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Abstract. In this paper we treat the problem of practical feedback stabilization
for a class of nonlinear time-varying systems by means of an observer. A separation
principle is given under a restriction about the perturbed term that the perturbation
is bounded by an integrable function where the nominal system is supposed to
be globally asymptotically stabilizable by a linear feedback. A practical stability
approach is obtained. Furthermore, we give an example to show the applicability of
our result.
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1. Introduction

The analysis of stability of dynamic control time-varying systems is an impor-
tant problem both in theory and practice [7, 8, 9]. When the states are not
available the usual techniques is to build an observer. Many authors studied
the problem of the conception of the observer. An observer is a dynamical
system which is expected to produce an estimation of the state [1, 11, 12, 13].

The separation principle involves the design of a state observer and a state
feedback stabilizing controller independently. For linear systems this prob-
lem is completely solved, but if the system contains some nonlinearities as
a perturbation or disturbances, the problem in observer design still remains
a difficult task. A separation principle is established if the closed-loop sys-
tem remains stable when the state feedback controller is implied using state
estimates [3, 4, 6]. However, global practical asymptotic stability by output
feedback does not hold in general. Some results on semi—global stability have
been reported [10].
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In this paper, we give a separation principle for a certain class of time-
varying systems

& = Ax + Bu + f(t,x),
y=Cx

in the practical sense based on results of analysis for cascaded systems [2, 5,
8, 9]. We give sufficient conditions to guarantee the practical global uniform
stability of the closed—loop system by an estimated state feedback given by an
observer design. This observer is constructed in such a way that the solutions
of the error equation converge to a certain ball. We will estimate the radius
of such a ball.

Given a time-varying input-output system

{a'c = F(t,z,u),

o (1.1)

where t € Ry, x € R", u € RP and y € R?. The function
F:[0,400[xR" x RP — R"

is piecewise continuous in ¢ and globally lipschitz in « on [0, +oo[xR™ and C
is a constant matrix (g x n).

We first give the definition of uniform stability and uniform attractivity
of (1.1) towards B, = {zx € R"/||z| < r}.

DEFINITION 1 [Uniform stability of B,|. B, is uniformly stable, if for all ¢ >
r, there exists 6 = §(¢) > 0, such that

lzoll <6 = ||zt <&, VYt to.

DEFINITION 2 [Region of attraction of B,]. Let ¢(¢; x) be the solution of (1.1)
that starts at initial state x at time ¢ = t3. The region of attraction of B,,
denoted by R, is defined by

R ={x e R"/||¢(t,x)|| — r as t — +0o0}.

DEFINITION 3 [Uniform attractivity of B,]. B, is uniformly attractive, if for
all e > r, 2o € R and any to > 0, there exists T'(¢, ) > 0 such that

lz(t)] < e, Vt>to+T(e, o).

DEFINITION 4. i) The system (1.1) is said to be uniformly practically asymp-
totically stable with region of attraction R, if there exists B, C R™ such that
B, is uniformly stable and uniformly attractive.

i1) The system (1.1) is globally uniformly practically asymptotically stable, if
it is practically stable with R™ as a region of attraction.
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DEFINITION 5. The system (1.1) is uniformly exponentially convergent to B,
if there exists v > 0, such that for all {5 € Ry, xg € R, there exists k > 0,
such that

[z(®)]] < E(llzol]) exp(—(t —to)) + 1 (1.2)

We say that the system is strongly practically stable if for » > 0, system (1.1)
is uniformly exponentially convergent to B,.. The system is globally practically
uniformly exponentially stable if it is strongly practically stable with R™ as a
region of attraction.

DEFINITION 6. The system (1.1) is uniformly exponentially convergent to
zero, if there exists v > 0, such that for all t € Ry, x¢p € R, there exists
k > 0, such that

[zl < k([[zoll) exp(=~(t = to)) + r(b),

with lim r(¢) = 0.
t—+o0
For the concept of observer, we aim at simplifying the design of this system
by exploiting the linear form of the nominal system.

DEFINITION 7 [Practical exponential observer|. A practical exponential ob-
server for (1.1) is a dynamical system which has the following form

i=F(t i u) — LCE—y),

where L is the gain matrix and e = & — x is the origin of the error equation,
which is given by
é=F(t &,u) — F(t,x,u) — LCe

and it is globally practically exponentially stable. It means that it is globally
uniformly practically asymptotically stable and the following estimation holds

le@)ll < Au(lle(to)l)) e 20710 v, Vit >t
with A1, Ao, 7> 0.

Note that, the origin = 0 may not be an equilibrium point of the system
(1.1). We can no longer study stability of the origin as an equilibrium point
nor should we expect the solution of the system to approach the origin as
t — o0. The inequality (1.2) implies that x(¢) will be ultimately bounded by
a small bound r > 0, that is, ||z(¢)|| will be small for sufficiently large ¢. If in
(1.2) r can be replaced by a smooth map r(t) as a function of ¢ which tends
to zero as t tends to 400, the ultimate bound approaches zero. This can be
viewed as a robustness property of convergence to the origin provided that F
satisfies F'(¢,0,0) = 0, V¢ > 0. In this case the origin becomes an equilibrium
point.
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2. Stabilization

We consider the following dynamical system

{g'c:Ax—&—Bu—&—f(t,x), (2.1)

y=Cuz,

where A is a (n x n), Bis a (n x p), Cis a (¢ X n) constant matrices and
f(t,x) is continuous, globally Lipschitz in z, uniformly in t.

We consider the following assumptions.

(H1) The pair (4, B) is controllable, so there exists a constant matrix K
of dimension (p x n) such that for all positive definite symmetric matrix Q1,

Q1 >cl, c1 >0,
there exists a positive definite symmetric matrix P,
col < Py <cgl, ¢c3>0, c3>0,
which satisfies
PiAg + A};Pl =—Q1, (22)
where Ay = A + BK. The matrices inequalities mean that, we have for all

r € R™,

alzl* <aTQuz, el)? <2t Pix < esfl2|.

(H2) There exists a function v (t), such that for all t > 0

1t @) < (), (2.3)

—+oo
with P(s)ds < M < 4o0.
0

Theorem 1. Under assumptions (H1) and (Ha), the system (2.1) in closed-
loop with the linear feedback u(z) = Kz, is globally uniformly practically ex-
ponentially stable.

Proof. We consider a quadratic Lyapunov function V (t,z) = 7 Py z. Taking
into account (3.3) and (4.1), the derivative of V along the trajectories of
system (2.1) is given by
V(t7 x) = TPz + 2T Pi
= (AK:E + f(ta x))T-Plx + iETPl (AK:E + f(ta (E))
< —af Que + 2| Pul[|f (8, 2)ll|z]| < —erllz]? + 2e59(8) ]

C1 C3
< -Vt + 2\/—0_2@&(75)\/1/(75, 2).
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Vit x)
2/V(t,x)
which implies that 0(t) < —g2o(t) + %w(t). Integrating between ¢ and ¢,
one obtains Vt > to,

Let v(t) = /V(t,z). The derivative of v is given by 0(t) =

3

C1 _ 8)

——(t —to) t —i(t
v(t) < v(to)e 2¢3 . %/to U(s)e 2¢3 ds,

which implies that

——(t—to) ¢y
t) < v(tg)e 2¢3 —M

o(t) < vlto)e N

It follows that,
¢
——(t—to)
c ¢
=)l < /= laolle 263 + =M

C2 C2

Hence, the above estimation shows the global uniform exponential stability of
B,, with a = % M. We have proved that system (2.1) in closed-loop with the

C2
linear feedback u(z) = Kz is globally strongly practically stable. B
Example 1. We consider the system

&= Ax + Bu+ f(t,x)

0 1 —-10 1
A:<_4_2)a Bz(() 2)af(t7x):1+t2

The system & = Ax + Bu is globally uniformly exponentially stabilizable,
we can take a linear feedback law u(z) = Kz with K = G _i) such that

A+ BK is the Hurwitz matrix.
The solution of the Lyapunov equation PA + AT P = —1 is given by

_( 5/16 —1/4
P= <—1/4 7/16) '

Let V(¢,7) = 27 Pz, which satisfies the assumption (H;) where

with

6 —2v7 _6+2VT

c1=1, cg=—"—>0, c3 16 0.

Moreover, the function f(t, ) is continuous and satisfies the assumption (Hs),
dt

because f0+°° i g < 00. Thus, all the assumptions of previous theorem

are satisfied. We conclude that the system (S) is globally uniformly practically

exponentially stable by u(z) = K.
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Now, we will treat another class of systems by taking instead of the as-
sumption (Hs) the following one.

(H,) We assume that there exists a constant M’ > 0, such that
1f(t,2)|| < M. (2.4)

Note that, if we replace M’ by M’'(t) — 0 as t — +o00, we shall suppose that
f(t,0) =0, Vt >0, in such a way the origin becomes an equilibrium point.

Theorem 2. Under assumptions (Hy) and (H,), the system (2.1) in closed-
loop with the linear feedback u(x) = Kx is globally uniformly practically ex-
ponentially stable.

Proof. We consider a quadratic Lyapunov function candidate V(¢,x) =
2T Pyz. Taking into account (2.2) and (2.3), the derivative of V along the
trajectories of system (2.1) is given by

V(t,z) =i' Pix + 2T Pii
= (Axa + f(t,2)" Pre + 2" P (Agz + f(t, 7))

< =T Qur + 2| Pl (8, @) |2 < —eallz|| + 2e5 M|z
C1 C3 ’
< —=V(t,z) +2——M"'\/V(t,z
AV (t,0) + 20 V)
V(t,x)

2/ V(t,z)

Let v(t) = \/V(t,z). The derivative of v is given by 0(t) =

which implies that
0(t) < —<Lo(t) + M.

~ 2c3 Ve

Integrating between ¢y, and ¢, one obtains Vt > ¢y,

Lt—t) 2

- 0 2c
t) < t 203 _3
’U( ) = U( 0)6 Cact

!

It follows that,
C1
——(t - to) 2 2
oo < /2l 2+ 2
2

2 2
This yields, the global uniform exponential stability of B,, with v = e VLS
Ca2C1
We have proved that system (2.1) in closed-loop with the linear feedback

u(z) = Kz is globally strongly practically stable. B

3. Observer Design

We consider the system (2.1) satisfying the following assumptions.
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(H3) The pair (A, C) is observable, hence there exists a gain matrix L(nxq)
such that for all positive definite symmetric matrix @2,

Q2>0b11, b >0

there exists a positive definite symmetric matrix P», bol < Py < b3l, by > 0,
bs > 0, which satisfies

PQAL + A%Pg = —QQ, where AL =A-LC. (31)
To design an observer, we consider the dynamical system
&= A% + Bu+ f(t,&) — L(C& — y), (3.2)

where & € R™ is the state estimate of x(¢) in the sense that e(t) = Z(t) — x(?)
satisfies the following estimation

le@)II < lle(to))lle™ ") + 7, Vit > to.

Proposition 1. Under assumptions (Hs) and (Hs), the system (3.2) is a
practical exponential observer for the system (2.1).

Proof. We consider now the error equation with e = & — x,
é=4—i=(A—LC)e+ f(t,&)— f(t,x). (3.3)

We consider the quadratic Lyapunov function candidate, W (t,e) = el Pye.
Taking into account (2.4), the derivative of W along the trajectories of system
(3.3) is given by
V.V(t7 e) = ¢l Pye + el Pyé
= (Are+ f(t,2) — f(t,2) T Pre + T Po(Ape + f(t,2) — f(t, x))

< —e"Qoe + 2| Po|[| £(t,2) — f(t,2)][|e]l
< —bylle]|® + 4bsyo(t) e
< —ﬁW(t,e) —|—4b—31/)(t) W (t,e).

b3 Vby

Let w(t) = /W (t,e). The derivative of w is given by w(t) =

which implies that

. by b3
1) < ——w(t 2—=(1).

() < —grow(t) + 2 ()

Integrating between ¢, and ¢, one obtains Vt > ¢y,

b1 bl

o (t—to) 2 [t —o-(t—s)

w(t) < w(ty)e 203 + == wse2b3 ds.
(t) < wito) T | v
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by (t — to)
- 0 2b3
t) < w(t 2b3 + —M.
w(t) < w(to)e >

It follows that,

b1
7—(t - to)
el </ Zleto)lle s+ 220,
bo by

The last estimation shows the global uniform exponential stability of B, re-

specting the error equation with kK = ey Vs Therefore, we can deduce that,
2

(3.3) is globally practically exponentially stable. We conclude that, the origin

of system (3.2) is a practical exponential observer for the system (2.1). B

For the second class of systems treated above, one has an analogue result
as the one obtained in Propositionl.
Proposition 2. Under assumptions (H,), and (Hs), the system (3.2) is a
practical exponential observer for the system (2.1).

Proof. Consider the error equation with e = & — x,
é=i—i=(A-LC)e+ f(t, &) — f(t, ). (3.4)

The quadratic Lyapunov function candidate, can be taken as W (t, ) = e Pse.
Taking into account (2.4), the derivative of W along the trajectories of system
(3.4) is given by:
V.V(t7 e) = ¢l Pye + el Pyé
= (Are+ f(t,2) — f(t,2) T Pre + T Po(Ape + f(t,2) — f(t, x))
< —e"Qae + 2| P f(t,2) — f(t,2)|[lell

b b
< —byle]|? + 4bsM'||e|| < —iW(L €) +4—=M'\/W(t,e).

Vb2
o L . W(t,e)
Let w(t) = y/W(t,e). The derivative of w is given by, w(t) = W(t)
,€
which implies that
W(t) < —b—lw(t) 4o gy
- 2bs Vo
Integrating between ¢, and ¢, one obtains Vt > ty,
by
ot —t0)  4p2
w(t) < w(ty)e 203 S M

Vb2b
It follows that,
b

1
b —_(t - to) 4b2

le@®)]| < 1/ lle(to) e 203 + 2B
b baby
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The last inequality implies the global uniform exponential stability of B,, with

4b%

=3 b3 M'. Hence, we can deduce that, the origin of system (3.3) is globally
201

practically exponentially stable. It follows that, the system (3.2) is a practical

exponential observer for the system (2.1). W
Note that, if we suppose that M’ = M’(t) which goes to zero when ¢ tends

to +o00, then the solutions of the error equation converge exponentially to
ZEro.

4. Separation Principle

We consider the system (2.1) controlled by the linear feedback law u (%) = Kz
and estimated with the observer (3.2).

Theorem 3. Under assumptions (H1), (Hz) and (Hs), the system

4 = Ai + BKi + f(t, &) — LCe
é=(A—LC)e+ f(t,&) — f(t,x)

is practically globally uniformly exponentially stable.

Proof. In order to study the stabilization problem via an observer, we con-
sider the cascaded system
th t
o(t, fﬂ) +9(t, e, (4.2)
= h(t, &, e),

where ¢(t,2) = Az + BKi + f(t,%), g(t,2) = —LC,

('b e
Il

ht,@,e) = (A— LC)e + f(t,3) — f(t, ).

One has, & = o(t, &) is globally strongly practically stable with the Lyapunov

function associated can be taken as v(t,%) = /27 P;2. This Lyapunov func-
tion satisfies

Veallz| < vt ) < Vesll2, (4.3)
ov ov
- b < _
o (t,2) + aAc,a(t z) cav(t, &) + _1/)( ),
”(%” < =2 here ¢4 = —* Also, ¢ = h(t, %, e) is globally strongl
333 = ,_CQ’ w 4 — 203 ) - y Ly g y gly

practically stable and the following estimation can be obtained

DL tg)
b - —to) 2p
e(®)] < (/= lle(to)lle 2bs + 2
b2 b2
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Therefore, the derivative of v along the trajectories of system (3.2) is given
by using (4.2) and (4.3).

S ov N v . ov )
o(t, &) = at(t )+5js0(t7x)+%g(t,x)e
c3
< - — — L
< —cqv(t, &) + @wuw T ILCllel
< —exn(t, )+~ p(o)+ L LOY (2 et 5 2y
—cyv(t, T b )
! NG \/_ ’ ba
which implies that
0(t, &) < —cav(t, #) + Ale(to) e + j—z_zw(ﬂ +R,
where
2b303
|| ||\/2 y= = o MILC,

Integrating between ¢y, and ¢, one obtains Vt > ty,
o(t, 2) < v(to, Zg)e et

t
—v(s— C3 —ca(t—s)
+/ ()\et e~ Yt0) 1 5 (s —|—R)e ( ds
" lle(to)ll N (s)

t
vlto, #0)e 1= 4 Ae(to)]| [ eI gy

to

e

t
v(to, Zo)e 1) 4 Xle(to)|| / e Catecasem V5Tt g
to

1 t
+ -2 M+R {—ec‘*(”)} < o(to, #o)e (1)
Cq

1/ C2 to
t ! c3 R it
+ )\He(to)”e’ﬁoe*&; / 60486778 ds 4 - M 4+ = {1 _ €7C4( - 0):| )
to V€2 Cq

So, there exist some positive constants 3 and p, such that

R
v(t, 2) < v(to, Zo)e” U 4AB le(to) e ) + \/_M+a[ —emesttmto)]

Letting 6 = min(c4, p) and [ = max(/c3, AG), we get

R
&) <1(||z —8(t—to) ;. @ .
0(6:8) < (ol + o)+ Lpr 4 X

It follows that



A Separation Principle of Time-Varying Dynamical Systems 307

“5(t—to) , ©3 R

Zo,e0)lle + =M + .

&) < \/—H( 0s€0) ™ G

Then, the cascaded system (4.2) is practically globally exponentially stable.

We will use the same argument as in Theorem 3 to prove an analogue
result when f is a bounded function.

Theorem 4. Under assumptions (Hy), (H,), and (Hs), the system (4.1) is
practically globally uniformly exponentially stable.

Proof. 1In order to study the stabilization problem via an observer, we con-
sider the system (4.2) with k(¢,%) = Az + BK% + f(t, %), which satisfy

ov ov

a(t A) + 8Ak(t (E) _C4’U(t,$1) +T17

where 1, = . Second, ¢ = h(t, &, e) is globally strongly practically stable

Co2Cq
and we have the following estimation

by (t —to) 2
— a7 — o
e(t)] < ,/—b3||e(t0)||e 2bs LSV
bo baby

Taking into account (4.2) and (4.3), the derivative of v along the trajectories
of system (3.3) is given by:

ov, . ov R ov
3t(t )—|— (%%k(t’x)_'_ (%%g

A ~ C
(t,2)e < —cav(t, @) + 11+ —=]|LC|l||e]

0(t, &) = NG

1
<eun,3) + o+ S (et BT g,
Which implies
0(t, z) < —cqv(t, &) + )\||e(t0)||e—7(t—t0) R
4bcs
babiy/c2

with Ry =r; +

M]||LCY|. Integrating between to and ¢, one obtains

t
v(t,x1) < v(to, f0)6764(t7t0) —l—/ ()\||e(t0)||e*7(sft°) + Rl) e—c4(t=5) gg

to

t
olto.0)e 01 4 Ne(ta)]| [ €m0
to

t
—|—R1/ e (=9 ds < w(tg, &g)e 4t t0)

to
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t t
1
+ /\||€(to)||/ e~ 4leSe 150 ds+ Ry [—ec‘*(ts)] < (ty, &g )ec4(t—t0)
to

Cy to
t R

+ /\”e(tO)”ewtoeiczﬁ/ e“%e 7 ds + — [1 — 6764(’5*150)} .
to Cq

Which implies that there exist some positive constants 5 and p, such that
R

v(t, 1) < v(to, Zo)e” 710 + ABlle(to)[le ) + = [1 - e—C4<t—to>] :
C4

We get v(t,z1) < 1(||Zo|| + |leo]|) e 0 t0) + IC{—: for a certain [ > 0. Which
implies that
Ry

ca/C2

is practically globally exponentially stable. B

12()]| < —=II(&o, €)1 +

%"N
[ V)

Then, cascaded system (4.2

~—
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