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Abstract. The fully developed turbulence with axial anisotropy for dimensions
d > 2 is investigated by means of renormalization group approach. The correspond-
ing system of strongly nonlinear renormalization group equations which contain
angle integrals is solved numerically. Possible utilization of the parallel program-
ming methods is discussed. As a result, the influence of anisotropy on the stability
of the Kolmogorov scaling regime is analyzed. The borderline dimension between
stable scaling regime and unstable one is calculated as a function of the anisotropy
parameters. Obtained results are compared with results calculated in [7].
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1. Introduction

One of the most suitable and also powerful tool for investigation of fully de-
veloped turbulence based on the stochastic Navier-Stokes equation [21] is the
so-called quantum-field renormalization group (RG) [2, 19]. In early papers,
the RG approach was applied only to isotropic models of developed turbu-
lence. However, the method can also be used in the theory of anisotropically
developed turbulence. The reason for theoretical study of the influence of
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anisotropy on the behavior of developed turbulence is given by the fact that
a variety of experimental studies as well as computer simulations indicate
the existence of deviation from the isotropic statistics of the fully developed
turbulence. A crucial question immediately arises here: whether the scaling
regime remains stable under transition from the isotropic to the anisotropic
case. In other words, do the stable fixed points of the RG equations remain
stable under the influence of anisotropy?

During the last decade a few papers have appeared in which the above
question was considered in the framework of the RG approach in fully de-
veloped turbulence and related problems (magnetohydrodynamic developed
turbulence, advection of passive and vector fields by a given turbulent environ-
ment, etc.). In some cases, it was found that the stability actually takes place
(see, e.g., [13, 18]). On the other hand, the existence of systems without such a
stability has also been proven. As was shown in [3] in the anisotropic! magne-
tohydrodynamic developed turbulence a stable regime generally does not exist.
In [7, 13] d-dimensional models of fully developed turbulence with d > 2 were
investigated for two cases: weak anisotropy [13] and strong anisotropy [7], and
it was shown that the stability of the isotropic fixed point is lost for dimen-
sions d < d. ~ 2.685. In [7], where strong anisotropy was investigated, it was
also stated that stability of the fixed point, even for dimension d = 3, takes
place only for sufficiently weak anisotropy. In present paper, we would like to
return to the problem of the influence of strong anisotropy on the stability of
the scaling regime in fully developed turbulence which was studied in [7]. The
reason is the suspicion that their results are, at least, not precise (an evidence
for this can be also seen by comparison of the results obtained in [7] with
results shown in [6]. Thus, in what follows, we shall return to the description
and detailed analysis of the numerical methods used in [7]. Our conclusion is
the following: the numerical results and conclusions of [7] are not exact and
must be specified, although the conceptual framework of their approach is ac-
curate. We shall try to find and to understand the critical points in numerical
calculations which could lead to the non accurate results. Another question
which will be studied is the possible exploitation of the parallel programming
methods to speed up the calculations. As a result, we shall calculate the de-
pendence of the "critical" dimension d. between stable and unstable scaling
regimes as a function of the anisotropy parameters and compare our results
to that ones obtained in [7].

The paper is organized as follows: In Section 2 we discuss the field theoretic
functional formulation of the stochastic problem of fully developed turbulence
with strong anisotropy. In Section 3 we discuss the stability of the fixed point
under influence of strong anisotropy. In Section 4 we present a detail anal-
ysis of numerical methods which was used in calculations. In Section 5 the
discussion of the results is present. AppendixI contains explicit expressions
of the coefficients of § functions. In Appendix IT the necessary and sufficient
conditions for convergence of needed integrals are proven.

! In what follows we always have in mind the uniaxial anisotropy, i.e., the anisotropy
defined by one specific direction (see the next section).
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2. Description of Model. Field Theoretic Formulation

In the statistical theory of anisotropically developed turbulence, the turbulent
flow is characterized by the random velocity field v(x,t), where v and x
are supposed to be d-dimensional vectors. Its evolution is governed by the
randomly forced Navier-Stokes equation

0

8—:-|-(V-V)v—1/oAv—fA:f7 (2.1)
where the incompressibility of the fluid is assumed, which is given mathemat-
ically by the conditions V -v = 0 and V - f = 0. The parameter vy is the
kinematic viscosity (subscript 0 denotes bare parameters, see, e.g., [19]). The
term fA is related to uniaxial anisotropy, and it has the following form [7]

fA =1 [XlO(HV)QV + XQOHVQ(HV) + Xgon(HV)z(nV)] . (22)

Parameters 10, x20 and xso characterize the weight of the individual struc-
tures in (2.2), and the unit vector n specifies the direction of the anisotropy
axis. The large-scale random force per unit mass f is assumed to have the
Gaussian statistics defined by the averages

(fi) =0, (fi(x1,0) fj(x2,t)) = Dij(x1 — Xa,t1 — t2). (2.3)

It is convenient to parametrize the two point correlation matrix

dok -~
D;;(x,t) = 6(¢) / WDU (k) exp(ik - x) (2.4)
in the following way [3, 7, 18]
Dij(k) = govgk* "2 [(1 + 1 &}) Pij (k) + a2 Ry (k)] (2.5)

where vector k is the wave vector, d is the dimension of the space (in our
case: 2 < d), € > 0 is dimensionless parameter of the model. The physical
value of this parameter is ¢ = 2 (so-called energy pumping regime). We shall
not discussed here more complicated case d = 2 (see, e.g., [12] and references
cited therein). The value ¢ = 0 corresponds to a logarithmic perturbation
theory for a calculation of the Green function when gg, which plays the role
of a bare coupling constant of the model, becomes dimensionless [19]. The
problem of the continuation from € = 0 to the physical values was discussed
in [1]. The (d x d)-matrices P;; and R;; are the transverse projection operators.
Their explicit forms are defined by the relations (in the wave-number space)

Pij(k) = 6 — %, Rij(k) = (m - fk%) (le - §k%) ; (2.6)

where &, is given by the equation &, = k-n/k . The tensor D, given by (2.5), is
the most general form with respect to the condition of incompressibility of the
system under consideration and contains two dimensionless free parameters
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aq and as. The positiveness of the correlator tensor D;; leads to restrictions
on the above parameters, namely, a; > —1 and ay > —1.

Using the well-known Martin-Siggia-Rose formalism [4, 5, 8, 15], the
stochastic problem (2.1) with correlator (2.4) can be transformed into the
field theoretic model of fields v and v/ where v’ is independent of the veloc-
ity field v auxiliary incompressible field, which we have to introduce when
transforming the stochastic problem into a functional form. After this trans-
formation the action of the fields v and v’ is given in the form

1
S = 5 /ddX1dt1ddX2dt2 [’U;‘(Xl, tl)Dij (Xl — Xg,tl — tQ)'U; (XQ,tQ)}
+ /ddxdt {(V(xt) [-ov— (v - V)V+ 1o Viv+ £ (x, )} . (2.7)

The functional formulation gives the possibility to use the quantum field the-
ory methods, including the RG technique, to solve the problem. The formula-
tion through action functional (2.7) replaces the statistical averages of random
quantities in the stochastic problem (2.1)—(2.5) with equivalent functional av-
erages with weight exp[S(v,v’)] (for details see [2, 19]).

3. RG Equations and Stability of the Kolmogorov
Scaling Regime

Fully developed turbulence is characterized by the large Reynolds number
Re. On the other hand, the large Re corresponds to the existence of a large
inertial interval, which is defined by the inequalities 1/A =]l <r < L =1/m,
where [ corresponds to an inner scale (the scale where dissipation forces are
dominated, or the scale of the smallest eddies), and L is an outer scale of the
system (the scale of the energy pumping into the system, or the scale of the
largest eddies). In fully developed turbulence we are interested in the behavior
of the correlation functions of velocity field (v;, (x1,1),...,viy (Xn,t)) deep
inside of the inertial interval, i.e., far away from the dissipation effects as well
as far away from energy pumping scale. Within the field theoretic approach
they are given by the following functional integral (see, [19])

(vi, (X1, ), - ,UiN(XN,t»:/D(P Ui, (X1,1), -+, vy (x, 05 @ (3.1)

where & = {v,v'},1<4; <d,j=1,...,N, and S(P) is given by (2.7).

The behavior of the correlation functions inside the inertial interval is
the main issue of the famous Kolmogorov-Obukhov phenomenological theory
[14, 17] (see also [16]). It was formulated in the form of two hypotheses which
lead to the scaling behavior of the correlation functions within the inertial
interval. In what follows we shall discuss only the so-called second Kolmogorov
hypothesis related to the IR scaling and our aim will be to investigate the
influence of the axial anisotropy on this scaling behavior.
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As was mentioned in the Introduction the appropriate method to inves-
tigate self-similar systems is the RG method. Within the RG technique the
correlation functions are obtained directly in the scaling form (with correct
critical dimensions) and their large-scale limit (i.e., IR limit) is described by
the stable fixed points of the renormalization theory, i.e., the scaling regime
is stable if the corresponding fixed point is IR stable. The IR fixed point is
obtained by using the system of differential equations (also called the flow
equations) which drive the effective variables C' = {g, X1, X2, X3} which are
the functions of dimensionless scale parameter (wave number) ¢ = k/A. Their
explicit form is the following

dg o
td_g = 69(97X17X27X3;al’a2’d)7
t
& (3.2)
t 2&1 = Bx.(9,X1, X2, X3; a1, 02,d) , i =1,2,3.

The dimensionless wave number ¢ belongs to the interval 0 < ¢t < 1, and
the initial conditions for the above differential equations are taken at ¢ = 1.
The IR stable fixed point corresponds to the values in the limit ¢ — 0, i.e.,
(G, X1s X25 X3)|t—0 = (6%, X7, X5, x3) (standardly, a quantity with star denotes
the fixed point value). The so-called -functions Gy, 8y,, ¢ = 1,2, 3 are defined
by the so-called renormalization constants of the renormalization procedure
and their final form is as follows (details see in Ref.[11])

6g = g(_2€ + SAgal) ’ ﬂXi = _Ag (a’i-i-l - Xial) ’ 1= 17 2a 37 (33)

where parameter A is defined as A = S;_1/((2m)%(d?> — 1)), Sq is the area
of the d-dimensional sphere given as S; = 27(4/?) /I"(d/2), and functions a;
(i=1,...,4) are given in Appendix I.

In principle, one has two possible ways how to find the IR fixed point of
the model. First of all, one can solve the system of four equations

ﬂc(C*,al,ag,d) = O, (34)

where we denote C* = {¢*, x7, x5, x5} In this case, the IR stability of the
fixed point is determined by the positive real parts of the eigenvalues of the
matrix

9Cm

This is a comfortable way for the determination of the fixed point but in our
case it cannot be used. The reason is the presence of the integrals in the
functions (see Appendix I) which makes this way rather complicated.

The second possibility is to solve directly the system of the differential
equations (3.2). It is the way which will be used in our case. This method was
also applied in [7]. More about numerical methods will be said in the next
section.

Now we have all necessary tools at hand to investigate the fixed point and
its stability. Our aim is to find the so-called borderline dimension d. between

wlm:(aﬁcl) L Lm=1,...,4. (3.5)
Cc=C*
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Figure 1. The three-dimensional view Figure 2. The dependence of the bor-
on the dependence of the borderline di-  derline dimension d. on the parameter
mension d. on the parameters a1, and a2 for concrete values of the parameter
a2. aq.

stable and unstable regimes when moving from the three-dimensional system
towards two-dimensional one. In Fig. 1, and Fig. 2 our results for d. as a
function of the anisotropy parameters are present. The difference between
our results and those of [7] can be seen immediately, namely, the region of
stability of the three-dimensional scaling regime is sufficiently larger in our
case than in [7] (see Figl in [7]). Fig. 1, and Fig. 2 show that in the three-
dimensional system the Kolmogorov scaling regime is unstable only in the limit
o1,2 — —1 and for large enough values of parameter «; together with negative
or relatively small positive values of the parameter as. Our conclusion is the
following (it differs sufficiently from the conclusion found in [7]): to destroy
stability of the Kolmogorov scaling regime in three-dimensional space by the
uniaxial anisotropy, which is in our model represented by the parameters aq,
and a9, it is necessary to apply anisotropy with rather specific values of these
parameters.

4. Numerical Methods

One possible way how to solve the problem of the IR fixed point of the four
differential RG equations (3.2) with § functions (3.3) and corresponding inte-
grals (5.1) of Appendix Iis based on the analytical calculations of the integrals.
The integrands of (5.1) have the form of fractions of two polynomials, namely:



Numerical Investigation of Anisotropic Developed Turbulence 331

Pi(2%)/Q(z?) (i = 1,...,4), with different numerators P;(z2?) = b;(x?) but
with the same denominator Q;(x?) = (M;MyMs3)3. Tt is possible to expand
the expression 1/(M;MsM3)? into a sum of partial fractions of the type
R(z%)/(a+ 2?)7, where R(z?) is a polynomial, a is, in general, complex func-
tion of parameters x;,i = 1,2,3 and j = 1, 2, 3. Now using the following result
(see, e.g., [9])

/1 (L—a?)5 e (4 (CD))I(EI(G +n)
1 (a+a?) 2071 (4 +n)
1 d 1
X o F} <l,§+n,§+n,—a) R (4:].)

one can represent the integrals in the form of a combination of hypergeometric
functions o F} (a, b; ¢; z) defined as
ab ala+1)b(b+1) o

Filabc;z)=1+ —
2Fi(a,bi¢;2) * 1!cZ+ 2le(c+1)

Equation (4.1) is held when Re[d] > 1 (Re[x] means the real part of z),
Re[n] > —1/2, and Argla] # w. In our case, these conditions are fulfilled
because d € (2, 3], n is zero or positive integer, and it can be shown that the
last condition is also valid.

By using this representation of integrals (5.1) it is possible to find the IR
fixed point of differential equations (3.2) by solving the system of equations
(3.4) together with the matrix of the first derivatives (3.5) to test the IR
stability of the fixed point. But this way is rather complicated and we shall
not use it here.

The most comfortable way how to find the IR fixed point of the system
of four differential RG equations (3.2) with (3.3) is to solve it numerically
using some appropriate numerical method. In what follows, we work with the
fourth-order Runge-Kutta method with the adaptive choice of the integration
step. For this purpose it is convenient to transform the system of differential
equations (3.2) into an autonomic system by substitution ¢ = e~*. Using this
transformation one obtains
% = —B4(g, X1, X2, X35 1, 2, d)

s
dXi
ds

:—ﬂxi(g,Xb)ZQ,)Zg;O[l,OéQ,d)7 Z.:172a37

where s € [0, 00). The initial conditions correspond to s = 0 and the IR fixed
point is found in the limit s — oco. The first step for the variable s was taken
as As = 1073. The initial values of the parameters can be chosen arbitrary
but the most convenient choice is to take them to be the fixed point of the
three-dimensional isotropic model (see [7]).

As was already discussed our differential equations are made of the linear
combinations of the following integrals
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1 2 a-3 2n
1-2%)zx
= =TT 42

/_1 (M, Mo M;)? d, (4.2)

where explicit forms of the functions M;,7 = 1,2,3 are given in Appendix
I. Therefore, the first step to solve the problem is the necessity to guarantee
their convergence within the interval x € [—1, 1], i.e., to determine the allowed
values of the parameters i, X2, x3- That is why, let us first discuss the
conditions under which the integrals will be well defined.

Assume that one or more of the expressions M;, (i = 1,2,3) (defined in
Appendix I) are vanished with respect to the variable 2 within the interval
[—1,1]. Let us denote as x; the point in which one of the M; is equal to zero.
Then, from the convergence point of view, the integral (4.2) is equivalent to
the integral of the type fil 1(x— x1)3 dz. Hence, if one of the expressions
M;,i = 1,2,3 vanish in the interval [—1,1] then the integrand will be not
integrable. Thus, to guarantee the convergence of the integrals, we are looking
for such conditions on variables x1, x2, x3 which give nonzero values for M;
within of the corresponding interval. The necessary and sufficient conditions
of the convergence of the integrals (4.2) are as follows

x1>-1, x2>-1, x3>—(V/1+x1+V1+x2)*.

The detailed proof of these conditions can be found in Appendix II. They are
also important in the numerical solution of our system of differential equations
and these conditions must be tested on each step of the Runge-Kutta method.

An important question is related to the choice of a numerical method
for calculation of the integrals. It can be shown that the most appropriate
method is the using of the Chebyshev quadrature formula. The question of
the number of divisions of the integration interval is another important one.
In our calculations, we used the division to 1024 subintervals, which was found
as the best choice from the point of view of the accuracy and needed time of
the calculation. On the other hand, in [7], the division to the 128 subintervals
was used. We suppose that this fact could lead to the difference between our
and their results because the division to 128 subintervals may not be sufficient
in some critical situations.

To find the borderline dimension it is enough to use the bisection method.
Our results were calculated with the accuracy of 0.005. The same accuracy
was supposed in [7] but, as can be seen from their results, this accuracy was
not achieved by them even in the isotropic limit where the exact result exists.

From the numeric calculations point of view, the problem is rather time-
consuming, i.e., the calculations take relatively long time. Therefore, the ques-
tion of using modern computational methods arises. In what follows, we shall
analyze a possible speed up of calculations based on the utilization of the par-
allel programming methods using the Message Passing Interface (MPI) (see,
e.g., [10, 20]). Let us discuss this problem in more detail. First of all, we have
to solve our system of differential equations at large number of points. For
example, Fig. 1 was obtained by using results on the lattice of the size 16 x 16
in the plane of anisotropy parameters «; and as, i.e., we had to repeat the
numerical procedure 256 times.



Numerical Investigation of Anisotropic Developed Turbulence 333

Suppose first that we have to calculate the borderline dimension d. for one
concrete value of the parameters «; and as. How can the parallel algorithms
help in this situation? To find the borderline dimension with a precision Ad
when the starting interval for d has the length [ one has to carry out a pre-
scribed number of calculations n. Using one-processor computer the best way
how to find the d. is to use the bisection method. In this case, the result is
obtained after n = [log,(l/Ad)] calculations ([x] means the smallest integer
greater or equal to x). On the other hand, in the case of the multi-processor
computer with m processors, one can divide the interval into m + 1 subinter-
vals and carry out the calculations in m points of the division at the same
time. Thus, the result is obtained after n = [log,, . (l/Ad)] serial calculations
(of course, in this case, the total number of calculations is larger but the total
time of the calculations is shorter).

Table 1. The number of needed serial calculations n as a function of the number
of processors m for the special case: [ = 1 and Ad = 0.005.

m 1l 2 3,4 5—-13 14—-198 > 199

n 8 5 4 3 2 1

Let us demonstrate this speed-up by an example. Suppose that [ = 1, and
Ad = 0.005. The results are shown in Tab. 1. The table shows the effective
numbers of processors which are 1,2, 3,5, 14, and 199. If we suppose that the
calculations take the same time for all values of dimension d then n is directly
related to the time of calculation. For example, the calculation with three
processors (the same holds also for four processors) is two times shorter then
calculation with one processor, see Tab. 1. On the other hand, the calcula-
tion takes the same time for the computations with 3 and 4 processors. The
same is held for the computers with number of processors from the intervals
m = [5,13], m = [14,198], and m = [199, o). Therefore, our conclusion is the
following: if one needs to do only one computational process (in our case, it
means to find one borderline dimension d. for concrete value of the parame-
ters of the model) then it is appropriate to use the advantage of the parallel
computing.

Now let us analyze the situation when one needs to calculate the borderline
dimension d, as a function of the anisotropy parameters (as it is in our case).
Thus, it is necessary to carry out two or more independent calculations for
different values of the parameters of the model. The simplest situation occurs
when the number of independent calculations are much larger than the number
of processors. Because this is our case, we shall analyze it in detail. The
situation is shown in Fig. 3, where the total number of computational processes
N is shown as a function of the number of processors m and of the desired
precision Ad. It is seen immediately that the most effective utilization of the
processors is to give to each processor to calculate independent borderline
dimension d. alone.
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Figure 3. The dependence of the total number of calculational processes as a
function of the number of processors m and the precision Ad. The length of the
initial interval is [ = 1.

We have analyzed two special cases, namely, the case with one independent
calculation and the case with the large number of independent calculations.
The situation becomes more complicated when one needs to carry out the
number of calculations which is comparable to the number of processors. But
each such situation needs special analysis and we shall not analyze it here.

In concrete calculations we used advantages of the parallel programming,.
Our situation is the case with a large number of independent calculations,
therefore, each processor has calculated borderline dimension for defined val-
ues of the parameters of the model.

5. Conclusion

By using the field-theoretic RG method the influence of the uniaxial anisotropy
on the stability of the Kolmogorov scaling regime in fully developed turbulence
was investigated. The stability of the regime is defined by the very existence
of the IR stable fixed point. The fixed point was found numerically by solving
the corresponding differential RG equations. It was shown that the earlier
results obtained in [7] as well as their conclusions about the dependence of
the borderline dimension d, as a function of the anisotropy parameters o; » are
not precise enough. We have found that the stability of the three-dimensional
scaling regime is destroyed only in the case of rather large (in the sense of the
absolute value) and special values of the anisotropy parameters. We have also
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analyzed the optimal way how to calculate the numerical problem by using
the parallel programming methods.
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Appendix I

The explicit form of the functions a;, 7 =1,...,4 is as follows
1 1 (1 _ $2)(d73)/2
a; = - ————b;dx, i=1,...,4, 5.1
4 /71 (M1 Mo M3)3 (6.1

by =ci1+ 4M2M3x2x%(0172 +c1,3)
+ Myx?ay (0174 + MaM3ryzicy s+ Miey g — 2M22M320177) )
by = co1 — MPM3ri(co2 + ca3) — 4AMaMsxy(fs + x1)ca s
— My (—2M3riwix} (fs + 1)ya+ M3 (2zica 5 =2 faco 6 + di Mririziyr)
+ 2M22M32(20¢2M3CQ,7 +cag) + M2M3,27“4(02,9 + 62,10)) )
bs =c31+ M12M237“163,2 4+ 4 Mo M5 (03,3 + MoMsra(csa + x1035)
+ M3 (cs6 + 2103,7)) + M (38 — 2M3 M3 (c30 + 2f3¢3,10 + €3,11)
+ MaMZry(—x1c3,12 — 4f3¢3,13) + M3 (—dicsia + 2f3¢315 — 2$%CS,16)) ,

b
54 = C4)1 — 264)2M12M237’1 + 2M2M3( — C4)7 + (04,5 — 04,6d1)M22

+ (ca,3—ca,adr) Mo Msra) +Mi ((di(ca10 + a1 f1) + caofo + Beasfz) My

+2(d1(can0 + 2¢a10f1) + cansfo + 3ca 17 fz) ME M3

+ (di(cans + 2ca16f1) + canafo + 3eans f3) MaMiry — caraM3riziys),
c11 = AMEMSr a2 xy (—dy Mary + (—x2 M3z + ra(1 + 3M3))zy)

+ MMy (di Ms(d—1 — 3z1) + 2(1 + 2M3)2?),
Cl2 = —Mgrixl(rl + aoxy) + M22(—4oz2M§ +r1ra(2Ms — ra(1 + wy)x1)),
c1,3 = MoMsry (daoMzzy 4 r1(2M3 — ra(2 4+ wi)z1)) ,

3.2 2
c1,4 = —2M3rijwixi(r1 + aex1),
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c1,5 = aaMszzi(4(wi + hox1) + rayn) + r1(dxeMzz1 + ra(—4dwrz1 + Mzyr)) ,
c16 = d1M3(4a2M§ + rira(—2M3 + 1471))

— 221 (8 M3 + 7174 (—4MZ + raxy — 2M3(1 + wy — y2))),
c1,7 = diraQaaMszxy + 1 (Ms — raz1))

— 4wy (rira(Ms — y2) + ce Ms(razs +y2))
o1 = 2MPM3ri(fs — di fiMs + 2f3M3)
Co2 = —4f3Msrs(—2 + 32%) + dy Mary(d—1 — 4f1 + 3f12® — Bay)
o3 = 4f3(—xaMs + ry)zy + 4(—x2 Mz + ry + 2Mzry)z?
Co4 = —4a2M2M§(M2 — r4m1)

— r4(Mary (—2M1 M3 + r4(My + M3 + Myw;)x1) + M3raa1ys)
co,5 = —daa M3 + rirg(—ra(Mszy + 1) + 2M3(1 + Ms + w1 + X221)) ,
Co6 = 4o M3wy + 1174 (ra(af + Msys) — 2Ms(Msxa + x1(1 +ys5))) |

Cor = x5 (—2x221 + ra(rg + 1))
+ fg(—QXQZ'% +ra(l+ Azt + 2y — 23:2(3 + 1)),

cag = 2f3r1ma(Maze + 2x275 — T4y3)
+ rqxq (27"13;‘1(M3 — 1raZyq + 2X23§‘1) + d1y6y7) ,

c2,0 = —2r1(—2x2M3sa? + ra(x7 (Mszs + 2wi(fs + 21)) + fsM3ys))
2,10 = My (a2 (4fswizy — 2razax? — 2f3rays + 4atys)
+ ya(4fsxaw1 + dirayr))
c31 = My M3ri(—dy fiMs + 2f3(1 4 x1 + 2M3) + 2x177) ,
c32 = —4(—x2Ms + 74 + 3Msry + xsMsz® — x1r42%)a?
— dy(d—1Msry + fiMsra(—2 + 2®) + (—5M3zry — dxsMza?
+ dx1raz®)zy) + 4fs(Ms(—x32% + x221) + r4(—3Msz1 + ys)),
c3,3 = —M3riziys(—dixiz’ a1 + fays + 21ye) ,
3.4 = f3(daaMswiys + ri(—rawi(—2 — w1 +2° (2421 + w1 +w2)) +2M3ys)),
a5 = —d12%(2x1 (202 M3xy + 11 (M3 — r471)) — T17471W2)
+ 21 (dop Mz yo + 1 (razy (w1 — 2ws — 2y9) + 2M3ys)) ,
ca,6 = —fa(daaMiys + rira(razi (=1 — w1 + 2 (14 x1 +wi +wz)) —2Mays)),
car = diz®(x1(daa M3 + 1174 (—2Ms + r4x1)) + r1riTIWs)
+ xl(—4a2M§yg + rirg(raze (wy — 22wy — yo) + 2M3yg)) ,

c3,8 = —2M§’rix1(f3(—w1x1 + xzwg) —z1(wrxr + x2(d + x2)w2))y4 ,
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3,9 = 23:% (7"17'4(3M3 — 2r423 + 2x011 — 2x32221)
+ agM3(—2(x2 — x37°)z1 + r4(223 + 311))) ,
310 = o M3(2x1 (X322 — xox1) + 74(2 + 42t + 31 — 222 (4 + 11)))
+ 1174 (3M3 — 2M3za® — 2xs2” w1 + 2x227 — 2ray10) ,
c311 =dy (ml(agMg(r4(—x5 —4x1) — 4xzx’xy)
+ r1ra(—AMs + razs + Axsa®®1)) + d_1 Msrays + frMsra(—2 + 2®)ys)
c312 = dy (azMgml(r4m5 +4a? (31 + wo)) + r1 (dxs Mszz?a,
+ ry(Msxzs — 4$2x1w2))) —4x (a2M3$1(—w1 + raw3 — x2r1 + X37213
+ 22wg) + 71 (Ms(—x2 + x32%)x1 + ra(Msxs + wizy — 33233111)2))) ;
C3,13 = a2M3$1(w1$1 — T4Y10 — 582()(3561 + w2))
—r1(xsMsz®x1 + ra(wiaf + Mayio — 2°21w2)) + x2Maziya,
C3,14 = 2d,1M32(—2a2M3 +rirg) + 2f1M§(—2a2M3 +rirg)(—2+ m2)
4+ (16(12M§’ + r1ra(ra(Mszs — 2x1m2x1)
+ 4M5(—2Ms + 2*(x1 + X321 + w2)))),
c315 = das M3 (3 — 22%) + riry (M3 (—6 + 42?)
+ 2M3(x12% — 21 + X327z — wiT1 — X2} + Tay10 + ¥Pw2) — T4T1Ys8),

2

C3,16 = —120&2M§ =+ 7“17’4(2M3(3M3 + w1 + X271 — X3$2$1 — 7wy — yg)

—r4(2M3x3 — 2139))

ci1 = MPM3(3fsxa + f2(1+ xa + 2M3))r1
ca2 = —3f3(2x2aMs — x3Msz® + ry(—=5Ms + 5))
+ f2(Ms(x32® + xow7) — ra(Ms(—5 + 327) + 29))
+di(f1(Ms(x2 + x5 — 2x32%) + ra(—=2Ms + 210)) + x3aMsz1 — xa7421) ,
ca3 = 3fs(daaMszgxr + 11 (2M3xg + razq (2w1 — 228 — ?wy)))
+ fo(daaMszgzy + 71 (2Msx9 — 14w (—2(2 4 wr)
+2%(2 + 2x1 + w1 + w2)))),
caa = 21(—2x1(Msr1 + 2090 Msxy — riraxy) + riraxiwe) + f1(doe Mszi021
+71(2M3z10 + raz1 (2 + 2x1 — 4xa12? 4+ w1 + 22ws))),
Ca5 = 3f3(—4a2M§x8 +rira(2Mszg — rax (—2wy + x5 + xzwg)))
+ fo(—daaMZxg + 1174 (2Msxe — razy (—2(1 + wy)
+22(1 + x1 + w1 +w2)))),
Ca6 = xl(xl(4a2M§ + rira(—2Ms + ryx)) + rlrixlwg)
+ fi(—4ae M3 w10 + rira(2Mzw1o + razi(—210 + w1 + T2w2)))
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car = Mirizi(—dlfizio + 3f3ms + faxg + dlx121)y4
cag = 16042M§’ + rira(ra(Msze — zsx1)

+ 2M3(—4M3z — 2w + x8 — 2x221 + X322w1 + 2°Wws)) ,
10 = —8asM3xy + riry (ra(—mozy + Mayi3)

+ 2Ms(x12® + (14 2Ms + w1)z7 + x32°®1 — X2y11 + 27w2))
ca10 = mira(d—i Msra+x1(2x1 Mz — 5Msry + 2xsMsz1 — x1raz + 2Msws)),
ca11 = —8ao M5 + riry (AM5 — ra(z1 + X1Y12)

+ 2M;5(2x32" — 210 + raz11 + w1 4 X373 + X271 + T2ws))
cane = —6f3w1 + fowizr + for’we + 3f3x?ws + dl(zrws + f1 (w1 + v2ws)),
canz = aaMawi(—4wy + raxe + 222 (x371 + w2))

+ 71 (2xsMsz?zy + ra(Mszg + 4wz — 202 x1ws)) — dxa Maxiyy
c4,14 = 0o M3(=2wiy11 + r4T1Y13 + 2x2x1(X3$1 + wa))

+ r1(2xsMsz?zy + ra(Msy1s — 221 (w1z7 + 2°w2))) — 2x2May11y4
ca15 = d—1 Marays—x1(rira(5Ms+2x1wa) + Mz (baars — 2a0ws — 2x3y4)),
ca16 = rira(Mszi1 — z1 (w1 + zowse))

+ M3z(aorazi1T1 + w11 + oyi2We + X2T1Ya + X3Y12Y4) ,
a7 = r1ra(—4Ms + razg — dx2a1 + 2x37°71)

— aoMjs(ryze — dxow1 + Arazy + 2x32°71)
cas = r1ra(2Mszr + 2x37%21 — 2X2y11 + T4y13)

— apM3(2x32° 21 + 2ra@ow1 — 2X2Y11 + Tay13) ,
ca19 = r1ra(Ms + raz11 + X221 + X3Y12)

— aaM3(raz11 + X2T1 — TaT1 + X3Y12)
ca20 = (d—17ra + 21 (—5rs + 2x3%1))Ys6
My =2(1+ x12?) + (x2 + 2%xa) (1 — 2?),
My =1+ x12% + (x2 + 2%x3)(1 — 2?), Mz =1+ y12°,
ri=1+mz? ro=xe+x32?, fi=a2’d-1,
fo=—(d+2)z" +(d+3)2* =1, f3=(d+4)(d+2)z* —6(d+2)2* +3,
wy =1+ x2 4+ x3zh, wz =x1— x2 + xs(1 — 227),
yr=—3+d+82% yo=ry(1—22%) — x2(1 —2?), y3=1—62%+4a?,
Ya =71+ Qo1, Y5 = w1+ XoT1, Yo = rira — @Mz, yr =1-32"+ fray,

ys = -1+ (1+x1)2°, yo=—-14+x12>, yio=1—42*+ 22",
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yi =2—322 4+ 2, yo=1-322+22*, y3=3—122% +4a2*,
di=d+1, d_i=d-1,
oy =1—2% 29=1-22% 1x3=1-322 24=1-42°
x5:1—5m2, x6:3—10$2, x7:—2—|—x2, x8:X1x2—2,

x9= (14 X1)9€2 —2, T19= X1(2x2 -1 -1, z11=-3+ 522

Appendix 1T

In this Appendix we shall prove the necessary and sufficient conditions needed
for the convergence of integrals (4.2).

Theorem 1. If the expressions M;,i = 1,2,3 (see Appendiz I) are nonzero
at each point x € [—1,1] then they are positive on the whole interval.

Proof. Expressions M;,: = 1,2,3 are continuous functions with respect to
x within the interval z € [—1,1]. On the other hand, M3(0) = 1 > 0. If one
supposes that there exists y € [—1,1] such that M3(y) < 0 then according to
the property of continuity there must exist a point at which the function is
equal to zero. But it is in a contradiction with the assumption of the theorem.
Thus, M3(x) > 0 for all x € [—1,1]. Because M»(1) = 1+ x1 = M3(1) > 0,
then using the same arguments we come to the same conclusion, namely,
Ms(x) > 0 for all z € [-1, 1]. Finally, because My = My + Ms, then M;(x) is
also positive for all x € [—1,1]. Thus, the theorem is proved. B

Now we are able to prove the necessary and sufficient conditions of the
convergence which are the contents of the following theorem.

Theorem 2 [Necessary and sufficient conditions of the convergence
of integrals (4.2)]. Ezpressions M;, (i = 1,2,3) are nonzero for each = €
[—1,1] if and only if the following conditions are satisfied:

i) x1€(=1,00);
”) X2 € (—l,oo);
iii) s € (— (VIF X1+ vIFx2)” o0)

Proof. First we prove that if expressions M; are nonzero for each z € [—1, 1]
then the conditions 7), i7), and i7) are satisfied. Suppose that the implication
is not true, i.e., expressions M; are nonzero and at the same time some of the
conditions 7), 4) and iii) are not satisfied. We shall show in items a), b), and
¢) that when the conditions for parameters x1, X2, X3 are not satisfied then
one comes to a contradiction.

a) Let us suppose that y; < —1. It is enough to take & = y/—1/x1, and it is
evident that 0 < v/—1/x1 < 1, therefore & € (0,1] C [-1,1]. But



340 E. A. Hayryan, E. Jurcisinova, M. Jurcisin, M. Stehlik

which is in contradiction with the assumption of the theorem.

b) Suppose that y2 < —1, then M5(0) = 1 + x2 < 0, and according to the
Theorem 1 it is in contradiction with the assumption of the theorem.

c) In the end, suppose that x5 < — (\/1 +x1+/1+ XQ)Q. Therefore,

2
X3+(\/1+X1+\/1+X2) <0.

At the same time, as was already proved in items a) and b), x1 > —1 and
x2 > —1. Take

NiE=v
0<i= X2 <1,&€(0,1)C[-1,1].
VI+xi+vV1I+xe

Then

V14 xe
VIHxi+vVIi+xe

VI+ X2 )(1_ VI+ X2 )
VI+xi+vVI+xe VIFxi+vVI+x2/’

and after some manipulations we have

My(d) = (14 x12°%) + (x2 +x32%) (1 —2%) =1+ x1

=+ <X2 + X3

B VI+xivT+xe [(\/1+X1 +¢1+x2)2+x3}
- (\/1+X1+\/1+X2)2

Thus according to Theorem 1 it is again in contradiction with the assump-
tions of the theorem.

<0.

M2($

Now we have to prove the second part of the theorem, namely: if the
conditions i), ii), and #ii) are satisfied then expressions M;, i = 1,2,3 are
nonzero for each x € [—1,1].

a) Suppose that the conditions i)—iii) are satisfied and, at the same time,
there exists a point Z from the interval [—1, 1] such that

Ms(i,x1) =1+ x12% = 0.
Because M3(0,x1) = 1 then & # 0 and

F 1
M@, y1) =1+ x132 =02 y; = S as-l

which is in contradiction with assumption ¢). Thus, Ms(x) > 0 for all
x € [-1,1].
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b) As in the previous case, suppose that conditions )—iii) are satisfied

and, at the same time, suppose the existence of Z € [—1,1] such that
M>(Z, x1, X2, x3) = 0. But

M0, x1,Xx2,x3) = L4+ x2 >0, My(£1,x1,x2,x3) = 14+ x1 > 0.

Thus, if M2 (%, X1, X2, x3) = 0 then & # OAT # +1. As aresult 7% € (0,1).
Then we have

Mo (%, x1, X2, X3) = L+ x12° + (x2 + x38%) (1 — 2?)

o [14+x1 14+x2
2
I) 1_52.2—’— 72

=i%(1- +x3| =0.

Because & # 0 A & # +£1 then

14+ x1 +1+X2
1— 722 72

+X3:07

which is equivalent to

1+x1 14+x2

1—32 72

X3 =

11+ ’;1 _ LA X2 ithin the
V14 xe

interval ¢ € (0,1) is obtained at the point t* = and
©.1) VI+xi+vV1I+xe

2
F#) = = (VIFa+ Vit
Therefore x5 < — (VI+ x1+vVI+ XQ)Q , which is in contradiction with

assumption ii). As aresult Ma(z) > 0 for every z from the interval [—1, 1].
It is evident that

Further, the maximum of function f (t) = —

its value is

M (z, x1, X2, X3) = Ma(2, X1, X2, X3) + Ms(x, x1)
and according to a) and b) one obtains
Ml($7X17X2aX3) = M2($7X17X27X3) + M3($7X1) >0

for all € [—1,1]. Thus, the theorem is proved.
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