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Abstract. Solvability of the boundary value problems (BVPs) for the fourth-
order Emden-Fowler type equations z¥ = ¢(t)|z|Psgnz is investigated by us-
ing the quasilinearization process. We modify the equation to a quasi-linear form
™ — k*z = Fy(t, ) for various values of k. Our considerations are based on a fact
that the modified quasi-linear problem has a solution of the same oscillatory type as
the linear part * — k*z has. We show that original problem in some cases also has
a solution of definite type and establish sufficient conditions for multiple solutions
of the given BVP.

Key words: quasi-linear equation, quasilinearization, i-nonresonant linear part,
i-type solution

1. Introduction

This paper is devoted to the boundary value problem (BVP) for the fourth-
order Emden-Fowler type equations

{x(4) = q(t)|z[P sgn,

(1.1)
2(0) = 2'(0) = 0 = (1) = 2/ (1),

where p > 1, t € I :=10,1], ¢ € C(I,(0, +o0)). We investigate

the solvability of problem (1.1) with respect to the values of p and prove

estimates of the function ¢(¢) by using the so called quasilinearization process.

Our aim is to obtain sufficient conditions for existence of multiple solutions
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of different types to the given nonlinear problem (1.1). Our considerations are
based on the oscillation theory by Leighton and Nehari [1] for linear fourth-
order differential equations. We generalize previously obtained multiplicity
results (see [2, 3, 4]) for non-autonomous Emden-Fowler type equations.

2. Quasilinearization Process
Our intent is to reduce the original nonlinear problem (1.1) to a quasi-linear

one and to prove that both equations are equivalent in some domain (2 (see
Table 1).

Table 1. Quasilinearization process.

nonlinear problem
2@ = q(t) |2|” sgn x,
z(0) =2'(0) =0==z(1) =z'(1)
i}

quasi-linear problem
(Laz)(t) := 2@ — k*z = F(t, ),
z(0) = 2(0) = 0 = 2(1) = 2'(1),
N={(t,x): 0<t<1, |z| <N}

(L4z)(t) — non-resonant
F,F, € C([0,1] X R, R),
mgx!F(t, )| =M

¥
1
raiin (0 = [ G0F (s2(5) . max |G(t,s)| = T
0 0<t,s<1
|xquasi—1in_(t)| < I'M

If F is continuous along with F,, F' is bounded in {2 and a linear part
(Lsz)(t) :== 2™ — k*z is non-resonant (that is the respective homogeneous
problem (L4z)(t) = 0, with boundary conditions of (1.1) has only the triv-
ial solution), then a modified quasi-linear problem is solvable. Its solution
Zquasi-lin. (f) can be written in the integral form and can be estimated as shown
in Table 1. G(t,s) is the Green’s function for the respective homogeneous
problem (L4x)(t) = 0 with the boundary condition of problem (1.1).

If an inequality

I'M <N (2.1)

holds (that is, |Zquasi-tin. (£)| < N) then the solution of the quasi-linear problem
is located in the domain of equivalence (2, therefore it also solves the nonlinear
problem. Thus we can prove the solvability of the original problem (1.1).

If inequality (2.1) is fulfilled we will say for brevity that nonlinear problem
(1.1) allows for quasilinearization with respect to the linear part (Lsz)(t) :=
¥ — k*z and the domain £2.

Suppose that the original problem (1.1) allows for quasilinearization with
respect to a different linear part (I42)(t) := ¥ — r*z and different domain
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Table 2. Quasilinearization and different solutions.

‘ nonlinear problem ‘

VRN
quasi-linear problem (1) quasi-linear problem (2)
W — ki = Fi(t, z), @ — iy = By(t, x),

2(0) = 2(0) = 0 = (1) = 2'(1), z(0) = 2(0) = 0 = x(1) = 2'(1),
2 ={(t,x): tel, |z|] < Ni} 2 ={(t,x): tel, |z] < Na}
4 I

(t7 xl(t)) € (t, l‘g(t)) € 2

(see Table 2). Does that mean that the original problem has another solution,
revealed by this quasilinearization? In what follows we try to answer this
question.

3. Fourth-Order Quasi-Linear Problems

Consider a quasi-linear problem

{$(4) —k'z = F(t,z), (3.1)

z(0) =2'(0) =0 =z(1) = 2/(1).

Suppose the following conditions are satisfied:
(A1) F and F, are continuous functions;  (A2) F(¢,0) = 0;
OF (t

(A3) k>0 and coskcoshk #1;  (A4) k* + % > 0.

Condition (A3) implies that a linear part (Lsz)(t) := 2 — k*z is
non-resonant with respect to the given boundary conditions in (3.1). All
proper values of k form the intervals of non-resonance (0, k1), (k1, k2), - -,
(kn, knt1),- .., where cosk, coshk, =1,n=0,1,2, ..., kg =0.

Our considerations are based on the oscillation theory by Leighton and
Nehari [1] for the fourth-order linear differential equations of the form

@ —pt)z =0, pt)>0. (3.2)

If the coefficients k; and k; (i # j) belong to different intervals of non-
resonance then the solutions of the respective problems have different os-
cillatory properties. We can illustrate this fact considering a Cauchy problem

@ k=0
N ) ’ 7 " " (3.3)
z(0) =0, 2/(0) =0, 2"(0)=A, 2(0) =-B,
where A, B are some positive numbers. Figure 1 presents the solutions of
problem (3.3) for different values of k from the first and the second intervals
of non-resonance.
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Figure 1. Solutions of problem (3.3) (a = 1, 8 = 5.6) for different values k: a)
ke (0, k?l), b) ke (kl, kz)

If the numbers k; and k; belong to different intervals then the linear parts
2@ — klz and 2 — k1 have different types of non-resonance. We define an
i-nonresonance of the linear part (i.e. non-resonance of i-type) using a notion
of the conjugate point [1].

DEFINITION 1. A point 1 > 0 is called a conjugate point for the point ¢t = 0,
if there exists a nontrivial solution z(t) of the equation (3.2) such that

2(0) = 2'(0) = 0= 2(n) = 2"(n).

DEFINITION 2. The linear part (Lsz)(t) := 2% — k*z is called i—nonresonant
with respect to the boundary conditions in (3.1), if there are exactly 7 conju-
gate points in the interval (0, 1) and ¢ = 1 is not a conjugate point.

If the linear parts (4 — kilz and (4 — k}x have different types of non-
resonance we say for brevity that they are essentially different.

Now we give a definition of an i-type solution of the quasi-linear problem
in a slightly different form than it was done in [2, 3].

DEFINITION 3. £(t) is an i-type solution of the quasi-linear problem (3.1) if for
small enough «, 8 > 0 the difference u(t; o, 8) = z(t; o, 8) — £(t) has at most
(i + 1) zeros in the interval (0, 1] (counting multiplicities), where z(t; o, ) is
a solution of the same quasi-linear equation in (3.1), which satisfies the initial
conditions

2(0; v, B) = £(0),  2'(0;0, B) = £'(0),
2"(0; 0, B) = £7(0) + ,  2"(0;0, B) = £"(0) = 5.

(3.4)

Such a solution x(t; «, 3) is called a neighbouring solution.

Remark 1. Tt follows from the theory of Leighton and Nehari [1] that if condi-
tions of Definition 3 are satisfied, then there exist exactly ¢ solutions x(¢; v, 3;)
of the initial value problem z(*) — k*z = F(t,z), (3.4) such that the difference
u(t; oy, B;) has a double zero n; € (0, 1).

The following theorem was proved in [2, 4].
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Theorem 1. Suppose that conditions (A1)—(A4) are satisfied. Quasi-linear
problem (3.1) has an i-type solution, if the linear part (Laz)(t) := ™ — k*z
18 1-nonresonant.

We can now answer the question posed at the end of the previous section.
If a nonlinear problem allows for quasilinearization with respect to the linear
parts of different types of non-resonance (that is, with respect to essentially
different linear parts), then the solutions, revealed by these quasilinearizations,
are different.

4. BVPs for Non-Autonomous Emden-Fowler Type
Equations

Consider BVPs for the fourth-order non-autonomous Emden-Fowler type
equations (1.1).

Theorem 2. Suppose that 0 < ¢1 < q(t) < g2Vt € [0, 1]. If there exists
some k in the form k =i, (i =1, 2,...), which satisfies the inequality

eF(4v2+3) -1 P71\ D
< (—) or k=02n—1)m 4.1
vy Ppoply)  fr F=enmlmo @D
or faT 43 , )
e"(4v2+3)+1 pr1T (ql)w
< — or k= 2nm, 4.2
-y To-ola) “2)
where 0 is a positive root of the equation

B =B+ (p—1)pT, (4.3)

then there exists an (i — 1)-type solution of problem (1.1).

Proof. The given nonlinear equation (1.1) is equivalent to the equation
@ — ke = q(t) |z|P sgnx — Ktz (4.4)

Suppose that k satisfies cosk coshk # 1 in order the linear part (Lsx)(t) :=
) —k*z to be non-resonant with respect to the given boundary conditions of
problem (1.1). We wish to make the right side in (4.4) bounded. The function
fr(t,z) :=q(t) |x|P sgnx — k*z is odd in x for a fixed t. Let us consider it for
nonnegative values of z. There exists a positive point of local extremum z.
For a fixed ¢ = t* we calculate the value of the function fy(¢,z) at the point
of extremum x
k*y 751 a1
mi(t) = |fet*, a0)| = ()7 Ip = 11a) 7, (4.5)

and choose ng(t*) such that |z| < ng(t*) = |fe(t*, )| < mg(t*). Computa-
1

tion gives that ny,(t*) = (#4*)) »~1 3, where a constant 3 is described in (4.3).

Set
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My = max{my(t*) : t* € [0, 1]}, N = min{ng(¢*):¢* €0, 1]}. (4.6)

Then carry out the appropriate smooth truncation (“cutoff") of the function
Jr(t,z) (a similar approach was applied in [5]) and get multiple quasi-linear
equations for different values of k

@ — ke = Fy(t,z), (4.7)

where the right sides in (4.4) and (4.7) coincide for |z(t)| < Ni and Fy(t, )
is bounded in modulus by a constant Mj. So the original problem (1.1) and
each quasi-linear one (4.7) are equivalent in a domain

O, ={(t,x): 0<t <1, [z] < Ny}

Notice that a linear part (Lyz)(t) := 2 — k*z for the numbers k in the form
k=mi, (i=1,2,...)is (i — 1)-nonresonant. Besides, in the domain of equiv-
alence (2, the conditions (A1) — (A4) are fulfilled. Therefore in accordance
with Theorem 1 the quasi-linear problems (4.7) for the numbers k in the form
k=mi, (i=1,2,...) have (i — 1)-type solutions.

Next we need to verify, whether the original problem (1.1) allows for quasi-
linearization with respect to the linear parts (Lsz)(t) := (¥ — k*z and the
domains 2. In this case inequality (2.1) (its fulfillment is necessary in order
the quasilinearization in the above sense be possible) has the form

I'uMj, < Ny, (4.8)

where the numbers M) and Nj are described in (4.6) and [ is an esti-
mate of the respective Green’s function Gi(¢,s) for the homogeneous prob-
lem (Lsz)(t) = 0 with boundary conditions of (1.1). Since p > 1 and
0<q <q(t) <qa, Vte[0, 1], then

1

E)ﬁ(p—l)qffp,

p
kAN 521
o)

The Green function Gi(t, s) was constructed explicitly and estimated in [3, 4].
These estimates were improved in [6]. For values of k in the form k = i,
(1 =1, 2,...) the Green function satisfies the estimates

e (4v2+3) -1

M - t* =
o= max me(t") = o

N = min ne(t*) =
Ly )

|Gi(t,s)| < By k), if k=2n—1)m, (4.10)
|Gr(t,s)| < %%Jl =: Iy(k), if k= 2nm. (4.11)

It follows from (4.9), (4.10), (4.11) that the inequality (4.8) reduces respec-
tively either to (4.1) or (4.2). Therefore if there exists some k in the form
k = mi, (i =1, 2,...), which satisfies an inequality (4.1) or (4.2), then the
original problem (1.1) allows for the quasilinearization with respect to the
corresponding linear part (Lsz)(t) := ¥ — k*z and the domain 2 and
therefore this problem has an (i — 1)- type solution. The proof is complete. B



On Solvability of the BV Ps for the Emden-Fowler Equations 273
Corollary 1. If there exist the numbers k = mi, i = 1, 2, ..., m, which satisfy

the inequalities (4.1), (4.2), then there exist at least m solutions of different
types to the problem (1.1).

Table 3. Results of calculations.

a1 .
p s q; ki
5 o > 29
6 q1 15
3 1.2884 . > 16 ki1 =m; ke =27
7 a1 12
5 1.2933 o > 15 k1 =m; ke =21
Z—;Z% ki =m; ko = 2m; ks = 3w
8
= 1.2969 Z—; > % k1 =m; ke =21
Z—;z% k1 =m; ke = 2m; ks = 3
Z 1.2998 Z—; > }—(1) k1 =m; ke =21
Z—;Z% ki =m; ko = 2m; ks = 3w
Z—;Z% ki =m; ko = 2m; ks = 3m; kg = 4w
10 a 10
) 1.3019 . > 5 ki1 =m; ke =27
%2% k1 =m; ko = 2m; ks = 37
%2% k1 =m; ke = 2m; ks = 3m; ka = 47
11 a 10
Z—;z% k1 =m; ke = 2m; ks = 3w
Z;Z% k1 =m; ko = 2m; ks = 3m; kg = 4w
Z—;Z% ki; ko; ks = 3m; kg = 4m; ks = 5w
12
11 1.3053 Z—; > }—(1) ki =m; ke =27
Z—;Z% ki =m; ko = 2m; ks = 3w
Z—;Zg—; ki =m; ko = 2m; ks = 3m; kg = 4w
Z—;zg—(l) klgkz; k3237r;k:4:47r;k5:57r

In Table 3 the results of calculations are provided. For certain values of

p and 9 the numbers k in the form k = mi, © = 1,2, ... are given, which
q2
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satisfy the inequalities (4.1), (4.2). This table may be interpreted as a set of
multiplicity results for the BVP (1.1).

Let us try to describe for fixed values of k given in the form k& = mi,
i=1,2,... the domains D(p, g—;) in which the inequalities (4.1), (4.2) hold.
Denote

k _
Fav2+3) -1 if k= (2n— 1,

.. Q 4(ek +1) 7
== k) =
T (k) A2 +3)+1
————, if k=2nm.
4(ek — 1)

Then both inequalities (4.1) and (4.2) can be rewritten in the form

p— — (p—1)
7> (7(;)) gl ;2) . (4.12)

We have computed the domains Dy, (p,q), in which the inequality (4.12) holds.
If in problem (1.1) coefficient p and function ¢(¢) are such that the point (p,q)
is located in the domain, which corresponds to & = 7wm, then the considered
problem (1.1) has at least m solutions of different types. Figure 2 shows four

Figure 2. Domains, in which the inequality (4.12) holds.

embedded domains, which illustrate possibilities of application of the quasi-
linearization process to problem (1.1). It is characterized by the parameters
pand § = %. If a point (p,q) is located in the largest domain, then at least
2 essentially different quasilinearizations are possible with k1 = 7, ko = 27.
If a point (p,q) belongs to the smallest domain, it means that at least 5 es-
sentially different quasilinearizations are possible with k; = im, ¢ = 1,...,5.
These considerations agree well with the data in Table 3.

5. Example

Consider the fourth-order nonlinear boundary value problem

&™) = 50(81 + sin Zt)|z|* sgn ,
xz(0) =2'(0) =0 ==z(1) = 2/(1).
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It is a special case of the problem (1.1), when p = 2 and ¢(t) = 50(81+sin 3t).
Since %ﬂﬂ q(t) = 4050 and %aﬁcq(t) = 4100 than I = 81, So in accordance

)

with calculations (see Table 3 and Figure 2) and Corollary 1 there exist at
least four solutions of different types to the given problem (5.1). We have
computed them (see Fig. 3, Fig. 4, Fig. 5, Fig. 6).

1.4 7-10°8
1.2 6-10°°

1 5.10°°
0.8 4.10°°
0.6 3.10°%
0.4 2.10°°
0.2 1108

0.2 04 06 08 T 0.2 04 06 08 1

Figure 3. 0-type solution of Figure 4. 1-type solution of
problem (5.1). problem (5.1).

0.6 30000
0.4 20000
0.2 10000
. X . 0.2 Q\:\~;;/ 0.8 1

Figure 5. 2-type solution of Figure 6. 3-type solution of
problem (5.1). problem (5.1).

-10000
-20000
-30000!

The differences between a particular solution of the problem (5.1) and the
respective neighboring solutions for different («, 3) were computed and a type
of each solution was determined in accordance with Definition 3. A trivial so-
lution of the problem (5.1) is depicted in Fig. 3. All neighbouring solutions are
such that the differences between neighbouring solution and the trivial one
have at most one zeros in the interval (0, 1], therefore the trivial solution is a 0-
type solution. Fig. 4 shows another solution of the problem (5.1). This solution
is an 1-type solution because the differences between neighbouring solutions
(for different pairs (o, 3)) and it have either one simple zero or one double
zero in (0, 1]. The initial data of the 1-type solution are 2”(0) = 0,000002,
2(0) = —0,000009223. Fig. 5 illustrates a 2-type solution of the problem
(5.1), its initial data are z/(0) = 51, " (0) = —395,08258. The differences
between certain neighbouring solutions and this solution are depicted in Fig.
7. This solution, actually, is a 2-type solution, because respective differences
for different values of «, 3 have at most 3 zeros in the interval (0, 1], counting
multiplicities. Fig. 6 shows a 3-type solution of the problem (5.1). The initial
data of this solution are 2" (0) = 5100000, ="’(0) = —55374924, 809. Compar-
ing with a case of the 2-type solution, for the 3-type solution there exist such
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neighbouring solutions that respective differences have two simple zeros and

one

double zero in the interval (0, 1].

I 0. 0004
0.2 0.4\0.6 08 1
~0. 0005 0.0003
-0.001 0. 0002
-0.0015 0.0001
-0. 002

-0.0025 \ 0.2 0.4 Ws 1
a) a=0,02, 8 =0,16342 b) a =0,01, 8 =0,07942
0. 0003|
0. 00025/ 0. 00001
0. 0002] 5.10°°
0. 00015|
0.2 0.4\06 08

0. 0001, .

-5.10
0. 00005/

-0.00001] \/1\

0.2 0.4 0.6 0.8 1

¢) a=0,01, 3 =0,07823 d) a = 0,001, 3 = 0,00797469

Figure 7. Differences between the neighbouring solutions and 2-type solution of
problem (5.1): a) one simple zero; b) two simple zeros; c¢) one double zero; d)

one

simple and one double zero.
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