MATHEMATICAL MODELLING AND ANALYSIS
VOLUME 12 NUMBER 3, 2007, PAGES 277-289
(© 2007 Technika ISSN 1392-6292 print, ISSN 1648-3510 online

AN IMPLEMENTATION OF A PARALLEL
GENERALIZED BRANCH AND BOUND
TEMPLATE

M. BARAVYKAITE and R. CIEGIS

Vilnius Gediminas Technical University
Saulétekio al. 11, LT-10223, Vilnius, Lithuania
E-mail: {mmb, rc}@fm.vtu.lt

Received September 15, 2006; revised November 25, 2006; published online September 15, 2007

Abstract. Branch and bound (BnB) is a general algorithm to solve optimization problems.
We present a template implementation of the BnB paradigm. A BnB template is implemented
using C++ object oriented paradigm. MP1 is used for underlying communications. A paradigm
of domain decomposition (data parallelization) is used to construct a parallel algorithm. To
obtain a better load balancing, the BnB template has the load balancing module that allows
the redistribution of search spaces among the processors at run time. A parallel version of
user’s algorithm is obtained automatically.

A new derivative-free global optimization algorithm is proposed for solving nonlinear
global optimization problems. It is based on the BnB algorithm and its implementation is done
by using the developed BnB algorithm template library. The robustness of the new algorithm
is demonstrated by solving a selection of test problems.

Key words: branch and bound, template programming, parallel algorithms

1. Problem Formulation

Many problems in engineering, physics, economics and other fields may be formu-
lated as optimization problems, where the minimum/maximum value of an objective
function should be found. Branch and bound (BnB) is a general technique to solve
optimization problems. It can be used in many optimization algorithms, for exam-
ple to solve combinatorial optimization or covering global optimization problems.
Its general structure can be implemented as an algorithm template that will simplify
the implementation of specific BnB algorithms to solve a particular problem. Similar
template ideas applied for a parallel programming relieve users from doing the actual
parallel programming.
Consider a minimization problem, formulated as follows

f* = min f(X). (1.1)

XeD

278 M. Baravykaité, R. Ciegis

where f(X) is an objective function, X are decision variables, and D C R" is a
search space. Besides of the minimum f*, one or all minimizers

X5 f(X7) =17

should be found.

The idea of the BnB algorithm is to detect the subspaces not containing the global
minimizers and discard them from the further search. According to the BnB algo-
rithm an initial approximation of the problem solution should be initiated first. The
initial search space D is subsequently divided into smaller subspaces D;. Then each
subspace is evaluated trying to find out if it can contain the optimal solution. For
this purpose a lower bound for the objective function LB(D;) is calculated over the
subspace and compared with the upper bound UB(D) for the minimum value. If
LB(D;) > UB(D), then the subspace D, cannot contain the global minimizer and,
therefore, it is rejected from the further search. Otherwise it is inserted into the list
of unexplored subspaces. The algorithm terminates when there are no subspaces in
the list.

Unlike the data parallel applications (e.g. algorithms for solution of partial differ-
ential equations) optimization problems are characterized by an unpredictably vary-
ing unstructured search space [21]. This property produces additional difficulties for
creation of parallel BnB algorithms: a) the change of space search order with respect
to sequential one, b) processor load unbalance, c) costs of additional communica-
tions.

In this paper we describe a new implementation of a template library of parallel
BnB algorithms. The results of numerical experiments are presented which show the
efficiency of the presented template library. A parallel version of user’s algorithm is
obtained automatically from the sequential one.

A new derivative-free algorithm is proposed for solving nonlinear global opti-
mization problems. It is based on the BnB algorithm and its implementation is done
by using the BnB algorithm template library. The robustness of the new algorithm is
demonstrated by solving a selection of test problems.

The rest of the paper is organized as follows. A generalized BnB algorithm is
described in Section 2. In Section 3 a template based implementation of the BnB
algorithm is considered. Results of computational experiments are presented in Sec-
tion 4. A new black-box global optimization algorithm and its implementation by
using the developed template BnB library are investigated in Section 5. Some final
conclusions are done in Section 6.

2. A Generalized BnB Algorithm

The branch and bound technique is used for managing the list of sub-regions and the
process of discarding and partitioning.

The general branch and bound algorithm is shown in Figure 1, where L denote
a candidate set, S is the solution, UB(D;) and LB(D;) denote upper and lower
bounds for minimum value of the objective function over sub-space D;.

A Parallel Generalized Branch and Bound Template 279

BnBAlgorithm ()

begin
(1) Cover solution space D by L = {L;|D C U}~ L;} using covering rule
2) S=0, UB(D)=o00
(3) while (subspace list is not empty L # ()) do

4) Choose I € L using selection rule, exclude I from L
%) if (LB(I) < UB(D) + ¢) then

(6) Branch [into p subspaces [; using branching rule
(7) forall (I;,57=1,2,...,p)do

®) Find UB(I; (D) and LB(I;) using bounding rules
9) UB(D) = min(UB(D),UB(I; D))

(10) if (LB(I;) < UB(D) + ¢) then

(11) if (I; is a possible solution) then S = I;
(12) else L =LU{I;}

(13) end if

(14) end if

(15) end for

(16) end if

(17) end while
end BnBAlgorithm

Figure 1. General BnB algorithm.

Parallel BnB algorithms

Three main steps are performed during development of any parallel algorithm: par-
titioning, mapping and communication [8].

Any parallel BnB algorithm depends on distribution of the initial search space
among the processors. In our BnB template a paradigm of domain decomposition
(data parallelization) is used to construct a parallel algorithm. The initial search space
is divided into several large subspaces that are mapped to processors and each proces-
sor performs BBAlgorithm independently and asynchronously. The user should
decide how many subspaces are generated. The number of subspaces can coincide
with or exceed the number of processors p, the decision depends on a priori knowl-
edge of the computational complexity of subspaces. A random distribution of larger
number of subspaces can improve the global load balance among processors.

A subspace is eliminated from the further search by comparing the lower bound
LB(D;) for the objective function over the subspace with the upper bound U B(D).
The best currently found value of the objective function is used for the upper bound
of the solution. In a simple version of the parallel algorithm, processors know only
local values of the objective function. This can result in a slower subspace elimina-
tion. In our template processors are sharing a best known U B(D). When a new value
of the upper bound is found, it is broadcasted asynchronously to the other processors.

A load balancing for BnB algorithms

To obtain a better load balancing, BnB template uses the load balancing module
that allows the redistribution of search spaces among the processors at run time.

280 M. Baravykaité, R. Ciegis

The objective of the data redistribution strategies is to ensure that there exist no
idle processor while others are heavily loaded, i.e to guarantee a useful work for all
processors, but not to obtain the equal workload between processors [21].

The balancing module has some basic methods needed for the load balancing. A
version of the diffusion load balancing algorithm is implemented as a default method
[21]. The balancing process is initialized by a receiver processor. The measure of
work-load is based on the number of subproblems belonging to the local list. A more
accurate estimates are obtained if apriori weights are known on the complexity of
the given subproblems. This information should be defined by a user of the BnB
template. The full step of load balancing consists of the exchange of information
among neighbours on their work-load, the selection of partners and the redistribution
of subproblems among neighbour-processors. The termination of the BnB algorithm
requires special protocols if the load balancing process was started. The balancing
module can be extended with other balancing algorithms as well.

3. A Template Based Programming

The idea of the template programming is to implement general structure of the algo-
rithm that could be later used to solve different problems. Here we use skeleton-like
templates, not data templates (or classes parameterized with data types like in STL).
All general features of the algorithm and its interaction with the particular problem
must be implemented in the template. The particular features related to the problem
must be defined by the template user. The following steps should be implemented in
any template:

e scparate a problem dependent part from the general structure of the algorithm;
e implement the general structure of the algorithm as a template and use it to solve
different problems.

We mention some popular examples of parallel templates used for implemen-
tation of various algorithms: Master—slaves template [16], combinatorial optimiza-
tion library of software skeletons Mallba [1], CODE [18]. Templates are used very
frequently for developing parallel iterative algorithms for solving systems of linear
equations [3].

A template based programming is very useful in parallel programming. It was
proposed by M. Cole in his PhD thesis [13], see also [6, 15, 12]. Any parallel al-
gorithm template must fully or partially specify the main features of a parallel al-
gorithm: partitioning, communication, agglomeration and mapping. From the user’s
point of view, all or nearly all coding should be sequential and almost all the parallel
aspects should be provided by the tool. A parallel template is a re-usable, application-
independent encapsulation of a commonly used parallel computing pattern. It is im-
plemented as a re-usable code-template for quick and reliable development of paral-
lel applications.

We mention examples of BnB parallelization tools BOB [5] , PICO [7], PPBB
[19], PUBB [17].

281

A Parallel Generalized Branch and Bound Template

(

(Juopnjogan|aoay+|

abueyox3z jog

\

()suopjesjunwiwoyeqo|H+

SnjejSwia] -,
Xapu|peot-
_ Beyjeq-|
Bel yoxajos-

suojesjunwwoy

?o_.ﬂw“o a1+

()oBueyoxa | 7+|

adAy g7
adAL 1T
sioqybjau-|

/[

()193e019 4
()renbay
()sso+4
()a1epdn4

(Juopipuogwua) ajepdn+ (Mseioeduns+|
()ss@o0iquopeujuia] 4 (Msepyoed+
()ssas01dquoneujwia] azjeniu|
?zZ|Syse]-
wia) [eqolo-
wia] |eso 1dllesedysel
uopeuwIoL (Juopnjosyoedun+|
(Juonjosyed+
19|eseguORN|OS
(a3epdns+4
()ApeaysH
(Jpunogs+
(youeigs+
()punogaieduion s+ ()HeISSH
(Juopnjogaiedwo) s+
|enyuanbagyse]

[eguanbaguopnios

()arepdn+|
0A
punogeiedwio g+ Amwﬂ.ﬁ:hmH
(Juopnjogaiedwon+ Oueiss
punog-|
uopnios i

Jaouejeg

|PeOT

Xapu|peoT]

/

()ayo12a8 418+
(Wiasuis g+

()a10120S 47+
(Jpasuisd1+

()ayo12a8 49+
(piasuisig+

yosleasig

yaJeasd

yaJeasdg

|

D+
(Jpunogyoueigja|jeiedanduwio) +|

(psaidaziienIul+

(Jpunogyoueigandwod+
(hsneziienur+
()punogyoueig+|

()punogyoueig+|

—D

Isllesedgg

|einyuanbaggg

IsIqormau+
Is1qor+
BNEAUIN+!

wuyyoblyag

] lapiQyoiess ysep b

P —

()a101204

(uasul4

1009 : ()fydwzananp4
Buoj : ()azigananp+

-

19pIOY2IEaS

se . b—

282 M. Baravykaité, R. Ciegis
BnB algorithm template

The class scheme of the BnB algorithm template is presented in previous figure. This
template implements main parts of sequential and parallel BnB algorithms. The al-
gorithm is performed using Task, Solution and SearchOrder instances. The
implementation of the BBAlgorithmis presented in the template, but users can ex-
tend this class. SearchOrder defines the strategies how to select the next subspace
from the list of subspaces for subsequent partitioning. The most popular strategies
such as the best first search, last first search and breadth first search are already
implemented as methods and they are ready for application. The user can imple-
ment his/her own specific rules, in this case he/she should define methods Insert,
Delete, QueueSize, QueueEmpty. Class Task defines the problem to be
solved. It should have the basic BnB algorithm methods: Initialize, Branch,
Bound. Some often used Branch methods are already implemented in the template.
Standard Bound calculation methods (e.g. for Lipschitz functions) are included into
the template. Class Solut ion implements the details of the solution and it should
be implemented by the user. Class Balancer is used for parallel applications to bal-
ance the processor load. In order to obtain a sequential or parallel program, the user
has only to select the particular Task and Solution class instances and compile
the selected variant of the program. The data communication level is implemented
using MPI and this level of the library is hidden from the user.

The developed template can be extended with other useful methods and algo-
rithms, such as simulated annealing, genetic programming, the a—/ search algo-
rithm.

4. Computational Experiments

The general paradigm used to build parallel BnB algorithms is the domain decom-
position, but there is a big difference between classical applications of the domain
decomposition in solving PDEs and global optimization problems. Parallel optimiza-
tion algorithms have an unpredictably varying unstructured search space [21]. It
should be noted that because of the domain decomposition the order of search can
differ for parallel and sequential branch and bound algorithms even using the same
subset selection rule. Sub-spaces eliminated in the sequential algorithm can be ex-
plored in the parallel one, and it is possible that a total number of the sub-spaces
searched in the parallel algorithm can be larger than in the sequential case.

Let us define the number of nodes in the generated search tree as a unit to mea-
sure the complexity of the branch and bound algorithm. We propose to estimate the
growth of the number of sub-spaces in the parallel algorithm by using the following

search overhead factor
w,
SOF = 2|
Wo
where W, is the number of sub-spaces processed in the parallel algorithm, and Wy is
the number of tasks processed by the sequential algorithm. This parameter is prob-

lem dependent, but it helps us to explain the obtained experimental results on the

A Parallel Generalized Branch and Bound Template 283

efficiency of parallel algorithms, when the complexity of sub-problems is very dif-
ferent and the graph of generated jobs changes non-deterministically depending on
the number of processors [9].

In computational experiments we minimized five Lipschitz functions with known
Lipschitz constants [10]:

fi(x1,29) = 0.522 — 921 + 20 + 0.522 — 9z + 20,

~1 1
(21— 4%+ (w2 —4)> +0.7 (21 —2.5)% + (22 — 3.8)> +0.73

f2(w1,22) =
f3(x1,22) = —sin (221 + 1) — 28in (3x2 + 2),

1 2
f4 ($1,{E2,{E3) =100 <x3 — Z ($1 + $2)2) + (1 — 1‘1)2 + (1 - $2)2,

3 3
1 .
f5 (1,20, 23) = 3 ;:1 x? — Hcos(lo “In(i-2;)) + 1.

Experiments were performed on VGTU cluster http://vilkas.vtu.lt. It is a cluster of
Pentium 4 processors which are connected by Gigabit Ethernet network (two Gigabit
Smart Switch communicators). The ratio between computation and communication
speeds is typical for clusters of PCs, thus the results will be even better for specialized
supercomputers, such as IBM SP5.

In Figures 2 values of the efficiency coefficient and SOF of the parallel BnB
algorithm are given for different numbers of processors. It follows from the presented
results that the decreased efficiency can be explained by increased value of SOF
coefficient. The unstructured search space varies unpredictably and it is impossible
to guarantee that the efficiency of the parallel algorithm will be close to one. The
load balancing helps to distribute surplus problems to free processors, but this step
can also enlarge the search overhead factor.

5. A Black-Box Global Optimization Algorithm

For many engineering applications only values of the objective function f(X') can be
computed and we do not have information on the derivatives of f (or the Lipschitz
constant of this function). Thus the objective function is computed as a black-box
algorithm and the gradient computation is unavailable. The target applications are
simulation-based optimization problems characterized by a small number of vari-
ables (i.e., n < 20) and by expensive objective function evaluations (e.g. they require
solution of a system of nonlinear PDEs [2]). Thus estimation of derivatives by finite
differences may be prohibitively costly. A good review on derivative-free methods is
given in [4].

Black-box optimization algorithms are derivative-free, only function values are
required for the optimization. Parallel versions of these algorithms can greatly reduce
the total solution time.

284 M. Baravykaité, R. Ciegis

1,4

1,2

1 —F1
g \‘ F2
2 08—\ —— —_-
K] N -\
£ 06 NI em T N — - ---F3
w

; S — — - -
04 A \ F4
D - — - F
02 \ . 5

1 2 3 4 5 6 7 8 9 10

Processors

a)
3
2,5
—F1
2 — —
N PRI — ~ .| |—-F2
S 15 e T - - - F3
L _ F4
1 4 S — o — o — o — o m— o
— -F5
0,5
0
1 2 3 4 5 6 7 8 9 10
Processors

b)

Figure 2. Results of computational experiments: a) the effi ciency of the parallel BnB algo-
rithm, b) SOF of the parallel BnB algorithm.

A well-known library implementing derivative-free direct search algorithms is
APPSPACK [11]. It is used for solving nonlinear unconstrained, bound-constrained,
and linearly-constrained optimization problems, with possibly noisy and expensive
objective functions. To find a solution of this problem, APPSPACK implements asyn-
chronous parallel generating set search, which handles bound and linear constraints
by choosing search directions that conform to the nearby boundary. Parallelism is
achieved by assigning the individual function evaluations to different processors.
The asynchronism enables better load balancing.

PSwarm tool is another example of derivative free parallel global optimization
solver [20]. It is a global optimization solver for bound constrained problems (for
which the derivatives of the objective function are unavailable, inaccurate or expen-
sive). The algorithm combines pattern search and particle swarm. Basically, it applies
coordinate search in the poll step and particle swarm in the search step.

We propose a new black-box global optimization algorithm, which is based on
the BnB method. The algorithm is implemented by using the developed template of
BnB algorithms, thus a parallel version of the algorithm is obtained automatically by
running BnB code in parallel. Our algorithm is only heuristic and the main part of it
depends on the definition of the bounding rule. The remaining rules are taken from

A Parallel Generalized Branch and Bound Template 285

the general template of the BnB algorithm. Thus we present in detail only the outline
of the bounding rule.

A bounding rule

In each sub-space D; two sets of trial points are generated. The first set of (2n + 1)
regular points cover the sub-space in quasi-optimal way and the remaining M points
are distributed in random. We note that Sobol’s sequence and the lattice rule can be
used to distribute random points more uniformly.

Then a local search is done from all trial points by using the Simplex local op-
timization algorithm (it is a gradient-descent type method, but its implementation is
derivative-free). The following three cases are considered:

1. If no local minimum points are obtained in D; then this sub-space is eliminated
from the search list L.

2. If exactly one local minimum point is obtained, the information on UB(D) is
updated. The sub-space is eliminated from the search list.

3. If two or more local minimum points exist in the sub-space, then a new LB(D;)
estimate is computed

LB(D;) = min LM; — C(max LM; — min LM;).

In order to increase the robustness of the algorithm up to K, local minimizers in each
sub-space D; are saved for future usage. All of them are included into the newly
computed list of local minimizers. We note that this list is updated at each iteration.

Many black-box optimization algorithms suffer from serious drawback, that after
rapid initial improvement of an initial approximation, the following computations
give no further improvement of the solution and algorithm is stalling. This property
depends mainly on the rules defining when the sub-region can be excluded from the
list of promising sub-spaces. In most real-world applications it is sufficient to find
fast good approximation of the global minimizer, thus we add to the algorithm two
additional rules which define cases when a sub-space is eliminated from the search
list L.

1. The number of sub-divisions of each initial sub-space is restricted to IV.S.
2. If after L subsequent steps of division the value of a best known local minimum
UB(D;) is not updated, then this sub-space is excluded from the search list.

Such rules guarantee that expansive computations do not concentrate too long in
some particular part of the domain D, and the whole region is tested during a rea-
sonable time of computations.

Test functions

To assess the robustness of the new algorithm we have solved a selection of problems
from [14]. The main characteristics of these problems are given in Table 1.

286 M. Baravykaité, R. Ciegis

Table 1. The dimensions and the numbers of local and global minimizers of test functions.

Function n No. of local minim. ~ No. of global minim.
1. Rosenbbrock 2 1 1
2. McCormick 2 1 1
3. Box Betts 3 1 1
4. Paviani 10 1 1
5. Generalized Rosenbrock 15 1 1
6. Gold and Price 2 4 1
7. Shekel5 4 5 1
8. Shekel7 4 7 1
9. Shekel10 4 10 1
10. Levy4 4 71000 1
11. Levy5 5 10° 1
12. Levy5 6 108 1
13. Levy7 7 108 1
14. Griewank 10 1000 1
15. Six Hump Camel 2 6 2
16. Branin 2 23 5
17. Shubert 2 400 9
18. Hansen 2 760 9
Results

Up to 32 processors were used to solve each problem. For any number of proces-
sors the BnB algorithm converged to the optimal solution for problems 1-13 and
15-18. In the case of Griewank’s problem the accuracy of the computed solution de-
pended on the specified domain D. If we take D = [-5,7] x --- x [=5,7], then
the optimal global minimizer is obtained. For D = [—50, 70] x - -+ x [=50, 70], we
have computed only an approximation of the exact minimizer. Since this problem is
multidimensional and it has a very large number of local minimizers, the computed
LB(D;) bounds were not very accurate and subproblems were eliminated from the
search list L mainly according to the two additional rules, given above. We note that
an improvement of the accuracy was obtained by increasing the number of possible
divisions and number M of at random distributed initial approximations.

The comparison of the new BlackBox algorithm with Appspack and PSwarm
algorithms is presented. First sequential versions of these algorithms were compared.
Results of calculations are presented in Table 2. In many cases BlackBox per-
formed better than PSwarm and in cases with several global minima it also outper-
formed the Appspack algorithm.

The parallel version of BlackBox algorithm was obtained using BnB algorithm
template. The speed-up for the Levy, Griewank and Generalized Rosenbrock prob-
lems was measured and is presented in Table 3. In case of Levy4 function a good
speed-up is achieved. In other cases the speed-up is worse than speed-ups obtained

A Parallel Generalized Branch and Bound Template 287

Table 2. The comparison of sequential execution time.

Function Appspack PSwarm Black Box
Rosenbbrock 0.03 0.01 0.01
McCormick 2.02 1.52 0.02
Box Betts 0.05 0.05 0.06
Paviani 11.02 2.5 10.96
Generalized Rosenbrock 35.6 170.2 129.19
Gold and Price 0.23 3.5 0.02
Shekel5 0.33 3.6 0.45
Shekel7 3.6 5.0 0.59
Shekel10 5.7 8.1 0.65
Levy4 13.6 259 18.13
Levy5 23.35 42.5 29.24
Levy5 324 83.6 74.32
Levy7 49.6 535.8 357.63
Griewank 40.9 92.1 77.46
Six Hump Camel 2.1 0.5 0.06
Branin 2.0 0.2 0.1
Shubert 2.3 3.54 1.27
Hansen 2.9 0.95 0.8

using Appspack (see Table 4) and better that ones reached using PSwarm (see Ta-
ble 5) for the same problems.

Table 3. The speedup of the parallel Black Box algorithm.

Processors GenRos Levy4 LevyS Levy6 Levy7 Griewank

1 1 1 1 1 1 1

2 1.81 2.05 201 278 1.62 1.78
3 037 29 242 192 251 1.49
4 034 551 289 266 211 1.28
8 0.51 6.73 396 4.02 230 0.98
16 0.69 14.89 549 454 3.67 1.22
32 1.29 3082 573 7.63 594 1.39

6. Conclusions

In this study we have presented a description of a new template of parallel BnB
algorithms. It presents C++ classes for all main steps of BnB algorithm including

288 M. Baravykaité, R. Ciegis

Table 4. The speedup of the parallel Appspack algorithm.

Processors GenRos Levy4 Levy5 Levy6 Levy7 Griewank

1 1 1 1 1 1 1

2 1.17 134 185 1.84 157 1.43
3 2,117 140 253 212 2.17 2.33
4 289 2.0 3.69 274 243 4.59
8 574 324 586 490 3.01 1.57
16 10.78 438 932 7.71 459 10.76
32 16.95 9.06 31.07 12.96 11.81 22.72

Table S. The speedup of the parallel PSwarm algorithm.

Processors GenRos Levy4 LevyS Levy6 Levy7 Griewank

1 1 1 1 1 1 1

2 090 097 141 1.66 1.30 1.82
3 1.17 088 094 130 1.17 2.05
4 1.30 1.07 090 125 0.95 1.91
8 1.69 1.13 094 154 1.122 283
16 211 127 095 194 1.26 3.01
32 339 1.04 105 124 123 3.28

many examples for the selection, bound estimation and branching steps. A parallel
version of user’s algorithm is obtained automatically. The load balancing level of the
BnB algorithm template implements a variant of the diffusion method. The numerical
experiments have shown the efficiency of the template library.

A new derivative-free algorithm is proposed for solving nonlinear global opti-
mization problems. It is based on the BnB method and its implementation is done by
using the developed BnB algorithm template. The robustness of the new algorithm
is demonstrated by solving a selection of test problems. No analysis is still done to
tune parameters C, M, NS of the proposed algorithm, this question is still open.

Acknowledgment

This work was supported by the Lithuanian State Science and Studies Foundation
within the project on B-03/2007 "Global optimization of complex systems using
high performance computing and GRID technologies" and by the Eureka Project
EUREKA E!3691 OPTCABLES.

A Parallel Generalized Branch and Bound Template 289

References

(1]
[2]
[3]

[4]
[3]

(6]

[7]

[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]

(21]

E. Alba, F. Almeida and at all. Mallba: A library of skeletons for combinatorical opti-
mization. Technical report, 2001.

M. Baravykaité, R. Belevigius and R. Ciegis. One application of the parallelization tool
of master — slave algorithms. 13(4), 393—404, 2002.

R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
Ch. Romine and Henk van der Vorst. Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods. SIAM, Philadelphia PA, 1994.

A.R. Conn, K. Scheinberg and Ph.L. Toint. Recent progress in unconstrained nonlinear
optimization without derivatives. Mathematical programming, 79, 397-414, 1997.

B. Le Cun and C. Roucairol. Bob: a unifi ed platform for implementing branch-and-
bound like algorithms. Technical Report 95/16 sep. Université de Versailles - Laboratoire
PRiSM, 1995.

L. Dorta, C. Leon and C. Rodriquez. Parallel branch and bound skeletons: message
passing and shared memory implementations. In: Proceedings of PPAM 2003, LNCS,
volume 3019. Springer, 286291, 2003.

J. Eckstein, W.E. Hart and C.A. Phillips. Pico. An object-oriented framework for par-
allel branch and bound, rutcor research report. Technical Report 40-2000. Rutgers
University, Piscataway, NJ, 2000.

1. Foster. Designing and building parallel programs. Addison-Wesley, 1995.

A. Grama, A. Gupta, G. Karypis and V. Kumar. [Introduction to Parallel Computing.
Addison Wesley, 2003.

P. Hansen and B. Jaumard. Lipschitz optimization. In: Handbook of Global Optimiza-
tion, volume 2 of Nonconvex Optimization and Its Applications. Kluwer Academic Pub-
lishers, Dodrecht, 404493, 1995.

T.G. Kolda. Revisiting asynchronous parallel pattern search for nonlinear optimization.
SIAM Journal on Optimization, 16(2), 563-586, 2005.

H. Kuchen. A skeleton library. In: Proceedings of Euro-Par 2002, LNCS vol.2400.
Springer-Verlag, 620-629, 2002.

title= M. 1. Cole.

K. Madsen and J. Zilinskas. Testing of attraction based subdivision and interval methods

for global optimization. IMM-REP-2000-04. Department of Mathematical Modelling,

Technical University of Denmark, Lyngby, Denmark, 2000.

B. Preiss, D. Goswami and A. Singh. From design patterns to parallel architecture skele-
tons. Journal of Parallel and Distributed Computing, 62(4), 669-695, 2002.

R. Sablinskas. Investigation of algorithms for distributed memory parallel computers.
1999. PhD thesis

Y. Shianno and T. Fujier. Pubb (parallelization utility for branch-and-bound algorithms).
User manual. Technical Report, Version 1.0, 1999.

A. Singh, D. Szafron and J. Schaeffer. Views on template-based parallel programming.
In: CASCON 96 CDRom Proceedings, Toronto, October, 1996.

S. Tschoke and T. Polzer. Portable parallel branch-and-bound library ppbb-lib. user
manual. Technical Report Version 2.0.

A.1.F. Vaz and L. N. Vicente. 4 Particle Swarm Pattern Search Method for Bound Con-
strained Nonlinear Optimization. Technical Report 06-08. Department of Mathematics,
University of Coimbra, Portugal, 2006.

C. Xu and F. Lau. Load balancing in parallel computers. Theory and practice. Kluwer
Academic Publishers, 1997.

