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Abstract. In this paper we deal with the boundary value problem for the sta-
tionary flow for Newtonian and incompressible fluid governed by the Navier-Stokes
equation with slip boundary conditions of friction type, mostly by means of varia-
tional inequalities. Among others, theorems concerning existence and uniqueness of
weak solutions are presented.
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1. Introduction

In hydrodynamics and in mathematics, extensive study has been done so far
for the motion of incompressible fluid which is governed by the Stokes or
Navier-Stokes equation (for example, see [7, 12]). As to the boundary con-
dition, almost all of these works have dealt with the non-slip condition to
the surface of a rigid body, namely, with the Dirichlet boundary condition.
This approximation is consistent with the nature of such fluids and walls.
However, there exist some flow phenomena, modelling of which might require
introduction of slip and/or leak boundary conditions in reality or apparently
(or metaphorically). Examples are flow through a drain or canal with its bot-
tom covered by sherbet of mud and pebbles, flow of melted iron coming out
from a smelting furnace, flow through a net or sieve, flow through a filter, and
water flow in a purification plant etc.

Furthermore, among these phenomena there are those cases where the
non-trivial movements, say leak or slip, take place only when magnitude of
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the stress at boundary surpasses a threshold. Also, the slip boundary condition
was frequently used in free boundary problems containing dynamic or static
contact lines, see [2, 8, 9, 11].

In this paper, we restrict our consideration to the flow governed by the
Navier-Stokes equation with slip boundary conditions of friction type where
the transition from the trivial adhesive state to a non-trivial movement on the
boundary depends on the magnitude of the total stress there. One reason of
such restriction is our intention to focus on the characteristic difficulties caused
solely by the slip boundary conditions of friction type and also the influence of
inertia terms to generalize the results obtained by H. Fujita and H. Kawarada
in [5]. The study of the Navier-Stokes equation with leak boundary conditions
of friction type will be considered in a forthcoming paper [10].

The paper is structured as follows. In Section 2, we describe our problem,
including the definition of the slip boundary conditions of friction type. Some
preliminaries concerning the functional space framework and the bilinear-
trilinear form are introduced in Section 3. In section 4, the weak formulation in
variational terms of inequality of the second kind and main results are stated.
The final Section 5 is devoted to the proof of the main theorem concerning
the existence and uniqueness of weak solutions.

2. Description of the Problem

We consider fluid motions in a bounded domain {2 in RY (N = 2 or 3). We
suppose that the boundary 92 = I" of {2 is composed of two separate portions
(connected compact components of I') Iy and 7.

As mentioned in Section 1, throughout the present paper we deal with the
stationary flow governed by the Navier-Stokes equation which is written in a
familiar form as follows.

{—VAu+p(u -V)u+ Vp=f,

div(u) = 0. (2.1)

Here, u = (u;)i=1,....n is the velocity field, p the density, p the pressure, f the
external force. The positive constant v stands for the kinetic viscosity.

The boundary condition is prescribed on the part of the boundary where
the fluid adheres to the wall:

u=0 on [y. (2.2)

In the remaining part of the boundary we assume a slip boundary condition
of friction type on I (see [4]):

u, =0, —or€ g8|u7| onl. (2.3)

Here, g is a given positive functions, v, = v -n and v, = u — u,n are
the normal and tangential components of the velocity, respectively, where
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n = (n;)i=1,.. n is the outward unit normal on the boundary I, o, = o-(u)
denotes tangential components of the stress vector (the precise definitions will
be recalled in Section 3); and finally J|z| with z € RY denotes a graph

i, if 2 #£0,
9z = { |7l (2.4)
{aeRYN, |a|<1},ifz=0.
Remark 1. Notice that the second condition of (2.3) is equivalent to
|0’T‘ <g, JT-uT+g|uT|:0 on I7; (2.5)
which implies that, for arbitrary smooth v,

or (v —us) +glvr —us| >0 on I

The purpose of this paper is concerned with the slip boundary value problem
of friction type, which is composed of (2.1), (2.2) and (2.3). This problem
appears in modelling of blood flow in a vein of an arterial sclerosis patient
and in that of avalanche of water and rocks [4].

3. Preliminaries

3.1. Notation

The deformation tensor e(u) = (e;;(v)) and stress tensor S(u,p) = (S;;(u,p))
associated with a velocity field u = (u;) and pressure p are denoted by

o 1 6ui 5Uj - y y
eij(u) = B} (3xj + 83:1') and S;;(u,p) = —pdi; + 2vei;(u),

respectively, where J;; denotes Kroneker’s delta. The stress vector o(u,p) is
defined by o(u,p) = S - n of which the i-th component is Zf;l Sij(u, p)n;.

In general, the normal and tangential components of a vector field u are
given as u, = u - n and u, = u — uyn, respectively. In particular,

on(u,p) =0(u,p)-n and o;(u)=oc(u,p)—on(u,p)n

are the normal and tangential components of the stress vector, respectively.
We will use the L?({2) space and usual Sobolev space H!(2). We put

Li(02) = {qELQ(Q); /qux:()}.

We write [|.|[1, instead of ||.|| g1 (g).

We also use the Sobolev space H*(I})) defined on the boundary Iy, where
s € R. We write |.|[s,r, = |I-[l#=(ry)- H°(I0) is understood as L*(Ip). The
surface element of I} is denoted by ds, that is
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2, = / Inl? ds.
Iy

We write (., ) = (., -)LQ(Q) and (., ')FO = (., -)L2(F0)-

Let Tr be the trace operator from H'(£2) into Hz(I}). Then the trace
Tr v on Iy of v € H'(§2) is denoted by v|r,. If it is clear from the context, we
will not distinguish v from v|p,. The meaning of v|p, is similar.

In general, for a Hilbert space X, the adjoint space is denoted by X*, and

XN denotes the set of vector v = (vy,...,vn),v; € X. For vector functions,
we use same symbol to indicate their inner product and norm; (., .)x = (.,.)x~
and ||.|[x = ||.||x~. We use closed subspaces of (Hl(.Q))N

U= {U e (Hl((z))N, ol = o}, V= {v e U, vnlp, = o},
Va= {v eV, div(v) =0in _Q}

The norm ||.||; is equivalent to Dirichlet’s norm ||V.|| in U by Poincaré’s
inequality. We shall not emphasize this in what follows.

Let ¢ be a proper (1) #Z oo) lower semi-continuous convex function defined
on RY. Then, for any z € RY, 9¢(z) denotes the set

() ={heRY; v()—v(z)>h-(2'—2), Vz'eR"},
which is called the subdifferential of ¥ at z. It is easy to see that the right-hand
side of (2.4) coincides with 9 (2), when ¥(2) = |2| for z € RV.

The symbol C; (i = 1,...) denotes various generic constant depending
only on (2.

3.2. Bilinear and trilinear forms

We introduce a bilinear form on U x U defined as
a(u,v) = 2/ eij(u)ei;(v)de, Y(u,v) € U x U.
Q

Here and hereafter the summation convention is employed. Clearly a is con-
tinuous on U x U:

la(u,v)| < Cillully o]y, V(u,v) €U x U. (3.1)
a is coercive on U x U, that is:
a(v,v) > Co|jv||3, Yo €U. (3.2)

In fact, (3.2) is a consequence of Korn’s inequality (for example, see [3]).
Now, we introduce a trilinear form on U x U x U defined as

b(u,v,w) = ((u-V)v,w) = uz%w] dz, Y(u,v,w)eUxU xU,
fo) i
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here b is continuous on U x U x U, that is:
|b(u,v,w)‘ < Csllull1 |v|1 Jw|l1, Y(u,v,w)eUxUxU (3.3)
and anti-symmetrical on V; x V; x Vy:
b(u,v,w) + b(u,w,v) =0, VY(u,v,w) € Vyx Vg x V. (3.4)

We shall also use a continuous bilinear form on U x L?(2)

c(v,q) = — /Qq div(v)dz, Y(v,q) € U x L*(2).

3.3. Green’s formula

If a smooth vector field v and a smooth scalar field p solve (2.1), then by
integration by parts,

va(u, ) + pblus, u, @) + (i, p) = /6 _oepdst (L) Vee (@)

In particular,
valu,9) + pblu,u,p) + ) = [ onpodst (fig), VU (39)
I

Variational inequality (4.2) which will appear in the subsequent section is
based on this identity and the definition of subdifferential.

4. Weak Formulation and Main Theorem

We introduce a friction functional as
. 1 N
i) = [ ainds, e (rhr)”. (1)
We now state the variational formulation of (2.1)-(2.3).
Problem 1. Find v € V and p € L?({2) satisfying Vv € V
l/CL(u, ’U—U) + pb(uyuav_u) + C(U_u7p) +J(UT) - ](UT) 2 (fa U= U), (42)
c(u,q) =0, Vg€ L*().

Since the functional j is not differentiable, a variational inequality appears.
In order to state the main result of this paper, some assumptions are
presented. We suppose that the following assumptions hold:

ToNnTy =0, Iy #0; (4.4)
gEH%(Fl), g > 0a.e. on I7; (4.5)
fe ). (4.6)
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Let B(0, R) be the ball of V; defined by
B(0,R) ={¢€ Vg |i¢lh < R},
where R is a positive constant that we will specify in the following theorem.
Theorem 1. If we assume (4.4)—(4.6) and
v > pRC5/Cy, (4.7

Then there ezists a solution (u,p) € V x L%(£2) of Problem 1. Moreover, u is
unique in B(0, R) for all
B> |[f]l/(vC2) (4.8)

and p is also unique up to an additive constant. In particular, p such that
(p,1) = 0 is unique.

The proof of this theorem is based on the reduction of Problem 1 to a
problem for a velocity. Then, the result of the existence and uniqueness of the
velocity is shown by application to the Banach fixed point theorem. To give
the pressure, we use the equivalence results between the problems employed.

5. Proof of Theorem 1

5.1. Existence and uniqueness of u

When we restrict test functions in (4.2) to divergence free functions, we obtain
another weak formulation which does not involve p.

Problem 2. Find u € V; such that
va(u,v —u) + pb(u, u,v — u) + j(vs) — jlurs) > (f,v—u), Yve Vg

We now consider the following auxiliary problem:

Problem 3. Given | € Vy, find u' € V; such that
va(u',v—u') + pb(l,u', 0 —ul) + j(v:) = j(ul) > (fio—dl), VueVy, (5.1)
For this problem we have the following result.

Proposition 1. If we assume (4.4)—(4.6), then there exists a unique solution
ul € V; of Problem 3.

Proof. From (3.1), (3.2), (3.3) and (3.4), we have
|va(u,v) + pb(l,u,v)| < (vCy + pCslll]]1) Jull1 [[v]|1,  V(u,v) € Vg x Vg,
‘Va(u,u) + pb(l,u,u)‘ = ‘Va(u,u)| > vCy||lul|?, VYue Vg

Then the bilinear form (u,v) — va(u,v) + pb(l, u, v) is continuous and coer-
cive on Vy x V. Moreover, j is a proper, convex, and lower semi-continuous
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functional on V. Then the existence and uniqueness of u' € V; satisfying

the variational inequality of the second kind (5.1) is well known and follows
from [1, 6]. B

To solve Problem 2, we use the Banach fixed point theorem. For this, we
introduce the mapping A : V; — V; defined by

I — A(l) = !,
where u; € B(0, R) is the unique solution of Problem 3.

Proposition 2. Under the same assumptions as in Theorem 1, there exists
a unique solution u € B(0, R) of Problem 2 for all R defined by (4.8).

Proof. We will determine R such that A sends B(0,R) in B(0,R). Let | €
B(0,R) and u! = A(l) € Vy such that (5.1) hold. Taking v = 0 € V; in (5.1)),
we have

va(ul,ul) + pb(l,ul, ut) 4+ j(ub) < (f,ub).

From (3.4) and the fact that j(ul) > 0, we obtain
va(ul,ul) < (f,ub).
Using (3.2) and Cauchy-Schwarz’s inequality, we deduce that
1A = 'l < £/ (vCo).

It is thus enough that R satisfied (4.8) so that A(B(0,R)) C B(0, R). Let us
show that the mapping A is strictly contracting on B(0, R) for a particular
choice of the viscosity v. Let I, € B(0, R) and

ul = A(ly), u'2 = A(ly) € B(0, R)

such that
va(u', v —u't) + pb(ly,u't, v — ult) + j(vy) — julr) > (f,v —u'), Yo eV,
va(u'?, w —u'?) + pb(la, u'?,w — u'2) + j(w,) — j(u'2) > (f,w — u'?),Yw € V.
Taking v = u'2 and w = u*, we obtain

vaul u — ult) + pb(ly, ult, 't — ) + j(ul2) — j(ult) > (f,u’* — uh),

va(u'?, u — u'2) + pb(ly, u'?, u' —u'?) + j(ul) — jul2) > (f,u* —u'?).
By addition and from (3.4), we have

va(ul —u'2 uh —ul2) < p[b(ll,ull,ul2 —ult) = b(ly,u'2, uh — ulQ)}

= pb(ly — Iy, ul ul2 — ™).

Using (3.2) and (3.3), we obtain
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pRCs
I/CQ

[ A() = A(l) ||, = llu" =’y < 11 = lafl1-

Therefore the mapping A is Lipschitz continuous on B(0, R), and it will be
strictly contracting if pRC3/(vC2) < 1. So if condition (4.7) is realized, then
by the Banach fixed point theorem, we have the existence and uniqueness of
a solution u € B(0, R) of Problem 3. W

5.2. Existence of p

We introduce the following problem:

Problem 4. Find u € V; and p € L?({2) such that

va(u, ) + pb(u, u, ) + c(p,p) = (f,¢), Vo € (HI(2)", (5.2)

u satisfies the slip boundary conditions of friction type (2.5).
We have the following proposition.

Proposition 3. Problem 1 and Problem 4 are equivalent.

Proof. Let (u,p) € Vg x L?(£2) be a solution of Problem 1. Then substituting
into (4.2) v = u =+ ¢ with ¢ € (H(£2))", we have

va(u, £¢) + pb(u, u, ) + c(+p,p) = (f, £),
thus (5.2) is satisfied. Now we will verify that w satisfies the slip boundary
conditions of friction type (2.5). Using Green’s formula, we can rewrite (4.2)
as follows
/ or - (Ur —ur)ds+j(vr) —jlur) >0, YveV. (5.3)
Iy

Putting v = u + ¢ with ¢ € V and substituting it into (5.3), we obtain

/O",--QO‘,-dS—F/ 9(lur + 7| — |ur]) ds > 0. (5.4)
Fl Fl

It follows by means of an elementary property of |.| that

—/ UT-gonSS/ gler|ds. (5.5)
Fl Fl

In view of the inequality (5.5) with ¢ replaced by —¢ and of the original
inequality (5.5), we have eventually

/O’T'(pTdS S/ glpr| ds.
Fl Fl

This implies that functional o, on H2 (I'}) can be extended by continuity to
a bounded functional on the Banach space




Slip Boundary Problem for the Incompressible Navier-Stokes Flow 397

XzL},(m:{g; / g|§|ds<+oo} with [l = [ oields

and that its functional norm < 1. Since the dual space X* of X can be
identified with the Banach space

e qoormn o 1€(s)]
X*=L;](h) = {5, ess.sgp o(5) < —i—oo}
with
€l = ess.sup £
I g(S)

we have o, € Lg°(I'1) with its norm < 1, namely, we have |o,| < g almost
everywhere on I, obtaining the first relation of (2.5). Then, putting ¢ = —u

in (5.4), we have
—/ O'T.UTdS—/ glur|ds >0,
Fl Fl

by using the first relation of (2.5), we get

/ (O’T.u-,— + g|uT|) ds =0
Iy

and hence o - u, + g|u,| = 0 almost everywhere on I'; as desired.
Let (u,p) € V4 x L%(£2) be a solution of Problem 4. It suffices to verify
(4.2). This is immediate in view of (2.5) and (3.5), as

va(u,v —u) + pb(u,u,v —u) + c(v — u,p) + j(vr) — jlur) — (f,v — )

:/ UT'(UT—UT)dS+j(UT)_j(uT)
In

:/ (UT-UT+g|UT|)dS—/ (o7 - ur + glus|) ds
Iy

Iy
:/ (UT-UT+g|1}T|) ds > 0.
Iy
|

Proposition 4. Let u be a solution of Problem 2. Then there exists p € L?(2)
such that (u,p) solves Problem 1. Moreover, p is unique except for an additive
constant. In particular, p such that (p,1) = 0 is unique.

Proof. Let u be a solution of Problem 2, we prove as in Proposition 3 that
w is the solution of the following problem:

Problem 5. Find u € V; such that

va(u, ) + pb(u,u, ©) = (f,9), Ve € (Hy 4(2)",

and v satisfies the slip boundary conditions of friction type (2.5). Here,

HE 4 (02) = {v € H:(Q); div(v) =0in Q}
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In particular, u satisfies

8ui

/Q [— 2u8i(e¢j (u)) + pujaTj _ fl} s da = 0,

Zj
N
Vo € {v c (D(Q)) . div(y) =0in Q}.
Then it is well-known (see [12]) that there exists p € H~!(2) such that

du; _ Op
fi= Iz,

_QVi (ei5(w)) + pu; a.e.in 2, i=1,...,N. (5.6)

8xj 833j B

Multiplying (5.6) by any ¢ € (Hg(£2))" and using Green’s formula, we show
easily that (u,p) is solution of Problem 4. According to Proposition 3 we
deduce that (u,p) is also solution of Problem 1. H
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