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Abstract. The paper is devoted to the study of the Cauchy-type problem for the
nonlinear differential equation of fractional order 0 < o < 1:

(D34, w y)(x) = flr,y(x)] (0 <a<1),
(" To1 % v)(0+) =b, beR,

containing the Marchaud-Hadamard-type fractional derivative (Dgy , v)(x), on the
half-axis Ry = (0, +00) in the space X! *(R+) defined for o > 0 by

XPORy) ={ye XE(Ry): Dgy ,yeXE (Ry)},

where X? ((R4) is the subspace of X?(R.) of functions g € XZ(R) with compact
support on infinity: g(z) = O for large enough = > R. The equivalence of this
problem and of the nonlinear Volterra integral equation is established. The existence
and uniqueness of the solution y(x) of the above Cauchy-type problem is proved by
using the Banach fixed point theorem. Solution in closed form of the above problem
for the linear differential equation with f[z, y(z)] = Ay(x)+ f(x) is constructed. The
corresponding assertions for the differential equations with the Marchaud-Hadamard
fractional derivative (Dg, y)(x) are presented. Examples are given.

Key words: Keywords: differential equation of fractional order, Hadamard-type
fractional derivative, existence and uniqueness theorem, Mittag-Leffler function

1. Introduction

Let D, , be the Hadamard-type fractional derivative of order o > 0 on the
real half-axis Ry = (0, +o0) defined for z > 0 and p € R by:
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(Dg,. . F)(w) =z #6"ah (T30 f)(x), 6= m%, (n=1[a]+1), (1.1)

where Jy ,, is the Hadamard-type fractional integral

(T o (@) = FL / (3>N (ln f)a_l % (a0 2>0. 12

(@) x t t
0

When 0 < « < 1 the fractional operator (1.1) takes the form

(Dg,. . (@) = xl_“%ﬁ / (m %)ﬂ f(t)% 0<a<1). (1.3)

0

Hadamard-type fractional derivatives and integrals (1.1) and (1.2) were
introduced in [2]. There was proved the boundedness property for the frac-
tional integrals Jg , f in the space X? = X? (Ry) (c€ R, 1 <p < 00) of
Lebegue measurable functions i on R for which ||h||x» < oo, where

oo

. dt\1/p
e =( [1enop T 0 <p < o0,
0
Il = esssuplt[h(t)]
t>0

The semigroup property of the Hadamard-type fractional integral (1.2)
was proved in [3], Mellin transforms were studied and the formula of fractional
integration by parts was established in [4].

Hadamard-type fractional derivative (1.3) was investigated in [7], where
its representation was constructed in the form:

o0

(D5, ) = g [ P s e o

0

o) r t\ "/ x\-o-1 dt .

~Ti-a) /<;> (ln ;) [f(@)=F(O) 7+ F@) (0 <a <),
0

Such a form, called Marchaud-Hadamard-type fractional derivative, is more

natural on the half-axis R, than Hadamard-type fractional derivative D, ,.
In particular,

D3+, ,uf = D8+, ,ufa f € Xf (14)

We shall understand Marchaud-Hadamard-type fractional derivative as the
convergent integral in the following sense. Let

o0

(D 1 oDlo) = gy [ PO e g, )

€
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where 0 < a < 1, € > 0. Then by the definition

« 1 «
D0+,uf_ Eh_r,% D0+,u;6f’
(X2)

where the limit is understand in the norm of the space XP. Expression (1.5)
is called truncated Marchaud-Hadamard-type fractional derivative.

In this paper we apply the properties of the operators J3} , and Dg, ,
in the space X?(R) to study the problem of the existence and uniqueness of
a solution of the Cauchy-type problem for the nonlinear differential equation
of fractional order 0 < o < 1:

(Dgy, u 9)(@) = flz,y(@)] (0<a<1) (1.6)
on the half-axis Ry = (0, +00) with the initial condition
(x“j+ L Y)(0+) =0, bER. (1.7)

The notation (z*J; + % ¥)(0+) means that the limit is taken at almost all
points of the right-sided neighborhood (0,0 +¢), ¢ > 0, of x = 0:

(@ Toy 5 w)(0+) = Jm [z “(Jor 5 v)(@)]. (1.8)

First we give conditions for the equivalence of such a Cauchy-type problem
and of the nonlinear Volterra integral equation

F?a)x Finx)$t + ﬁ /01 <£>H (ln %)a_l flty(®)] % (1.9)

in the sense that if y(z) € XP(R,) satisfies (1.6) and (1.7), then it satis-
fies (1.9), and inverse. Then by using the Banach fixed point theorem, we give
conditions for the existence and uniqueness of a solution of the Cauchy-type
problem (1.6)—(1.7) in the space X?"¢"(R) defined for o > 0 by

y(z) =

X0o(Ry) ={y € X2(Ry): Dg, ,ye X! (Re)}, (1.10)

where X7 ((R.) is the subspace of X?(R,) of functions g € X?(Ry) with
compact support on infinity: g(x) = 0 for large enough = > R. In particular,
we consider the Cauchy-type problem (1.6)—(1.7) in the case =0

{(D3+ y)(x) = flz,y(@)], (0<a<1),

(1.11)
(Tor® y)(0+)=b, beR.

We also establish solution in closed form of the Cauchy-type problem for the
linear differential equation of fractional order

{(D8‘+ pU)(E) = Xy(@) + f(z), (0<a<l; AeR),

(@ Tor % v)(0+) =b, bER, (1.12)
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and give some examples in conclusion.

The paper is organized as follows. Section 2 contains preliminary results in-
volving properties of the Marchaud-Hadamard-type fractional derivatives (1)
and the Hadamard-type fractional calculus operators (1.2) and (1.3) on the
space XP(Ry). Section 3 is devoted to the equivalence of the Cauchy-type
problem (1.6)—(1.7) and of the nonlinear integral equation (1.9). Section 4
deals with the existence and uniqueness of the solution of the Cauchy-type
problem (1.6)—(1.7) and (1.11). Solution in closed form of the Cauchy-type
problem (1.12) is obtained in Section 5. Examples are given in Section 6.

2. Marchaud-Hadamard-Type Fractional
Integro-Differentiation

In this section we present some properties of the Hadamard-type fractional in-
tegral (1.2) and the Marchaud-Hadamard-type fractional derivative (1) which
will be used later. Let y§ (y € R, a > 0) is the truncated power function |9,
(1.100)]

y-oll- =y*, y>0, y?f- =0, y<O0. (2.1)

The following properties of fractional integration operator J, , and dif-
ferential operator Dg +, ,, in the space X? are known.

Lemma 1. [2, Theorem 4(a)] If 1 < p < oo, c € R, a > 0 and px € R, then
for 1> c, the operator Jg. ,, is bounded in XP(R,) and
1780 o Fll e < Callfllxzs €= lu—d™™. (2.2

Lemma 2. [3, Theorem 1(a)] Let 1 < p < oo, and let c € R, a > 0,8 > 0
and p € R. If u > ¢, then the semigroup property

(T8, Ty uD)(@) = (T 0 () (@>0,8>0) (2.3)
holds for f(x) € XP(R4).

Lemma 3. [6, Theorem 2] Let0 < a < 1,1 <p< oo, u 20, c € R andu > c.
Then for f(x) € X?(Ry) there holds

(Do, wTo%, u ) (@) = [ (). (2.4)

Hadamard-type fractional integration and differentiation of the truncated

power-logarithmic function z~#(In x)ifl yield a function of the same kind.

Lemma 4. Let 0 < aw < 1, 8 > 0, u € C. There hold the following formulas:

(Tt 0002 Y) (0) = s )2 (2)
(D5, t ()] ) (@) = %x_“(ln )t (2.6)

In particular, for f =«

(173;, Lt (In t)i—l) (z) = 0. (2.7)
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Proof. Using (1.2) with f(x) = 2z #(In a:)i_l and taking into account (2.1)
we have

x

(jooff, u t_“(hlt)i_l) (x) = ﬁ(:) 1/ (1n%)a71 (Int)P—1 %

Then making the change of variable 7 = Int/Inx, we obtain

- e
(760, w7 ) (@) = o7 (ma o —— 2 /O (1—7)* "7 dr,

which yields (2.5) in accordance with the known relations for the beta— and
gamma—functions [5, 1.5(1) and (1.5.5)]. (2.6) is deduced from (1.1) with
f(z) =2 #(In x)ifl by the use of the formula (2.5), in which « is replaced by
1 — «, and by direct d—differentiation. (2.7) follows from (2.6), if we take into
account that the gamma function I'(z) has poles of first order at the points
z=0,-1,-2,...[5, 1.1(7)-1.1(8)]. Thus lemma is proved.

Let AC[a,b]be a class of functions absolutely continuous on [a,b] [9, § 1.1].
For neN, peR and 6=2D (D=d/dz) in [8] there was denoted by ACY. [a,b]
a class functions g(z), such that z*g(x) has é—derivatives up to order n — 1
on [a,b] and 6" {xtg(x)] € AC[a,b]. In our case on the half-axis Ry with
0 < o < 1 the definition takes the form

AC5,(Ry) = AC,(Ry) = {h: Ry — C :a2"h € AC(Ry), p € R}.
Thus, the class AC,,(Ry) coincides with the class of Lebegue primitives
functions for «* f(x):

x

f(z) € ACL(Ry) & 2 f(x) = c+ /@(t) dt, () € L(Ry). (2.8)
0

Let consider the composition of fractional integration operators Jg ,, and
differential operators Dg, ,.

1
Theorem 1. Let 0 <a< 1, peR, p 20, ceR, u>c, 1<p<— and let
@

(Jolgaﬂy)(m) be the Hadamard-type fractional integral (1.2). If y(z) € XP(R,)
and (jolgo‘uy)(x) € AC,(Ry), then there holds

(#"(Tor5 v)(@)) (0+)
I'(a)

z*(Inz)2 ", (2.9)

(T, w Do+, u ¥)(2) = y(x) - ¢

where, by analogy to (1.8), (z"(Jy; % y)(x)) (0+) means that the lLimit is
taken at almost all points of the right-sided neighborhood of x = 0.
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Proof. By (2.8), the function (J,; 0+ Y)() can be represent in the form:

dt

T @) = (T 1)) (04) + /6#‘ i) 5

— (@ 1)) <o+>+w“/(§) D5, 0)(O%
0
= (@ (T D) (04) + (T Dy 1) (@) (210

Using the directly verified equality

x

/(m%)7(1walif_ru—aﬂx®, (2.11)

0

where (In t)(j_*l is the truncated power function (2.1), from (2.10) we have

(2" (Jos w) (@) (0+)

(T ) = o)
% x”/ <£)M (ln %) - tH (1nt)3‘_71 % + 95”(«701+7 w Doy, wy) (@)

0

- TN O o 7m0 e o

+5CH(~70+ % T5, u Do, ) (@).

Hence

Qf‘u 11—« T 0 o
AN u( (@) = (T4 u Doy pu9) (@) = ( (jO+F§th)( . +)x7“(lnfv)+ 1) -

In accordance with the theorem on inversion of the Hadamard-type fractional
integral (1.2) in X7 [6, Theorem 2], we deduce that Jg' ,» =0, p € X7, if
and only if ¢(¢) = 0, thus we obtain formula (2.9). B

3. Equivalence of the Cauchy-Type Problem and of the
Volterra Nonlinear Integral Equation

In this section we prove that the Cauchy-type problem (1.6)—(1.7) and the
nonlinear Volterra integral equation (1.9) are equivalent in the sense that if
y(x) € XP(R;) satisfies one of these relations then it also satisfies another
one.
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1
Theorem 2. Let 0 < a < 1, p € R, p 20, ceR, p>¢, 1 <p<—.

a
Let G be an open set in R and let f : Ry x G — R be a function such that
f(z,y) € XZ ((Ry) for any y € G. If y(x) € XP(Ry), then y(z) satisfies
a.e. the relations (1.6) and (1.7) if and only if y(x) satisfies a.e. the integral
equation (1.9).

Proof. First we prove the necessity. Let function y(z) € XP(R,) satis-
fies (1.6) and (1.7). If f(z,y) € X? ((Ry) for any y € G, then f(z,y) also
belongs to the space X lﬁ(RJr). Indeed, using Holder’s inequality we have

|
I£1x; = //|x“ ')l do —-j/Ix T |

. 1/p l/p’
<(/uﬂm (=)
0

0

where p’ = p/(p—1) and (¢ — p)p’ +1 < 1,since 0 < o < 1, g > ¢ and
1 <p<- . From here and from the definition of the space X! (R ) it follows,

that ||f||X1 < oo, that is f(z,y) € X)(Ry). So the equatlon (1.6) means
the existence of the fractional derlvatlve Dg, , € X)(Ry) on the half-axis
Ry. Then by (1.1), (1.4) and (2.8) (JJr W)z ) € AC,(Ry), and hence we
can apply Theorem 1. Applying the operator 7, , to both sides of (1.6), us-
ing (2.9), (1.7) and Lemma 1 we obtain equation (1 9), and hence the necessity
is proved.

Now we prove the sufficiency. Let y(x) € XP(R,) satisfies a.e. the equa-
tion (1.9). Applying the operator Dg, , to the both sides of (1.9) and us-
ing (2.4) and (2.11) we come to equation (1.6).

Now we show that the relations in (1.7) are also valid. For this we apply
the operator jolJ;‘L to both sides of (1.9). Then using (2.3) and (2.11) and
taking a limit as * — 0+ a.e. we obtain relation (1.7). Thus sufficiency is
proved which completes the proof of the theorem.

When g = 0, from Theorem 2 we obtain the corresponding results for the
Cauchy-type problem (1.11). B

1
Theorem 3. Let 0 < a < 1, ceR, ¢ <0, 1<p< —. Let G be an open set

!

inR and let f: Ry x G — R be a function such that f(z,y) € Xg o(Ry) for
any y € G. If y(z) € XP(Ry), then y(x) satisfies a.e. the relations (1.11) if
and only if y(x) satisfies a.e. the Volterra integral equation

y(z) = I’E)a) (lnx)i_1 + ﬁ /Ow (ln%)(%1 It y(t)] %
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4. Existence and Uniqueness of the Solution of the
Cauchy-Type Problem

In this section we establish the existence of a unique solution of the Cauchy-
type problem (1.6)—(1.7) in the class X*” (R ) under conditions of Theorem 2
and an additional Lipschitzian condition on f[z,y(z)] with respect to the
second variable: there exists a constant A>0 such that, for all z€R, and all
Y, y1 CGER, we have

[z, y(@)] = fle, pu(@)]] < Aly(z) —yi(2)] (A >0). (4.1)

To prove the existence and uniqueness of a solution of the Cauchy—type
problem (1.6)—(1.7) we use the Banach theorem of fixed point of contracting

mapping [1].

DEFINITION 1. The mapping [ : (X, px)—(X, px) is contracting, if there
exists a constant 0<a<1 such that for any x;,x2€X there holds

p(f(x1), f(22)) < ap(z1, 22).

Thus, contracting mapping is a mapping satisfying Lipschitzian condition
with a constant a<1. Such a mapping is always continuous and uniformly
continuous.

Theorem 4. (Banach) A contracting mapping has one and only one fized
point in a complete metric space.

Corollary 1. Successive approximations z,=f(x,—_1) (nR€N) converge to the
fixed point a of mapping f for any initial approximation zy. Moreover, the
following error estimate is valid:

mn

“—p(wo, f(a0)) (neN).

ns S
p(tn,a) <

1
Theorem 5. Let 0 < a <1, p e R, p 20, ceR, p>c¢, 1 <p< —.

a
Let G is an open set in R and let f : Ry x G — R be such function that
f(x,y) € XL o(Ry) for ally € G and condition (4.1) and the inequality

Alp—co) <1 (4.2)

are satisfied. Then there exists a unique solution y(x) of the Cauchy-type prob-
lem (1.6)~(1.7) in the space X' ;' (Ry).

Proof. First we prove the existence of a unique solution y(z) € XP(R,).
According to Theorem 2 it is sufficient to prove the existence of a unique
solution y(z) € XP(R4) of the nonlinear Volterra integral equation (1.9). For
this we use the Banach fixed point Theorem 4 for the space X?(R;) which is
the complete metric space with the distance
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d(y1,y2) = ly1 — vallxz = (/ [t°(y1(t) — y2(1)) [ ﬂ)l/v.
0

t

We rewrite the integral equation (1.9) in the form y(z) = (Ty)(x), where T
is the operator in the right-hand side of (1.9):

@)@ =w+ s [ (L) WD) Aol S @y

x
with
b

I(e)

Let now show that the operator 7" maps the space XP?(R,) into itself. If
y(x)eXP(R,), then it is sufficient to prove that (T'y) (z) € XP(R). It follows
from (4.4) that yo(z) € XP(Ry). Since f(z,y(x)) € X! o(Ry) C XP(Ry),
then by Lemma 1 the integral in the right-hand side of (4.3) also belongs to
the space X?(Ry), and hence, (Ty) (z) € XP(R4).

Now applying Lemma 1 and using the Lipschitzian condition (4.1) for all
y1(x), y2(z)eXP(Ry), we have:

3@ ~ T e
| [ () @) o) s mon

< (p =) 1ty (D] = f1t y2 (O]l xp (my

<A =) [lyr(8) = v (D)l xr (s, ) -

yo(z) = 7 #*(In gc)‘j‘r*l. (4.4)

X (R+)

In accordance with (4.2) and Theorem 4 there exists a unique function
y*(x)eXP(Ry) such that (Ty*)(x)=y*(z), and hence of the integral equa-
tions (1.9).

By Theorem 4, the solution y* is a limit of a convergence sequence
(Ty5) (2):

T[T (@) — 7 (@) ey =0, (4.5)

where y§(z) is any function in X?(R,). If b # 0 in the initial condition (1.7),
we can take y4(z) = yo(z) with yo(x) defined by (4.4).
By (4.3) the sequence (T™yg)(x) is defined by recurrent formulas

@i = i) + = [ (L) (0E) s
(m=1,2,...).

If we denote yn,(x) = (T™ys)(x), then the last relation takes the form

@)=+ [ (L) (03)" a0 =2,

a T t t
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and (4.5) is rewritten as

lim |y () — 4" (@) xzry) = 0. (4.7)

m—0o0

This means that we really apply the method of successive approximation to
find a unique solution y*(x) of the integral equation (1.9) on R.. Thus, there
exists a unique solution y(z)€XP?(R;) of the Volterra integral equation (1.9),
and hence of the Cauchy-type problem (1.6)—(1.7).

To complete the proof of theorem we show that such an unique solution
y(z) € XP(R) belongs to the space X" "(Ry). In accordance with (1.10),
it is sufficient to prove that (D, ,y) (z)eX? ((Ry). By (1.6) and (4.1), we
have:

D5y, wym = Doy, | e < NFIEym] = FIE 9l xr < Allym — vl xe-

Thus, by (4.7)
lim ||Dg, ,ym— Dg,. Ny||X§ =0,

m—00

and hence (D, ,y)(z) € XP(Ry). It follows from equation (1.6) and the
definition of the space X? ((R;) that (D, ,y)(x) = 0 for large enough
x> R. Then, (D§, ,y) (x)eX! o(Ry). This completes the proof of theorem.

When p = 0, from Theorem 5 and Theorem 3 we obtain the corresponding
results for the Cauchy-type problem (1.11). B

1
Theorem 6. Let 0 < a < 1, ceR, ¢< 0,1 <p< —. Let G is an open set
Q

i R and let f: Ry x G — R be such a function that f(z,y) € X7 ((Ry) for
all y € G and the condition (4.1) and the inequality

A(—o)™* < 1 (4.8)

are satisfied. Then there exists a unique solution y(x) of the Cauchy-type prob-
lem (1.11) in the space X' ;" (R+).

5. Solution of Cauchy-Type Problem for Linear
Fractional Differential Equation

In this section we show that solution in closed form of the Cauchy-type prob-
lem (1.12) is expressed in terms of the Mittag-Leffler function E, g(z) defined
for complex z € C and positive « > 0 and 8 > 0 by [1, Section 18.1]

Eop(z) = kzzo Tk T ) (5.1)

By Theorem 2, if f(x) € Xg o(R4), then solutions of the Cauchy-type
problem (1.12) and of the linear Volterra integral equation
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y(m)zpfa)x_#(lng;)i1+ﬁ/;(£)#(m%)a1[/\y(t)+f(t)]% (5.2)

are equivalent.
Further, the condition (4.1) is fulfilled with A = |\| and the condition (4.2)

takes the form
[Al(p —¢)7* < 1. (5.3)

Thus, if this condition is satisfied, then, in accordance with Theorem 5, the
Cauchy-type problem (1.12) has a unique solution y(z) € X2 ¢"(Ry). We find
the explicit form of this solution following the proof of Theorem 5.
First we consider the homogeneous Cauchy-type problem (f(x) = 0):
(Do4, p (@) =dy(z) (0<a<l; AeR), (54)
(xHjOl-‘:,ay y)(0+) = b’ be Ra

corresponding to (1.12). By the definition (1.2), we rewrite the relations (4.6)
in the form

Ym () = yo(x) + )\(Jooj,_, u Ym—1)(x) (m=1,2,...), (5'5)

where yo(z) is defined by (4.4). Using (5.5) with m = 1 and (4.4) and tak-
ing (2.5) into account, we have

1
(@)

y1(@) =yo() + AT5},  vo)(x) = bz ™" [F (Inz)}"+ (nz)2t|,

A
I'(2a)

k
(e) = ola) + AT, (@) = ba ™ 3 s (e,
k=0

Continuing this process, we find
m )\k hot .
m(x) =bax™" — (1 era= =1,2,...).
(o) = b et )

Taking a limit, when m — oo, and applying (5.1) we obtain the solution of
the Cauchy-type problem (5.4):

y(z) =bz *(Inz)* 'Es o (AInz)g). (5.6)

Now we consider the nonhomogeneous Cauchy-type problem (1.12) In this
case the relations (4.6) take the form

Ym(x) = yo(x) + AMTeY, p ym—1)(2) + (T, (@) (m=1,2,...).
Similarly to the above we deduce

m—1

m )\k
by M A akta—1 k ak+a _
Yo (@) = bz kZ:OF(akW)(m)* +kZ:0)\ (TeELef) () (m=1,2,...).
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Taking a limit, as m — oo, making the change of order of summations and
integration, we obtain the explicit solution of the problem (1.12) in the form

y(x) = br (0 2)? " By o (MIna)})

n /O‘T (é)p (m%)o‘_lEa,a ()\ (m%)a) £(1) %. (5.7)

It is clear tat solution (5.7) belongs to the space X" "(Ry ). It is directly
verified that y(z) in (5.7) yields the explicit solution of the integral equa-
tion (5.2) and hence of the boundary value problem (1.12). Since by the the-
ory of Volterra integral equations of the second kind (for example, see [9]) a
solution of the Volterra integral equation (5.2) is unique then condition (5.3)
can be omitted. From here we deduce the result.

1
Theorem 7. Let 0 < a <1, p e R,AER, 20, ceR, p>c, 1 <p< —

a
and let f(x) € X! o(Ry). Then the Cauchy-type problem (1.12) is solvable in
the space X" " (Ry.). Its unique solution is given by (5.7), and the solution of
the corresponding homogeneous Cauchy-type problem (5.4) has the form (5.6).

Theorem 7 with 1 = 0 yields the following assertion.

1
Theorem 8. Let 0 < a < 1, A € R, ceR, ¢ < 0,1 <p< o and let
f(x) € X¥ o(Ry). Then the Cauchy-type problem
(DG, ) (@) = Ay(z) + f(z) (0<a<l; AeR),
(@"Tor." 9)(0+) =b, DER,

is solvable in the space Xﬁ’g‘(RJr), and its unique solution is given by

y(z) = b(In2)? "By (A(nz)g) + /01 (1n%)ailEa,a ()\ (1n§)a) I ﬂ

t

The solution of the corresponding homogeneous Cauchy-type problem for
the equation
(DGy y)(x) = Ay(x) (0 <a<l; AER),

with the initial conditions (5.8) has the form

y(z) = b(lnz)$ "By o (A(In x)%).

6. Examples

In this section we give examples of solution y(z) of the Cauchy-type problem
for linear differential equations of fractional order (1.12).
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Example 1. The Cauchy-type problem for the inhomogeneous linear dif-
ferential equation of fractional order 1/2:

(D2, 9)(@) = My(@) + f(2), (@ T L20)(04) =b, bER,

has the unique solution y(z) € X7 *(R4) given by

ylw) = be (I 2); 2 Bryn o (A (n)?)

+ /Or (é)u (m%)_m By o <)\ (m%)”Q) f(t)%.

The solution of the corresponding homogeneous Cauchy-type problem
1/2 1/2
(D, (@) = My(2), (@ T2, 9)(04) =b, bER,
has the form

y(z) = bac*“(lnx)ll/QEl/z,l/g ()\ (lnx)i/z) ,

where the Mittag-Leffler function E /51 /2(2) is given by (5.1).

Example 2. We consider the linear fractional differential equation of frac-
tional order 0 < a < 1

(Doy y)(@) = Ay™(x) (AR, A#£0). (6.1)

It is directly verified that this equation has the exact solution
I'l-a) .
= — 1 @ ]_ .2

and this solution belongs to the space X? (R, ). In this case the right-hand
side of the equation (6.1) takes the form

ool = 5 | =g | oz

and this function is, generally speaking, does not belong to the space X 3 o(Ry).
If we suppose that 2« < 1, then the right-hand side of the equation (6.1)

belongs to the space X/ (R ) and, since a + (3 < 2a+ 3, then o+ 3 < 1 and

the equation (6.1) has the exact solution (6.2) which belongs to X7 (R4).
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