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Abstract. In this work finite superelements method (FSEM) for solution of bi-
harmonic equation in bounded domains is proposed and developed. The method is
based on decomposition of domain into subdomains with the solution of a number
of intermediary problems, every of which is a boundary value problem for bihar-
monic equation with boundary condition being basis for interpolation of solution at
superelements boundaries. The initial problem solution is found as an expansion on
the constructed function system. It is shown that the solution of general problem
can be recovered using functions and traces found above. Error estimates for one
case of FSEM are obtained.
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operators

1. Introduction

There exists a wide class of problems, solutions of which contain sharp inho-
mogeneities that become apparent on small space-scales against size of domain
of interest. The numerical solution of such problems requires special meshes
for resolution of these singularities to be used. Either adaptive to solution
meshes concentrating in singularity neighbourhood or rather fine meshes with
uniform step h and large number of points should be used for these purposes.
The first alternative requires special algorithms and the second one consumes
a very large amount of the computer memory. For solution of such problems
the finite superelements method (FSEM) was proposed by L.G. Strakhovskaya
and R.P. Fedorenko [2, 16, 17, 18].

FSEM is based on the representation of the solution as an expansion in
“basis” functions system with finite support. But, in contrast to the finite
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elements method (FEM), FSEM doesn’t require the measure of such supports
(mesh H) to be small. Actually, the size of this mesh can be so large that
it certainly doesn’t allow to resolve singularities of the solution using FEM
for this mesh. Another distinction is in construction of the “basis” functions.
“Basis” functions are purposely made containing the significant part of the
solution of a given problem. Exactly this choice of the “basis” functions let
us to get a good numerical solution with a very coarse decomposition of the
domain of reference.

One approach for the analysis of the method was suggested in works
[14, 15]. Another approach for the analysis of FSEM approximations using
Poincaré-Steklov operators (see [11] and review in [12]) and variational equa-
tions for such problems as “well” problems for the Laplace operator equation,
elasticity problem, velocity skin-layer problem is proposed in [4, 5, 6, 7, 8, 9,
10]. In these works differential equations of the second order were considered.

In this paper FSEM approximations for solution of the biharmonic equa-
tion with one type of boundary conditions is developed. A variational for-
mulation for the traces of the problem and its approximations are presented.
The presented approach was previously used by the authors for the analysis
of FSEM approximations for a scalar second-order Laplace equation. In order
to show a generality of the suggested approach we tried to follow it as much
as possible. The only significant difference is the procedure of obtaining the
errors of the approximate solution. To perform it in a most easy way we use
here some particular properties of the problem under consideration, i.e. the
case of biharmonic equation.

In its theoretical part the paper generally follows the theoretical approach
presented by the authors earlier (see [4, 5, 6, 7, 8, 9, 10]). In spite of the
fact that this paper covers a particular case of the biharmonic equation, we
use the following main assumptions. During the procedure of obtaining the
variational equation for traces we essentially use the facts of existence of the
appropriate Green formula for operator under consideration and existence and
uniqueness of solutions of all intermediate problems. For the error analysis
it is additionally assumed that the problem is linear and originally it has
a form of A%u = f, where A is some linear continuous positively defined
operator. Generalization to that case is quite straightforward comparing to
the particular case of the biharmonical equation.

This work was done under partial financial support of Russian Fund for
Basic Research (project N 03 - 01 - 00461).

2. Basic Notations

In the paper we use bold fonts for vector valued functions and operators as
well as for elements of direct product type functional spaces and normal fonts
for scalar functions and variables.

Let £2 € R? be some bounded domain with piecewise smooth boundary 912
and = (x1,22)T € 2 be an arbitrary point from 2. We use (...) brackets
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to define components of vector-valued variables and {...} to define elements
of other direct product type spaces.

Further we will widely use conventional Sobolev spaces Wi (£2), W1 (£2),

space Lo (f2) and corresponding trace spaces W21 /2 (012) and Lo(012). Hereafter
for any space S we denote its dual space as S’. For the spaces mentioned above
we set

i
(W3(2) = Wz'(Q), (L2(Q) = La(2),  (W302)) = wy (00
Dot products in these spaces are defined as:

(1, 0) L2y = (4, v) 2 = / wdf2, (u,v)1,00) = (u,0)s0 = / uv dy,
(9] on

(u, V) wi(2) :/<8u Ov +@ﬁ+uv) .
2

6—551 8—x1 6:52 65C2

We also use notation (-,-) and (-,-)sp for dualities between W3 (£2) and
W5 1(£2) and W, / ?(892) and W;l/ ?(892) correspondingly. For any space S
mentioned above we set

ull§ = (u,u)s,
and for any W = S% = S x S we set

(u,v)w = (u1,v1)s + (u2,v2)s,  |ullyy = (w,w)w, u,veW,

where u = {uy,u2}, v = {v1,v2}, uj,v; € S, i =1,2. Let

V(Q) = WHD) x WH(R), Vol®) = Wi (2) x Wi (2),
H(2) = Ly(02) x Ly(R),  Vr(02) = W2 (092) x W./?(09),
Hp(092) = Ly(092) x Ly(09)

and the corresponding dual spaces are given by
VI(2) = Vg (2) = Wy '(2) x Wy (), H'(2) = H(%2),
VA002) = W, V2(00) x Wy V2(09),  Hp(092) = Hp(09).

3. Problem Statement

Let’s consider the following boundary value problem for some scalar valued
function u defined in {2:
AAy = f,

with the following BCs defined on 0f2:
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Figure 1. Computational domain and superelements.

u=g, —Au=gs.
It can be rewritten as a system of equations of the form
—Auy = ug, —Aus = fin 2, w3 = g1, us = go at 942,
or in the vector form
—Au+Au=fin 2, wu=gat N, (3.1)

where column-vectors w = (u1,uz2)?, g = (91,92)" and f = (0, f)T are some
sufficiently smooth functions and

0-1
A= (1),
Setting L = —A + A we can write (3.1) as
Lu=fin 2, wu=gatJf.

We suppose that problem (3.1) has a unique solution.

We solve the problem in a multiply connected domain {2 which is generated
from a simply connected domain (2; by elimination of a number of small
disjoint disks (or "wells") S;, i.e. 2 = 2y \ US;. The boundary conditions for
u define the trace of the solution at the whole disconnected boundary of (2
(see Fig. 1).

4. Weak Formulation
Multiplying equation (3.1) in H({2) by an arbitrary two-component function

v = (v1,v2) € Vp(§2) which components vanish at Jf2 one can formally obtain
the following variational equation for u € V:
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Lo (u,v)=(f,v),, Yvel, (4.1)
ulyo =9, (4.2)

where g € Vi (0£2) and bilinear form Lg,(-,-) is defined as follows:
Lo(u,v) =agn(u,v) + /Au ~vdf2,
2

ou Ov ou Ov

") Oz Ox1 " Owy Ora
2

an(u,v) dg.
Here we used the following result from [13]:

Theorem 1. There exists unique operator 8 : V(2) — V[(£2) such that
Green’s formula

Lo (u,v) = (Lu,v), + (0u,yv)y,, YuecD(L),YVveV
holds. Here ~ is a trace operator:
v V(2) = Vr(2), weyu=uly,,

and
D(L)={ueV(2): Luec H(N2)}.

This theorem holds for domains with Lipschitz boundary. For domain with
piecewise smooth boundary and sufficiently smooth function w = (uy,us)?:

Su — ou ou . Ou Ouq/0n
18331 2(9332 o ’

T on Aus/On

where n = (ny,n9)7 is an outer unit normal to the domain boundary.
Equation (4.1) is strictly elliptical in domain {2, i.e. there exist real positive
constants ¢; and cg such that the following condition is fulfilled:

erllull oy < ao (uu) < ca [ull? ). Ve V().

Using Green’s formula it can be shown that operator L : V(£2) — V'(£2)
is formally generated by bilinear form Lo(-,-) : V(£2) x V5(£2) — R, i.e.

Lo (u,v) = (Lu,v),, YuecV(02),ve V().

5. Special Weak Formulation

Results presented in this section are quite general in that sense that we don’t
use here a particular form of the operator L but only the form of appropriate
Green’s formula.

Let us suppose that domain 2y 2 §2 is a union of K subdomains (2 ,
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K
2= U ok, 204 = 20 U2 .
k=1
We consider domains (29, which are non-overlapping polygons, i.e. any couple
of these polygons either are not overlapped or have either common edge or

common vertex. Additionally we suppose that every (2, contains at most
one “well” S; and every “well” S is situated inside some subdomain {2 ;. Let

Qk_QﬂQOk;é@ then() U-Qk

Let 0f2; be a boundary of subdomaln {2, then 082, = Iy, U I}, where
Iok = 082, N 092, I, = O \Ivy (Fig. 1, right hand plot). We will call
domain (2, a superelement. Since all domains which introduce decomposition
are polygons, an outer normal to their boundaries exists almost everywhere.

For any functional space S = S({2) over {2 we set S = S(£2;). We define
spaces Vi, = V({2;) in the following way:

V(2%), I, =0,

Vi =V (2) = .
k (£2) {{UEV(Qk)I /U|F0,,c:g|po’k}, Ioy #0

K - K _
Let be W = [[ Vi and W = [] Vi. Element v € W is a set of K functions
k=1 k=1

Vg, V= {’Uk}szl, Vi € Vk, k= l,K.
Space V' can be canonically embedded into space W:

veV i {vh, €W, v=0vl, €Vi, k=LK,

and space W can be canonically embedded into space H in the same way.
The following result can be proved ([4]):

Lemma 1. Let v = {vk}le €W and

K
Z ViVks H) 00, =0, Vu= {Nk}szl € M? =M x M,
k=1

where

K
M= {n = {mhe € [T wa % (052%) :
k=1

Ty, 0 € W;(Q), such that ng = 1/)1nk,1 + wgnk,l, k= I,K},

and ny; is the i-th component of an outer unit normal ny, = (ng,1, TL]@,Q)T to
the boundary 082 of domain 2. Then v € V.

Roughly speaking this lemma gives conditions of “weak continuity” under
which piecewise differentiable function from W is globally differentiable func-
tion from V.
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Our next step is the followmg generalization of weak statement of the
problem (3.1): find u = {'u,k}k LEW:

K
>t ) o, =0, Y= {py b, € M2, (5.1)
k=1
Ly (ug,v) = (f,v) g, , Vv €W(2), k=1K, (5.2)
K
Z (Okurk, 7i0) g0, =0, Vv € Vo(£2), (5.3)

where Ly(-,-) = L, (-, -) is defined as L (-, ) but for domain (2:

ou Ov du v
L. (u,v) /(a$1 5—(E1+6—$2 5$2> ko—l—/Au vd,
24

fr="Flo. (Frv) /fk vd 2,

and 6§y, and ~y,, are defined as the operators  and ~ for domain (2. It can be
shown (see [4]) that formulations (4.1)—(4.2) and (5.1)-(5.3) are equivalent,
i.e. they lead to the same solution u.

6. Variational Equation for Traces

6.1. General constructions

Let us introduce an operator G : VP — V which maps ¢ € Vr to u = G,
where u is a solution of problem (4.1)—(4.2) with g = ¢ and f = 0.

We also define the Poincaré-Steklov (P.-S.) operator ([11]) as P = 0G.
This operator is the main tool we use to reduce original problem (4.1), (4.2) to
some problem for traces of solution at SE’s boundaries. It is known ([11]) that
operators P and G are linear and continuous. Let us return to the equations
(5.1)—(5.3). We introduce u = {uk}le as u = w+ U, u, = wg + Uy,
k=1, K, where w = {wy,},_, is such a function that

Lwi = fi,  Wklpg, = wlsn, » (6.1)

in every SE (2, and w € V is an arbitrary function fulfilling boundary con-
ditions at 02, w|y,, = g. Actually there is no need to define function w
explicitly inside superelements (2, the only purpose of its definition is to
provide correct (matching) BCs at SEs boundaries and at the entire domain
boundary. Function w obviously satisfies conditions of Lemma, 1.

It is proposed here that each boundary value problem (6.1) has unique
solution. The purpose of such representation of u is to convert problem (4.1),
(4.2) to the the one with homogeneous boundary conditions on 912.
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Substitution of u = w + U into equations (4.1), (4.2) gives the following
system of equations to be solved for U:

K
U={Urt_, € [] Voo

k=1
Ly (Uk,v) =0, Vv € %(Qk), k=1K, (6.2)
K
S Uk ti)on, =0, Y= {m i, € M?, (6.3)
k=1
K K
Z (0kUk, 710) 90, = — Z (0kWk, YEV) 5o, » YV € Vo(£2), (6.4)
k=1 k=1
where
{V(Qk)a FO,k = wa
00,k =
(0 V) vl =0}, Tos#0.

Using P.-S. and Green’s operators P and G we can rewrite equations (6.2),
(6.4) as

U]C = Gk(Pk? k= ]-aKa (65)
K K

Z Prop, 7iv)on, = Z (Orwr, Vi) o0, » Vv € Vo(£2). (6.6)
k=1 k=1

Here ¢ = {gok}le = {’kak}szl is set of traces of given function U =

{Uk}le on 92, and Pj,G}, are operators P,G which correspond to subdo-
main (2.

The last problem can be formally solved in two steps:

1. Using (6.6) one can formally find function ¢ = {cpk}szl, which represents
traces of unknown solution at SE’s boundaries 0(2;

2. To compute solutions U, according to (6.5) (using ;. found above).

To perform further analysis of the last problem we need some additional
theoretical background. Let us introduce spaces

I;[:

::]w

Ly (082), Nulf = ZHMkHLQank)a

E
Il
—

X

[
::]w

12
2o, lul% = ZHMH RV

~
Il
—

and subspaces



Finite Superelements Method for Biharmonic Equation 317
X={n={mHo e X: Iewd@) m=rha,},

Xo = {u ={tiey €X 1 W WS (), = Vlank},

Hy = {u = {,uk}kK:l €H: px=0|p0non, almost everywhere }

~ K ~
We consider X’ = ] W;l/ % (042,) as a dual space to X. The following

inclusion is fulfilled ~ ~ R
XCcHcCX
where X is everywhere dense in X’. We also define the direct products:
X?2=XxX, X =XoxX, X?’=XxX
and the corresponding dual space X"2 = X' x X'.
Using P.-S. operators Py one can define bilinear form

K

B(y,7l/)= <Pkl"/k7'/k>69k7 VHaVEXQ-
k=1

This form is continuous since P.-S. operators are continuous. Now one can
rewrite equation (6.6) as

peXi: Blpy)=F), YeXj, (6.7)
where
K
== (Oxwi ) og, Vb€ X2 (6.8)
k=1

and w € V is the one from (6.1). Equation (6.3) is fulfilled because of the
choice of the space Xy. So we came to the following result:

Theorem 2. Let F € X'? is defined as in (6.8). Then the solution u =
{uk}f:1 €V of the problem (4.1), (4.2) has a form

uk:GkSDk_kav kzlaKa

where ¢ is the solution of problem (6.7)-(6.8) with given F and w =
{wk}szl € V is the one from (6.1).

It is possible also to rewrite the variational equation for traces presented
above in matrix notation. Indeed, operator G, as it was defined above, maps
two-component, function ¢ = (¢1,¢2) to another two-component function,
say u. Let (¢); = ¢; be the i-th component of ¢, i = 1, 2. For any such ¢ we

can write
1 0
Y = pire1 + e, e} = <0) , €2 = (1) .

Since G is linear we can write
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u =Gy =G(pie1) + G(p2e2).

Defining G;; as
Gij@: (G(goej))i, i,j = 172
it is possible to rewrite equation (6.9) as

ur = Grp1 + Gragpa,
uz = G191 + Gazgpa.

(6.9)

Operators G;; are linear and act not on a two-component function like oper-
ator G but on scalar functions and return scalar values. They are linear and

continuous since G is linear and continuous.

Exactly the same analysis can be performed for P.-S. operators. We can

define operators P;; = (0G(ye;)), and then expand ¢ = Py as

Y1 = P11 + Prawa,
Yo = Pa1p1 + Paapa,

Now let’s turn to the bilinear form B. It can be rewritten as:

2

B(p,v) =Y bij (1. vi),

i,j=1

where p = pieq + pses, v = vie1 + vzey and bilinear forms b;;(-, ) are the

ones of the form:
bij (/1'71/) =B (Neﬁyei) )

We can write variational equation (6.7) as

b1 (1, v1) + bia(pe, v1) = Fi(v),
ba1(p1,v2) + baz(pi2, v2) = Fa(v2),

where vy, 5 € X are arbitrary trial functions and
F;,(v) = F(ve;), i=12,

where F is a linear functional defined in (6.8).

6.2. Variational equation for biharmonic equation

Essential assumptions which were made during the previous considerations

are the following:

1. Linearity of the problem under consideration;

2. Availability of Green’s formula for operators under consideration;

3. Existence of solutions of all subsidiary problems.
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It is useful also to point that availability of Green’s formula of the desirable
form is proven for a quite general case, i.e. so called “abstract” Green’s formula,
exists, see [13]. So all constructions performed above are valid not only for the
particular case of the biharmonic equation but for rather general class of
problems.

In that sense it doesn’t matter which particular form operator L has. For
example it is valid for the case of an arbitrary matrix A under condition
that all intermediate problems have unique solutions. Nevertheless to make
further error analysis of the method more simple it is more convenient to
utilize properties of the particular problem under consideration, which makes
it possible to use some results obtained previously for the case of problems
with conventional (scalar) Laplace operator.

Exactly, let us study the structure of operators G;; and P;;. It is easy to

show that o
Glven = (“2%).

where G 4 is Green’s operator for the Laplace equation, it maps some ¢ defined
at 012 to u defined in {2 and being a solution of the problem:
Au=0in 2, ulsn = .

See [5, 6, 7] for details. Hence G1; = Ga and Go; = 0.
In the same way it can be shown that

G(pez) = (gjg) )
where u = G12¢ is a solution of the problem
—Au+Gap =0, ulsgn=0
with a given .
In the same way it can be shown that Pj; = Poy = Pa, P1o = dAG12 and
P51 = 0. Here d 4 is a conventional normal derivative operator for the Laplace

equation, dpu = Ou/dn for some u, Pa is P.-S. operator for the Laplace
equation, Pa maps some ¢ defined at 02 to Pay defined at 0f2 by the rule:

0
Payp = 8—nGA<P-

See [5, 6, 7] for details. Due to the form of operators P;; equations (6.10),
(6.11) can be reduced to:

ba(pr,v1) + bia(pe, 1) = Fi(v1), (6.12)
ba(pa, v2) = Fa(vz), (6.13)
where bA(+,-) is a bilinear form which corresponds to the Laplace equation,
K
balp,v) = <PA7I€/1’7V>3_QIC .
k=1

It can be shown ([5, 6, 7]) that bilinear form ba(-,-) is continuous and posi-
tively defined in Xy. Problem (6.12)—(6.13) can be solved sequentially.
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7. FSEM Approximations

FSEM is a mesh-projection method for solution of equation (6.7). Only the
Bubnov-Galerkin approximations are considered below, i.e. the case when
spaces of basis and trial functions coincide. Nevertheless generalization to
the more general the Galerkin-Petrov approach is quite straightforward.
Following the Bubnov-Galerkin method we choose some finite-dimensional
subspace of basis and trial functions X3, C X§ which is linear span of system

N
of basis functions {go?} C XZ. An approximate solution ¢, € X2, of
L :

the problem (6.2) is of the form

N
Pn = Z%‘PELS) € Xg,h
s=1

and has to satisfy the following equation:

B (pn,¥y) = F(¥,), Y, € Xg,h' (7.1)

One can obtain different versions of FSEM by choosing X7, in differ-
ent ways. Computational procedure can be applied formally in the following
sequence:

1. Compute functions

x K
ul? = Gpl® = {Gk¢§f,3c}k:1 LY = Py = {Pwﬂ}k:l

for each <p§f). To compute chgf) it is needed to solve some auxiliary

problem for equation under consideration in every SE independently with
boundary conditions defined by cpgf). Actually any convenient analytical
or numerical approach can be used for this purpose. In the numerical ex-
ample, presented below, conventional FEM in every SE separately is used.
It allows us to use separate FE meshes in different SEs independently.

2. Assemble and solve finite-dimensional problem (7.1) for ¢;. Approximate
solution of the original problem (4.1), (4.2) is given as

N
up = Z asugf) —+ wy,.

s=1

To define and compute additional function w; we use conventional FEM
in every SE. Boundary conditions for wj can be defined in the simplest
way, for example we can set w;, = g, at the SE edges which belong to
the domain boundary, w;, = 0 at the nodes of superelements which are
situated strictly inside {2 and then use piecewise interpolation to define wy,
at all SE edges which lies inside (2. Here g;, denotes some approximation
of g. There is no necessity to define function w from (6.1) here, because
it is used only for definition of the BCs for functions w;,, which could be
easily done explicitly while algorithm’s implementation.
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8. Error Estimates for the Bubnov-Galerkin Method

We consider system (6.12), (6.13) in a sequence, using terms of the previous
section. So this section is essentially problem-specific.
Approximation of the equation (6.13) reads

ba(02,nvn) = Fa(v),  Vvn € Xop. (8.1)

Since form ba(-,-) is continuous and positively defined, conditions of the Sea
lemma are fulfilled ([1, 13]) and the following estimate can be immediately
obtained:

p2,n — @2, < Ce (02, Xo,n)

where
= 1 f —_
e(y, Yn) Jnf ly — 2|l

denotes the distance from some y € Y to subspace Y}, C Y for some functional
space Y and its subspace Y.
Approximation of the equation (6.12) reads

ba (p1,h,vn) + b12 (@2,n,vn) = F1 (vn), Vi € Xop. (8.2)
Consider also the following subsidiary problem
ba (P1,hsvn) + b1z (w2,vn) = F1 (va),  VYvn € Xop. (8.3)

The difference between (8.2) and (8.3) is that we use the exact value of y9 in
(8.3) instead of its approximation in (8.2). Using triangle inequality we obtain

le1,n = pilly, < llern — Grnllx, + I1P1n — o1l x, - (8.4)

Equation (8.3) is the one for ¢, since we assume that o is already
defined, so we can write (8.3) as

ba (Prn,vn) = Fi(vn), Fi(vn) = Fi(vy) = bia (wa,vn), Vo € Xon,

and the second term on the right hand side of (8.4) can be estimated again
by using the Sea lemma:

61, — 1l x, < Ce (1, Xon)-

To estimate the first term on the right hand side of (8.4) we subtract (8.2)
from (8.3) and substitute v, = @15 — 1,5 t0 Obtain

ba (P1.n — P10, P1h — ©1,0) = D12 (P2,h — Y2, P10 — P1,8) -

Since ba(+, ) is positively defined and b12(-, ) is continuous we obtain:

Cill@1n — e1nllk, < ba(Brn — P1n, Brh — P10) =
bi2 (p2,n — 2, 81,0 — p1.0) < C2llpa,n — @2l x, |81, — P10l x0
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which leads to

81,0 — @10l x, < Cllvz — @20l x, < Ce (@2, Xon) -

Hence the following estimations hold for ¢, and @3 5:

lon1 —e1llx, < Cie(p1, Xo,n) + Cae (92, Xo,n)
lo2,n — @2l x, < Cse (02, Xo,n) -

The final step is an estimation of € (, Xo 1) for ¢ = @1, 2. In the simplest
way it can be done as

e (», Xo.n) < [lp — Pnllxo

where ¢ stands for an interpolant of ¢ by the system of basis functions
which forms X 5. So estimations of approximate solution are reduced to the
estimations for interpolation procedure.

In the case of two-dimensional domain and one-dimensional boundaries
(i.e. the case under consideration) it leads to ([4, 6, 7]):

le1n = @1llx, < Crh,  lp2,n — 2|l x, < C2h

for the case of piecewise linear finite element approximation on boundaries.
Here h is a step size of one-dimensional superelements mesh defined at SE
boundaries. Constants C; and C5 depend on domain and its decomposition
into superelements but not on h.

9. Numerical Examples

As an example we introduce the following problem in a multiply-connected
domain
2=10,101*\ (S, U Sy), (9.1)

where S is a disk of radius r; = 1072 and center at ¢; = (0.5,0.5) and S is
a disk of the same radius 2 = r1 and center at co = (4.5,4.5).
We choose

w(z)=Inlz —ci|+In|z —co| +10In (5 + |z — c3]), (9.2)

where

|z —y| = V(21 —y1)? + (22 —12)2, Va,y € R?,

and c3 = (—5,15) as an exact solution and define boundary conditions con-
sidering u defined above at domain boundary.

Superelements are squares of size H = 1, "wells" S; and S are situated in
the center of the corresponding superelements. Contour plots of the approx-
imate solution are presented on Fig. 2. A plot of an exact and approximate
values of solution at the line 1 = x5 is presented on Fig. 3.
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34,5165

33.2055—

Figure 2. Approximate (u — left hand plot, v = —Au — right hand plot).

x10°

approximate solution ‘approximate solution|
35[| — — exact solution — — exact solution

-Bu

Figure 3. Exact and approximate values of u (left hand plot) and — Au (right hand
plot) at the line z; = 2, s = v/2z1.

Norms in C (§2) of the error of the approximate solution for u and v are
0.3499 and 4.2151 x 10~* correspondingly. So large difference in the values of
error for different components of the solution is caused not by the properties
of the method but by corresponding difference in characteristic values of the
exact solution. Relative errors are of the same order and have values of 0.0111
and 0.0280 correspondingly. We also note that u errors achieve their maximum
value in the “wells” neighbourhood.

Let us point here that the values of the relative errors are quite small for
such a coarse decomposition (10 x 10 superelements) of computational domain.
The error can be reduced by use of higher-order boundary basis functions and
more accurate solution of subsidiary problems for SEs basis functions (see [3]).

10. Conclusion
FSEM for solution of biharmonic equation in bounded domain was analyzed

in this paper. Special weak formulation for the traces of the solution of the
original problem at superelements boundaries was suggested. Equivalence of
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formulations was shown. Computational model was constructed using devel-
oped formal approach. Abstract error estimates were obtained for one version
of the method. The method have shown its efficiency while solving the given
test problem. Good agreement between numerical and exact solutions was
observed.
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