(S, k'), pj(S,k’) we have:
PH(S ky) = (rk (21 (k)" 228 k)Y (d(k), 0 (), v(k)) 1 (S, b)),
pj(S,k—1) =X (S(k—1),d(k —1),z" (k- 1)) p}(S.k), k=kj,..., L
From (3.17) we have for j € IY (k,S) and j € 1Y (k, S)
bi(v, 8, k) =Y, (d(k),2°(k),v(k))p}(S, k),
bj(v, S, k) = (rij) (d(k), u(k)), ..., v (d(k), u(k)), 0).

In the case of the first and second aims we have for F;(v(®),S), j € {0} U
IY (K, S) the following formulas

Fj(v,8) + (pj (S, k'), Ye (d(K'), 2°(K'), ua(k'), 0)) ta(k') + O(¢4(K)),
Fj(v,8) — (p}(S, k"), Yo (d(k'), 2°(K'),v(k"))) t(K') + O(*(K')).  (3.18)
Then from (3.18) we have
Fy(v*, 8)=Fy(v, S)+e(qoo (v, S), Ye(d(K'), z°(K'), ua(k'),0)) + O(?), (3.19)
where

QOO(% S) = pé(sa k/) - Fov(v7 S) Z QJ (U(O),S, Ié)p;(sa k/)

jeIy (v,S)
From (3.19) we get the necessary optimality condition formulated in the [§].

Theorem 1. If the pair (S,v € V5(S)) gives the solution of the problem (3.1)—
(3.8) and for some k' we have dim(S(k' — 1)) > 1, then for any Sa for which

Sa(k)=S(k), k<k'—1, Sa(k'—=1)USa(k')=Sk —1),
Salk)=Sk-1), k=k+1,...,N+1,

there exists a vector qoo(v,Sa) such that for any ua(k’) € Up(da(k')) the
following inequality is valid

(qoo(v, Sa), Ye(d(k'),z°(k"),ua(k'),0)) > 0.
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4. Transformation of Optimality Conditions and
Numerical Method Based on Decomposition with
Respect to Restrictions Set

To make the use of both types of optimality conditions more convenient we
represent control variations with a decomposition scheme as

ov=Hyy1 + Hy2+ ...+ Hgyo, (4.1)
where the constraints set J 2 I.(v,S) is shared into @ subsets, Ji,..., Jo,
and matrices Hi,. .., Hg are determined from the condition: for any v

(Fin(v,8),00) = (Fiu(v,5), Hyyq), i € Jg.

With the use of decomposition the usual Zoutendijk type necessary optimality
conditions [4] are transformed into the following form:

Theorem 2. If vector v is the solution of (3.15), the regularity condition
holds for J DO Iy(v,S) and the set of matrices Hi,...,Hq determines a de-
composition scheme on (v, J), then for any ¢ = 1,...,Q for arbitrary y,
satisfying inequalities

(Fiv(v,8),Hqyq) <0, i€ JyNIip(v,S),
(Fiv(v,5), Hqyq) =0, i€ J;NIx(S),
the inequality is valid
(Fow(v,S), Hyyg) > 0. (4.2)
Constructing an altered scenario we use the representation
Yq = Z Pj * Cqj
J€Jq
where vectors cy;, j € Jg, are determined from the equations
FlL(0,8) Hycqy =1, FiL(v,8) Hycg; =0, i€ Jy, i#3. (4.3)
The relationship (4.1) then becomes the set of N relationships of the form
dv(k) = Hi(k)yr + ...+ Ho(k)yg (4.4)
and the iteration process (3.16) is transformed into

Q
v(’r+1)(k) — U(T)(k) — Z [Z Gj (’U(T)7 S, I(/)) ’ H{S;)(k) ) Cc(;)} ’

g=1 jEJq

The computation of the optimum control may be based on the gener-
alization of the direct decomposition method combining features of feasible
directions and gradient-restoration methods [6, 7]. In the proposed method for
most iterations optimization within a fixed scenario the following calculations
are performed:
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For ¢ = 1,..., Q) the following problems are solved with respect to a
scalar 1o, and a vector y, for a given J:

770q = (FOU(va 5)7 quq) - mina (45)

E(’U,S)—F(Fiv(v,S), quq) §07 iEqullﬁ(UaS)7 (46)

(Fiw (v, S), Hqyq) =0, i€ J,N1x(9), (4.7)

—1<yu <1, i=1,..., M, (4.8)
If

No ="No1+ ...+ Nog > —cncW,

then § is diminished (e.g., 6 = 6/2) and problems (4.5)—(4.8) are solved
once more. Otherwise the next iteration control

v =v+a(Hiy + Hyyo+ ...+ Hoyg)

is taken.

If for any k' we get dim(S(k’)) > 1, then for some iterations the oppor-
tunity of changing from original scenario S to S4 is tested by solution of
the problem

(q00(v, Sa), Ye(d(K'),2°(K"), ua(k'),0)) — min, wua(k') € Up(da(k)).
(4.9)
If the target function in (4.9) is less than ny < 0 for a preceding iteration,
then the scenario is changed as it was described above.

Since there is a finite number of shifts to another scenario, the results of the
method convergence stay valid, but we get more than the optimum for the
last scenario.
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