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Abstract. Fractional order diffusion equations are generalizations of classical dif-
fusion equations, treating super-diffusive flow processes. In this paper, we examine a
splitting type numerical methods to solve a class of two-dimensional initial-boundary
value fractional diffusive equations. Stability, consistency and convergence of the
methods are investigated. It is shown that both schemes are unconditionally stable.
A numerical example is presented.
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1. Introduction

Recently a lot of attention is given to formulation and analysis of mathematical
models described by PDEs of a fractional order. Such models can be used
when the classical diffusion equation is inadequate to model real situations
where a particle plume spreads faster than the classical model predicts. Thus
fractional type diffusion models are a generalization of the classical models of
the parabolic type. The theory of PDEs with fractional derivatives has a long
history and many analytical methods are developed for integration of such
equations. But these methods are not effective when real-world applications
are investigated. Then numerical methods should be used.

In this paper we present splitting integration schemes, which are based
on a well-known method of additive finite-difference schemes (see [3, 12, 15]).
Additive schemes are widely used in construction of new efficient numerical
algorithms targeted for numerical solution of mathematical models describing
important applications in technology and industry.

In many mathematical models of physics, biochemistry, geophysics we deal
with an anomalous diffusion, which is simulated by derivatives of the solution
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of the fractional (non-integer) order, see e.g. [8, 13]. A number of such pro-
cesses is constantly increasing, we mention only the contaminant transport
in ground water, diffusion of water through the membrane of cells in biology
or description of the behaviour of animals [7]. In 2000 Kirchner have demon-
strated examples of sub-diffusion in hydrology. These examples proved that
the velocity of movement of contaminants in the underground water was much
faster than the predictions given by the classical Fick law (the porous media
was strongly non-homogeneous). He proposed a modified model of the dif-
fusion which correctly described a time required to clean-up an environment
after ecological catostrophies or to reduce the level of pollutants from chemical
plants to non-dangerous one.

In [9] a new theory is developed which is based on the assumption that
the jumps of particles have power-law probability and the standard deviation
is infinite. Here the difference between the classical diffusion and the anoma-
lous diffusion is investigated and it is shown that a classical model should be
replaced by the fractional diffusion model in order to simulate accurately the
transport of contaminants in the underground water in high non-homogeneous
porous media. In addition some results on the sub-diffusion of fluctuations in
protein-systems are presented in [9]. Here the distance between donors and
acceptors (one-cell proteins) constantly changes. The obtained model of the
motion is totally different from the Brownian motion.

In [2] a phenomena of sub-diffusion is described for the diffusion of proteins
through the cell membrane.

We note that mathematical apparatus for fractional integration and dif-
ferentiation is studied for a quite long time, but analytical methods are not
very effective for the analysis of many models describing real world problems
[8, 13]. This paper is devoted to development of numerical algorithms for so-
lution of such problems and it is a modification and development of methods
proposed in [4, 5, 6].

2. Problem Formulation

Let us examine a two-sided fractional diffusion equation

ou 0%u 0%u o 0%u oPu
E‘C [(1 p1)a_ +p18+ J+C {(1 p2)8_x§ +p2—7p PR +f, (2.1)

where u = u(z,t), C* = C(z) > 0,(i = 1,2), f = f(z,1),
= (z1,22) € P={z11 < w1 < m1p, wor <2 < T2r},

and ﬂ, % are left-handed (+) and right-handed (—) fractional
042 5 3_33?,2

derivatives, p; € [0,1], i = 1,2. Let us denote C'(1 — p;) = ¢ (z), C'p; =

¢ (z), i = 1,2. Homogeneous equation (2.1) with constant coefficients de-

fines a transit density of the stability operator for the Levy processes. The
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independent stability of each component is of order «, 3, these constants are
asymmetrically defined by p1, p2 (see [6, 14]). Such processes present a stochas-
tic model for the anomal diffusion when the clustering of independent jumps
in each coordinate is taken into account [14]. The weights p;, po define proba-
bilities of the jump in the positive directions z1, x2, respectively, and (1 —p;),
(1 — po) define probabilities of the jump in the negative directions.

The Dirichlet boundary conditions are defined on the boundary of P
u(z,t) =0, x€IP, (2.2)
and the following initial condition is given:
u(z,0) = (). (2.3)

It is well-known, that fractional derivatives can be defined in different ways
[13]. In our paper the left-handed and the right-handed fractional derivatives
are the Riemann-Liouville fractional derivatives of order « defined as

D200 = g = T o |, T @4
oy _1\n n R v
(Dp-v)(w.1) = 58,960‘ - I’((nl—) @) %/ (f—(i;)%7 25)

where v(z,t) is a given function defined on [L, R] x [0, 7], n is an integer such
that n — 1 < a < n, and I'(z) is the gamma function. If @ = k is an integer
number, then definitions (2.4), (2.5) reduce to the standard derivatives, that
is

v

k k
(Do)t = 52, (Dhv)(et) = (-4 ¢ = =

-1 = .

(=1) oxk  O(—x)k

It is easy to see that if a = 8 = 2 and setting ¢(z) = ¢’ (z) + ¢, (z), i = 1,2,
equation (2.1) becomes the classical diffusion equation

Ou —01@4_02@_’_]0
o 0x? oz

In the case of @ = 3 =1 and setting ¢' = —c' (z) + ¢, (z), i = 1,2, equation
(2.1) gives the following hyperbolic transport equation

Ou | Ou 5 Ou
o o TCan T

3. Scheme of Approximate Factorization

Let us define in P a uniform space grid

TR — TkL

N L k=1,2}

th{(l’u,l’Qj) 1T = 21 +iha, T2; = 332L+jh2, hi =
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and in the interval 0 < ¢ < T a uniform time grid

wp = {tn: t,=n7,n=0,1,..., N, tN:T}.
Let us denote discrete functions:

y" =y = y(Xij, tn) = y(w10, T4, tn),
i = (X)), = (Xy), k=12, f" = [l = [(Xijta)-

—ij

For the approximation of left-handed fractional derivative (2.4) we use an
one-shift Griinwald formula [6]

@ Zgakux - _1)h17x27t)7

oz h_a N1
where g¢;, are the Griinwald weights

I'(k —«) e T1— T1L
= — (-1 , =———= 1 <2
Yok = Tt en) ~ Y (k) =7 =

The accuracy of the truncated formula is estimated as

6950‘ ho‘ Zgaku z1 — (k—1)h1,z2,t) + O(h1).

Let us define the finite-difference operators:

Ol 1+1 N1—i+1
Al = 3 L =p))  Gaklihry TP1 Y GakYiik—1,],
k=0 k=0
A o) j+1 Na—j+1
Ayl = h—g (1 =p2) Y gkt a +D2 D 9ok} ien1]-
2 k=0 k=0

We approximate differential problem (2.1)-(2.3) by the following finite-
difference scheme, which is written in a canonical form [12]

LA — Y (3.1)

where A = A; + Ay, B = (E — 7A). For sufficiently smooth solutions scheme
(3.1) approximates fractional differential equation (2.1) with the accuracy
O(T + h1 + hg).

As in the case a = 8 = 2 for two-dimensional parabolic problems, it is
very important to define an efficient algorithm to solve (3.1) at each time
level. Splitting algorithms are very popular tools in this area (see [3, 12, 15]).

Taking into account that for u € W} (R?), (x1,22) € R%, r > a = 3+ 3,
the mixed derivative can be estimated by [5]
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P 80‘u(x1,x2,t) a8 e (k+1) [ & B
dxoP 0z =M hy ZZ(_D (k><l>

k=0 1=0

x u(z! = (k — 1hy, 2® — (I = 1)ha, t) + O(h1 + ha),
we change operator B in (3.1) by the factorized operator
B = (E—TAl)(E—TAQ) = B"—TQAlAQ.

It is obvious that the approximation error of the factorized finite-difference
scheme
n+1 n

(E —7A)(E — 74y) % = (A1 + Ao)y" + L, (3.2)
with f"Tt = f + O(7 + h1 + hs), is of the same order as of the basic scheme
(3.1). Each factorized scheme can be implemented in a few different ways,
when a multidimensional (or a multi-process) problem is reduced to a sequence
of simple (in most cases one-dimensional) problems. We will use a simple
splitting algorithm:

ynl+l/2 - y”
S Ay e,
T (3.3)
yn+1 fll+1/2
iJ . 17 _ A2yg+17

with zero Dirichlet boundary conditions for y?jﬂ/ 2,
The order of approximation with respect to time can be increased by using

the symmetric version the scheme
T o T A~ T o T &
(E — §A1)(E — §A2)y”+1 =(E+ §A1)(E + §A2)y" + 7", (3.4)

where f = f 4+ O(72 + hy + hy). Since 7A; Ay (y" ' — y™) is of order O(72 +
hi + ho), the same estimate is also valid for the global approximation error of
(3.4).

Let us consider an implementation algorithm of the factorized finite-
difference scheme (3.4), which coincides with the classical method of alter-
nating directions [15]:

T & T & T

(E _ §A1)yn+1/2 _ (E+ 5142)yn + §f7L7 (35)
T4 n T3 n T n

(B = 5Ap)y" " = (B + 5 Ay 2 4 2 fm,

0
Y = Qij, Tij € Wh.

The boundary conditions for y"+1/2 are written in accordance to [12] and
the order of accuracy O(72 + hy + hs) is preserved. We also note that the
the right-hand side approximations in (3.4) and (3.5) are different, thus these
schemes are not equivalent.
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4. Stability Analysis

It is well-known, that if boundary conditions on the fractional time step are
compatible with the basic factorized scheme, then the accuracy and stability
of the discrete scheme depends only on the properties of the main factorized
scheme [12, 15]. Thus for stability analysis we can investigate any compatible
implementation algorithm of schemes (3.2) and (3.4).

In order to get a matrix representation of algorithm (3.3), we put explicit

expressions of A1, A, into these equations. Let us introduce the following
notation

T T T T
dl =ct , el =cb — al2 2 , el =72 —,
+ij ha ij ij h§ +ij hﬂ j ij hg
then we rewrite algorithm (3.3) as
+1/2 +1/2
— (€900 + Y 9a2) Y107+ (1= (df + el gar) w7 — (el gaz + dLjga0)

i+1 N1—i+1
”*1/2 1 n+1/2 1 n+1/2 nal
Yiv15 — d; Zgakyz k+1,5 — Cij Z JokYitr1,; yw + Tf , (4.1)

n+1/2 —0, y?\fj—jl/Q =0, y?j =ij, i=1,Ni—1, j=1,Na—1

0j
1 1
— (€980 + d3;gp2) vy + (1= (d; + €3)gp ) uis ' — (€3 982 + diygp0)yl T
Jj+1 N1 i+1
° +1/2 n+1/2  _ n41/2
— d3j Zgﬁky;ﬁjfkjtl Z gﬁky”+k 1= yn ’ (4.2)

vt =0, Yk, =0, i=0,N1, 0,Ns.

Lemma 1. One-dimensional problems (4.1) and (4.2) are unconditionally
stable for 1 < a, 8 < 2.

Proof. Let us consider problem (4.1) for a fixed j = jo, jo = 1, No — 1. We
apply a matrix stability analysis for the linear system of equations

joynt+1l/2 _ pn+l
Al on - Rjo

arising from the finite-difference scheme (4.1), where

n+1/2 n+1/2 n+1/2 n+1/2 1T
Y, = W5 e oy

n+1 __ n+1 n+1 n+1 T n+1 n+1
R = [rljo s T2jo ,...,er_lij} s Tie ymO—FTf ,

Al = (a! ) is the matrix of coefficients, its dimension (N; —1) x (N; —1), the
coefficients are defined by afy = 1, ay,,, = 0form =1,..., N1, and ayy, y, = 1,
aj,ym =0 form=0,...,N; — 1, and
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—(d}j 9oz + €}, 900), m=i-1,
1= (dlljo + ezljo)gala m = i,
Ay = —(dlljoga() + elljogoa), m=1i+1, (4.3)

_diljg (gai—m+17 m < 1 — 1a

1 .
_eijggam7i+17 m>i+ 1.

Note that go1 = —a, gai > 0, Z?io Jai = 0. Thus we have that g,
satisfies the inequality

Ny
—Jal > Z Jak-
k=0,k#1

It follows from the estimates given above that

1 _ 1 1 _ 1 1
a;; =1 = (djj, +€ij,)901 = 1+ (djj, + €5, ),
Ny i+l Ni—it1
1 1 1 1 1
i = Z |@im | = Z dijo Yam + Z €ijoGam < (dij, + €5,)
m=0,m%#i m=0,m%#t m=0,m7#t

According to the Greschgorin theorem [3] the eigenvalues of the matrix A7°
lie in the union of the circles centered at aj,:

n

|Z_a‘llck|§rk7 TR = Z |a;£i|, k=1,...,n.
i=1,i%k

This implies that the eigenvalues of the matrix A are all no less than one in
magnitude. Hence the spectral radius of the inverse matrix

p((AP) ™) <1, jo=1,...,No—1.

Thus the error in Yjj is not magnified and scheme (4.1) is unconditionally
stable. A similar result is valid for the second splitting step (4.2). The lemma
is proved. W

We write scheme (3.2) in the following form
A1A2yn+1 —_ Yn 4 Fn+1
where A; = E — TAJ-, j=1,2and
T
Y" = [y?lv Yoy aZ/K/l—na Y125 Ysas -+ s y{ler, ygNg—lv S y]T\L/1—1N2—1]

3

Fntl consists of f{}*l and it also includes terms from boundary conditions.

To illustrate the matrix pattern of A; we note that
Ay =diag(47], A3, ..., A7),

with (N7 — 1) x (N7 — 1) blocks A{O, jo=1,..., Ny — 1. Matrix A, is defined
similarly.
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Theorem 1. If A1 and As commute, i.e. the equality A1 Ay = Ay A; is satis-
fied, then scheme (3.2) with 1 < «, 8 < 2 is unconditionally stable.

Proof. We consider the stability of (3.2) with respect to the error in the
initial condition. Let d° be the error of Y in system (4.3), then the error of
Y™ is defined by

o" = (A1Az) ",

Using the commutativity property we get that
5" = (A;l)n (A;l)n 50.

It is well-known (see [1]) that in order to have (A~!)" — 0, it is necessary
and sufficient that p(A~!) < 1. By using the result of Lemma 1 we get the
estimate

(AT (431" =0, n— oo,

The theorem is proved. B

Remark 1. From the commutativity of A; and Az we get that this property
is also satisfied for (E — 74;) and (E — 7As2). It is well-known that such a
condition is typical for AD schemes with a = 0 = 2.

Theorem 2. The solution of splitting scheme (3.3) unconditionally converges
to the solution of problem (2.1) and the convergence rate is O(T + hy + ha).

Proof. The proof follows from the Lax theorem and the unconditional sta-
bility and the consistency of splitting scheme (3.3). B

Remark 2. It is possible to use a staggered grid when the solution is approxi-
mated at grid nodes and the fluxes are approximated at locations offset from
grid points in their respective directions.

5. Splitting Scheme of the Second-order Accuracy

Similarly to the analysis given above, it is possible to investigate the symmet-
ric splitting scheme (3.4). It approximates the differential equation with the

second-order accuracy in time. For simplicity of presentation let us assume
1

ol c2 . .
T2 = Zul We rewrite (3.5) in

that p; = py = 1/2, and denote c;; = S Cij = S
2

the following form :

n+1/2 -

1/2 1/2
_C;'Lj (gao + ga2)y;i+1 / +(1— QC}jgal)yij Y

1
¢ij(9a2 + 9a0)Yit1;
i+1 Ni—it+1

1 n+1/2 1 n+1/2
— Cij E 9okli k415 — Cij E 9okYitr—1;5
k=3 k=3

j+1 Na2—j+1

.
= yz + C?j Zgﬂlyz'_l.l,.l + C?j Z gﬂly%—&-l—l + Efga
=0 =3
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where i =1,N; — 1,5 =1,N, — 1.
Let us denote A1’ = (a;,,) a matrix of dimension (N; — 1) x (N1 — 1), here
Jo is fixed, jo = 1, Na. The coefficients of A]° are defined by
2C%j0ga1, m =1,
_Ciljo (ga2 + gaO)a m=1—1,
Aim = _Czljo (gaO + ga?)a m =1+ ]-a

1 .
_Cijogajfmjtla m <1 — ]-7

1 .
—Cijo9am—i+1, M >1+1,

ajo =1, ag,, =0, m=1,... Ny, ay N, =1, aj,,, =0, m=0,...,N; — 1.
To illustrate the matrix pattern of A; we note that

Ay = diag(A7, A%, ..., AT,

with (N7 — 1) x (N7 — 1) blocks A{O, jo=1,..., Ny — 1. Matrix A, is defined
similarly.

Theorem 3. If Ay and Ay commute, i.e. the equality A1 Ay = As Ay is satis-
fied, then scheme (3.4) with 1 < «, 8 < 2 is unconditionally stable.

The proof is similar to one presented in the previuos section.

By using the stability and consistency estimates (the boundary conditions
must take into account a special form of solutions at the intermediate time-
steps and the influence of source term) we get from the Lax theorem that the
solution of (3.4) converges to the solution of the fractional differential problem
(2.1) and the error is estimated by O(72 + hy + ha).

Results of computational experiments are presented in [10, 11], they con-
firm theoretical results.
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