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Abstract. We discuss a potential steady heat conduction for composites with the
coated cylindrical inclusion under an imperfect contact condition. We rewrite equiv-
alently the considered problem to a conjugation problem for analytic functions which
is reduced then to functional-differential equations. Solution of the obtained system
of functional-differential equations is given in the closed form.
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1. Statement of Boundary Value Problem

Let Dy ={2€ C:|z|] <7} be the disc of radiusr <land D={z€C:r <
|z| < 1} be the annulus on the complex plane C. Let Dy = {z € C : |z| > 1}
be an exterior of the unit disc on the extended complex plane C = C U {co}.
Denote by It = {2 € C: |z|] = 1}, I3 = {z € C: |z| = r} the corresponding
boundary curves. Let the curve I, be orientated in counter clockwise sense,
and I be orientated in clockwise sense. Let n = (n1,n2) be the outward unit
normal vector to Iy, (k = 1,2). The normal derivative is introduced as follows

I ni Iz + ng 8_3/
We consider the steady heat conduction in the long cylindrical composites
with coated cylindrical inclusion in the direction orthogonal to the axis of the
cylinders. The problem on the description of the heat field can be understood
as purely two-dimensional one. In this paper we consider only potential case.
We suppose that all parts of the complex plane D, Dy, D, are occupied
by materials with the positive thermal conductivities 1, Ay, A1, respectively
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(here Ao and \; are positive). Let the contact between materials D, Dy is
perfect, and between D, D; is imperfect. We are interested in the temperature
distribution on C which is described by a function u(z). It is assumed that
the external field is described by a singularity at infinity.

The problem is to find a function u(z) harmonic in D, Dy, D1, continuously
differentiable in the closures of the considered domains except z = oo, and
satisfying the following conditions

ou~ out
a—n(t) = /\1%@)’ It =, (1.1)
out
Alg(t) +y(ut(t) —u () =0, t| =, (1.2)
_ Ou~ out
ut=uT, 8—n(t) = Oa—n(t)’ it =1, (1.3)

It is supposed also that u(z) — Repn(2) is bounded at infinity, where
pn(2) = Az + Ag2® + ... + An2N (1.4)

is a given polynomial of degree N corresponding to the external field applied
at infinity.

The conjugation conditions (1.1)—(1.2) describe the imperfect contact be-
tween materials on I (see [2]), and conditions (1.3) correspond to the perfect
contact on I (see, e.g., [4]).

In the following we identify the normal vector n = (n1, n2) with the com-
plex number n = ny + iny. Let us introduce the complex potential

o(z) = u(z) + iv(z), (1.5)

which is analytic in D, Dy, D;, continuously differentiable in the closures of
the considered domains except z = co. ¢(z) has the principal part py(z) at
infinity, i.e., p(2) — pn(2) is bounded at infinity. The problem (1.1)—(1.3) is
equivalent to the following R-linear problem (see [1, 4])

o (1) = 1(t) = pron (D) + mtd) (1) + 0, l=r.  (16)

@™ (1) = 90 (t) ~ podolD). =1 @7
where At 1

or(z) = kT@Jr(z), z € Dy, (1.8)

Pk = :\\’;jr} (k=0,1), 1 = 1;:511 Moreover, the functions ¢ (z) and ¢(z) are
analytic in D; and D respectively. The function ¢o(z) is analytic in Dy — oo,

continuously differentiable in its closure and has the representation

¢0(2) = po(2) +pn(2), [2] =1 (1.9)

Despite the significant interest in applications [2] the conjugation problem
in the case of imperfect contact is not deeply studied. To the best of author’s
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knowledge there are only a few results devoted to the constructive solution
of the problem. Benveniste and Miloh [3] expanded solution of such problem
in series of special functions in order to estimate the effective conductivity.
Gonsalves and Kolodziej [2] solved this problem numerically in a class of
doubly periodic function by the collocation method.

2. Functional-Differential Equation

In this section the problem (1.6)—(1.7) is reduced to functional-differential
equations. Let us introduce the function

¢1(2) + 1267 (2) + pogo(1/7), |z| <,
P(z) =  (2) + p161(r?/Z) — §¢/1(7“2/7) +podo(1/2), r<z<1, (2.1)
¢0(Z)+P1¢1(7‘2/E)—H1§¢'1(7“2/3)7 z> 1

First, consider #(z) in |z| < r. The functions ¢;(z) and z¢} (z) are analytic
in |z| < r. Since ¢ (2) is analyticin 1 < |z] < oo, hence the function ¢q (1/Z) is
analyticin 0 < |z| < 1. Therefore, ¢(z) is analytic in 0 < |z| < r. Analogously,
&(z) is analytic in D and Dg \ {oc}.

Let us prove that & (¢) = &~ (¢) on the circle |{| = r, where

PE(t) = lim B(2) = ¢1(t) + 1241 (t) + podo (1/7),

z—t

lz|<r

7'2 = —
(1) = lim (2) = ¢~ (t) + pron (r2/7) — s (r2/%) + poco (1/1).-
|z|>r

For this we calculate the jump A := &1 (¢) — &~ (¢) across 5. Using the
relation ¢ = r2 /T on the circle |[t| = r we have

A= () + putdh (t) = 7 (1) = p1en (1) + 1 (0).

It follows from (1.6) that A = 0. The same consideration yields ¢ (t) = &~ ()
on the circle |t| = 1. Then Analytic Continuation Principle implies that the
function @(z) is analytic in C\ {0}. In the force of (1.9) and (2.1) we conclude
that the principal part of ®(z) is equal to py(2) at z = oo and is equal to
popn (1/Z) at z = 0. Then the Liouville theorem yields

D(z) — popn (1/Z) —pn(2) =¢, z€C, (2.2)
where c is constant. Let us introduce the function
9(2) = popn (1/Z) + pn(2) +c. (2.3)

Consider (2.2) in |z| < r and in |z| > 1. Using (2.1) we obtain

¢1(2) + m12¢1(2) — pogo (1/2) = g(2), 2] <, (2.4)
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2
e ’r‘ e
$o(2) + p1o1 (12/2) —m— 4 (r2/2) = g(2), 2| 2 1. (2.5)
Substituting w = 1/Z in (2.5) and taking the complex conjugation we have
do (1/0) + p1o1 (r*w) — pr?wd) (rPw) = g (1/w) |w| <1,

or in variable z

do (1/2) = g (1/2) — p11 (r?2) + prz¢y (r’z) 2| < L.

Substitute now the value of the function ¢o(1/Z) from the latter relation into
(2.4). As a result, we obtain the functional-differential equation

$1(2) + mz¢ (2) + poprn (r22) — pomr®z¢) (r?z) = h(z), |2 <7, (2:6)

where

h(z) = 9(=) — pog (1]5). (2.7)

In (2.6), the unknown function ¢;(z) is analytic in |z| < r and continuously
differentiable in |z| < r. We note that the known function h(z) contains the
undetermined constant ¢ (see (2.3)).

3. Explicit Solution to the Functional-Differential
Equations

Theorem 1. Let pgp1 # —1. Denote by h,, the Taylor coefficients of the
function h(z) at z = 0. Then equation (2.6) has the unique solution

= hm m
D1(2) = mzzo Bmz , (3.1)
where
By = 1+ pim + pop1r>™ — popymr®™+2 > 0. (3.2)

Proof. We are looking for the function ¢;(z) analytic in the disc |z| < r, in
the form of series

01(z) = Z amz™.

m=0

Calculate
2¢(2) = Z mamz™, 2| <r, ¢)(r’z) = Z ma, 2" (3.3)
m=0 m=0

Substituting (3.3) into (2.6) and comparing coefficients at the same powers of
z we obtain equations on a,

o (1+ pam + pop1r®™ — poprmr®™ ) = by, m=0,1,.... (3.4)
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It follows from the above assumptions that
—1<pyp1 <1, 0<py <oo. (3.5)

Using (3.5) one can see that

2m-+2

0<1—por < 2 and —1<p0p1r2m§1.

Therefore, the constants B,, in (3.2) are positive for all m = 0,1,.... Hence
(3.4) yields oy, = hy,, B, m > 0, and we arrive at (3.1). The function ¢g(2)
is found from (2.5). This completes the proof. B

4. Solution to Boundary Value Problem

We now apply Theorem 1 to the problem (1.6)—(1.7). Using (1.4), (2.3) and
(2.7) we rewrite g(z) in the form

N N
9(2) =po > Amz "+ Y Apz" +ec (4.1)
m=1 m=1

Theorem 2. Let pop1 # —1. Then the problem (1.6)—(1.7) has the unique
solution

N
do(2) = D Bmz™, (4.2)
m=—N
where
Am; m:1,2,...,N,
B = —p1(€— poc)(1 + pop1)~* + ¢, m =0,
—plz,mﬁjnr*2m—,u1mz,m§:inr’2m+poz,m, m=—1,...,—N,
and
NoA
$1(2) = ap + mX::l B—:Zm, (4.3)

where ag = (¢ — poc)(1 + pop1) "

Proof. Represent ¢o(z) in the form of the Laurent series

Applying Theorem 1 and using equations (2.5), (4.1) we have

Z Bmz™ = (pam — pl)ﬁmﬁ;lrgmz*m
m=—o00 m=0
N N
+ po Z Az + Z A2+ e

m=1 m=1
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Selecting the coefficient at 2™ in the latter relation we calculate 3,,. It follows
from (2.3) and (2.7) that function h(z) is a polynomial of degree N

h(z) = (1 = p)pn (2) + ¢ = poe.
Then the series (3.1) becomes the polynomial (4.3). B

5. Solution to the Steady Heat Conduction Problem

The functions ¢o(z) and ¢;1(z) are given in Theorem 2. Determine now the
function ¢(z) using (2.1) in r < |z| < 1. After tedious calculations we obtain

N
p(z)= > amz ™, (5.1)
m=—N

where

00 Am — poAm + (mpy — p1) A B1r?™, m=1,2,... N,

am =9 ¢ = p17i(1 + pop1) " — po(€ — p1n), m =0,
Afm_pOAfm (PO - plB:'rln/r72m_;u‘lmB_1 7.7277'1)’ m :_]-r .- a_N'

—m

Applying the relations between analytic and harmonic functions (1.5) and
(1.8) we arrive at the following theorem.

Theorem 3. Let pop1 # —1. The conjugation problem (1.1)-(1.3) has the
unique solution determined up to an additive constant via the following rela-
tions

ﬁReqﬁo(z), |z] > 1,

u(z) = ﬁRe(bl(z), |z| <,
Rep(2), r<|z| <1,

where functions ¢g, ¢1, @ are given of the formulas (4.2), (4.3), (5.1), where
c is an arbitrary complex constant.
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